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SUMMARY

r Integrated inductors also called as spiral inductors, on-chip inductors or planar inductors are
inseparable part in radio frequency integrated circuits (RFICs). Increasing growth in RFICs from the
past few decades has forced study of these components in greater detail. Apart from IC conductors
there are several components mounted on a chip - namely capacitors, resistors, MOSFETs, diodes
ete. It is extremely important to understand the electrical and magnetic behaviour of all these
components. Electrical behaviour of these components is easy to understand. However, the real
challenge lays in realizing and predicting the magnetic behaviour of components namely, inductors
and capacitors. Capacitors have their own physical model developed for accurate modelling, but for
inductors there are many factors to be considered. As the frequencies in RFICs are in the GHz range,
factors such as self-resonant frequency (SRF), quality factor (Q), self and mutual inductance are
critical to design due to the very small size of inductor. This project concentrates on a brief study of
integrated inductors, their construction and modelling and presents a novel way to estimate
inductance on spiral inductor using “Equivalent Radius Method”. Present project in this field will

make it possible to predict magnetic behaviour accurately by theoretical methods.
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CHAPTER 1

INTRODUCTION

With the emergence of cellular phone, wireless local-area network (WLAN) and Bluetooth
technology, we are standing on the threshold of a new radio frequency epoch. Compared with the
old epoch dominated by discrete bipolar transistors and discrete filters, the new epoch is
remarkable for the development of radio frequency integrated circuits (RF ICs), especially Si RF
ICs, which are cheaper to fabricate and easier to integrate than GaAs ICs. In the new epoch, most
of the radio transceiver components, such as low noise amplifiers (LNA), mixers, oscillators and
filters will be integrated on one monolithic chip, sometimes with digital baseband circuits as
system-on-a-chip (SOC). By doing this, the cost and the difficulty of assembly and tuning are
reduced drastically.

The integrated spiral inductor plays an important role in the development of Si RF ICs. As
pointed out in [1], the first published integrated CMOS RF amplifier was hidden in a paper on
fabricating a suspended spiral inductor on silicon [2] in 1993. This is because a source-
degenerating inductor has to be used to tune the transistor capacitance to obtain gain at RF
frequency. This inductor has to be built on-chip so that the parasitic capacitance coming with the
off-chip inductor does not ruin the performance of the amplifier. The spiral inductor has a great
influence on the performance of many RF circuits. The obvious example is the LC tank, in which
the quality factor Q of the spiral inductor determines the bandwidth and the resonance impedance

of the LC tank. Another example is the bandpass filter (BPF) built with inductors and capacitors,

in which the quality factor of the spiral inductor determines the insertion loss [3]. In low noise




amplifiers (LNA), the quality factor of the spiral inductor determines the figure of merit (FoM),
which is the measure of the overall performance of the LNA [3]. In voltage controlled oscillators

(VCO), high-Q spiral inductors reduce both DC power consumption and phase noise [3].

The spiral inductor was once thought to be impractical to be built on heavily doped silicon due to
largé substrate losses. This situation changed since 1990s, when the first spiral inductor built on
silicon was reported [4]. In 1993, a 100-nH suspended on-chip spiral inductor was fabricated by
removing the silicon substrate under the spiral inductor [2]. In 1995, a multi-layer spiral inductor
was proposegl and fabricated [5][6]. In 1996, high-resistivity silicon was used to reduce the
substrate loss [7]. In 1998, a patterned ground shield between the spiral inductor and silicon
substrate was introduced to separate the electric field of the spiral inductor from the substrate [8].
By the late 1990s, the effort to suspend the spiral inductor from the substrate using MEMS
(Microelectromechanical Systems) technology [9]-[11] gradually developed into a new field by
its own: RF MEMS [12].

At the same time, a lot of work has been done in the synthesis and optimization of spiral
inductors on silicon. Most of these works are based on circuit models. In [21], an analytical
design procedure based on the physical model is presented. In [22] and [23], geometric
programming (GP) formulation of the spiral inductor optimi;ation is proposed, based on the
model presented in [16]. In [24] and [25], sequential qua(iratic programming (SQP) and an
optimization method called mesh adaptive direct search (MADS) are used to optimize the spiral
inductor, both are based on circuit models. Although these methods are very efficient, the results

they give depend on the quality of the circuit model they use. It is likely that the design does not

meet the specification when validated by EM simulators or measurements. Thus direct




optimization based on more accurate EM simulators is highly desirable. Unfortunately, the task
is extremely time-consuming, if not impossible, with current computational power. To address
this problem, Bandler et al. introduced space mapping (SM) technology [26]-[33] in 1994 to
incorporate the computational efficiency of cheap circuit models and the accuracy of expensive
EM simulations. Space mapping algorithms perform optimization on a cheap circuit model and
use BM simulations to calibrate the circuit model. Reviews of recent developments of space
mapping technology are given in [@8] and [29]. The purpose of this project is to present an
optimization method for the design of spiral inductors and LC resonators using the

“Equivalent Radius Method”.

The objective of this work is to develop a theoretical method which can predict the self and
mutual inductance values of certain inductor geometries with reasonable accuracy and speed in
order to be able to decide the optimal inductor geometry to implement in wireless devices.
Several methods were explored to decide which approach would solve the problem reliably and
elegantly. The primary factors considered were efficiency, simplicity and computational speed.
The equivalent radius method satisfied all three criteria and seemed to be'the best way to proceed
for a variety of reasons. As it turns out, the equivalent radius method, like most other inductance
calculation methods, can theoretically find out the inductance values of any given structure.
However, for the specific structures we are interested in, the éciuivalcnt radius method simbliﬁes

the problem greatly due to the symmetry and regularity of the geometries under investigation.

This greatly reduces the complexity of the problem.
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CHAPTER 2

RECENT WORK ON THE
MODELING AND OPTIMIZATION
OF SPIRAL INDUCTORS ON
SILICON

2.1 INTRODUCTION

{ Inductors are components used to store energy in the form of magnetic fields. In RF integrated
circuits, inductors of spiral shape are fabricated on metal layers. As an example, the top and
sectional view of a square inductor fabricated in a sample CMOS process are shown in Fig. 2.1
and Fig. 2.2. Two metal layers are used: the top layer for the spiral inductor and the lower layer
for the underpass (the part shown by the dotted line in Fig. 2.1). The geometry parameters of the
spiral inductor are the number of turns n, the width of the metal trace w, the turn spacing s, the

inner diameter din and the outer diameter d;.

Fig. 2.1 Square spiral inductor (top view) [1].
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Fig. 2.2 Square spiral inductor (sectional view) [1].

Spiral inductors can be fabricated in other shapes. Fig. 2.3 shows spiral inductors in hexagonal,
octagonal and circular shapes. In order to enhance the quality factor, multi-level metal layers are
sometimes connected in parallel to fabricate the spiral inductor [3]. For the same purpose, the

patterned ground shield (PGS) made with the metal layer between the spiral inductor and the

substrate can be used (Fig. 2.4).




(b)

4 (c)

Fig. 2.3 Spiral inductor: (a) hexagonal, (b) octagonal, and (¢) circular.
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2.2 INDUCTANCE CALCULATION

Many methods have been proposed to calculate the inductance L and they can be divided into
two categories. The first ones are based on the self and mutual inductance calculation for single
wires. The second ones are empirical equations.

The basic equations for the first kind of method are summarized in [8]. In particular, the self-

inductance of a wire with a rectangular cross-section is [7] where Ly is the self-inductance in

24 W+t
=2l +(ln +0.5+
w1t 3/

Lse.(f

) {2.2.1)

nH, / is the wire length in cm, w is the wire width in cm and ¢ is the wire thickness in cm. This
equation only applies when the wire length is greater than approximately twice the cross-section
dimension.

The mutual inductance between two parallel wires can be expressed as [7] where M is the
M=21-0, (223

mutual inductance in nH, / is the wire length in cm and Q,, is the mutual inductance parameter

] M
0, =hn|— +\/1+( Iy _J1+(Cr_1[D)2+§.\1[)l (2.2.3)
GMD GMD / !

The GMD in (2.9) refers to the geometric mean distance between wires. It is approximately equal
to the pitch of the wires (the distance between the central line of the wire). A more precise

definition for GMD is [7]

Wz W i wé wa 1 1:3 0
InGMD =Ind —- - - - . (2.2.4)

42 4 6 - o
1242 604 1684% 360d4% 6604

Where d is the pitch of the wires and w is the width of the wires.




Based on (2.2.1) and (2.2.4), Greenhouse proposed a method to calculate the inductance of the
spiral inductor [9]. As shown in Fig. 2.7, the spiral inductor is divided into single wires. The
inductance of the spiral inductor is then calculated from the self-inductances and the mutual

inductances of these wires. The general equation for this calculation is [9]

Ly=Ls+M ~M_ (2.2.5)

Where Ly is the total inductance of the spiral inductor, Ly is the sum of self-inductances,
M-+ is the sum of positive mutual inductances (when the current in two parallel wires is in the
same direction) and M~ is the sum of negative mutual inductances (when the current in two
parallel wires is in the opposite direction).As an example, the inductance for the spiral inductor
in Fig. 2.7 can be calculated as
Li=L+Ly+Li+ Lyt Lt L+ L+ 1, +2M s+ My g+ My, (2.2.6)

+ M, )= 2(M, g+ My + Mgy + Mg+ Mg+ M, + Mg

+Mg4)
where Z; is the self-inductance of the wire i and M;; is the mutual inductance between wire i and

wire .
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FIG 2.4 (Spiral inductor (as line segments))




CHAPTER 3

Electromagnetic Formulation and Inductor

Specifications

Introduction
In this chapter we will discuss relevant electromagnetic theorems and assumptions. We begin

| with Ampere’s Law, Faradays Law and discuss inductor specifications.

3.1 Inductive Interaction between Conductors

The process of inductive interaction between conductors carrying currents can be decomposed

into three effects which take place concurrently [22]:

« Currents flowing through conductors create magnetic fields (Ampere’s Law) e
» Magnetic fields varying with time create induced electric fields (Faraday’s Law)

* Induced electric fields exert forces upon the electrons in the conductors and cause electric

voltage (Electric Potential) drops.

3.1.1 Ampere’s Law

Currents flowing through conductor loops and time- varying electric fields create magnetic
fields. This relationship between current density j, the electric ﬁeld E and the resulting magnetic
field B is Ampere’s Law:

FAY )

ot

V x B = uj + pe
(3.1.1)

The first term on the right hand side of (3.1.1) represents the contribution of the current density

to the magnetic field on the left hand side. p is the magnetic permeability of the insulator

surrounding the wires and its electric permittivity. The curl operator on the left hand side causes




the resulting magnetic field to be wrapped around the existing current flow patterns (see Fig.

3.1). The integral form, which can be derived from (1) via Stokes’ Law, is

(3.1.2)

"m‘) .dS

B.dl = i€
j{ . “‘/S(-'“m

where S is a surface which intersects the wire (see Fig. 3.1). The current through the wire creates

a magnetic field around the wire. For a general, three-dimensional current flow this field is

I
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Figure 3.1: Magnetic Field created by time-variant current flowing through conductor loop

to predict intuitively, but for one-dimensional wires the field direction can be predicted with the

»

right- hand rule: if the thumb of the right hand points in current direction, the other fingers point

in direction of the magnetic field.

The second term in the right-hand side integral of (3.1.2) is referred to as the displacement
current density, since it has the dimension of a current density and represents the ac current
flowing between two conductors due to their capacitive couplings. Time-varying electric fields

can create magnetic fields. Usually, however, this term is neglected in Ampere’s Law ol
integrated circuits since the magnetic field created directly by the currents flowing within the

10




conductors is larger than the magnetic field created by the displacement currents - even with

dominant lateral capacitance coupling - by at least one order of magnitude.

Discarding the displacement current term in (3.1.2) decouples the inductive and capacitive
effects within the circuit; therefore this step is referred to as a quasi-static approximation, since
the capacitive electric fields are assumed to be roughly (quasi) static and variations of the
potential differences between conductors are sufficiently slow such that the displacement term is
- negligible compared with the current term. The quasi-static (differential and integral) form of

Ampere’s Law is:
VeB=iq) (3.1.3)

f B.-dl=pu /j S (3.1.4)
48 o

Though the displacement current contribution to the magnetic field is usually negligible, the
displacement current itself, however, is not negligible. It may be shown that the contribution of

the displacement currents to the magnetic field is negligible.
3.1.2 Faraday’s Law

Ampere’s Law gives us the first part of the inductive process: the creation of the magnetic field.
Only if these magnetic fields vary with time do these fields create induced electric fields.
Therefore, time-variant currents are required for induction, the relationship of which is Faraday’s

Law:

] do
};Em =%

(3.1.5)

Whiere tl)“fB.ds is the magnetic flux with the integral taken over the arca of the primary loop and
Eing is the induced electric field in the secondary loop. The induced electric field wraps around

the magnetic field lines (see Fig. 3.2). The portion of the induced electric field which is parallel

11




to the wire of the loop in Fig. 3.2 exerts force on the charges and creates voltage in the loop. The
induced E-field is caused by the time-variant magnetic field in Eq. (3.1.4). The orientation of the
loop with respect to the induced electric field determines the amount of induced voltage. If the
loop is orthogonal to the induced E-field the total effect of the magnetic field on it will be zero
(As we will see later in a more detailed derivation, this causes partial inductive couplings

between orthogonal wires to become zero).

3.1.3 Electric Potential

The induced electric field can be integrated along the victim loop and results in an induced

voltage which adds to the already existing voltage due to the resistance of the loop:

/};\

V

Figure 3.2: Electric Voltage created by time-variant magnetic field passing through a conductor
loop

‘[‘fi‘émz = %Eim] -l (316)
Ji
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Figure 3.3: Magnetic Field created by the time-variant current in loop / induces voltage in
loop i, since some of the magnetic field passes through i

3.1.4 Loop Inductance

Fig. 3.3 summarizes the combination of these three effects which combine to generate a voltage
drop in the victim loop i due to a time-variant current in loop j. All three relationships involved
in the preceding equations are linear. Therefore, the resulting combined relationship between

time-derivatives of currents in the loops and the resulting induced voltage drop is linear as well:

Ly

V_-i.nri = Lyi—
‘ " ot G.1.7)

Where Ij=fj.dS and the integral is taken over the cross sectional area of conductor ;.

L;is the mutual inductance of loop j upon loop i and ; is the current flowing through the
Loop j. V'™, is the voltage induced in the victim loop i. For the special case where loops i

And j are the same, the coefficient L; is the self-inductance of lbop i

13




3.2Inductor Specifications

A current flowing through the conductor produces magnetic flux. This magnetic flux generates
the electromotive force (EMF) proportional to the flow of current. Any change in current
changes the magnetic flux. This in turn changes the EMF. Inductance is a measure of this change
in EMF per unit change of current. Consider a single turn inductor carrying a 1 ampere current
producing 1 volt EMF. Corresponding inductance (L) measured is 1 Henry (H). Now, if the
number of turns is increased, the EMF varies and so does the inductance L. Some of the
important specifications of an inductor are:

(a) Self Inductance

(b) Mutual Inductance

L (¢) Quality Factor

(a) Self-Inductance. Suppose there are two coils connected in series having a certain number of
turns. Change of current in coil 1 causes change in magnetic flux linking with coil 2.
Similarly, it causes change in its own magnetic flux linking with self turns. This changes the
self-flux linkages, and is called as self-inductance of coil denoted by L. The flux linkage is
given by _

v(t) = —Lﬁ. @20
dt

(b) Mutual Inductance: Consider the same example as in case of self-inductance. The change in
current flowing through coil 1 produces change in magnetic flux linking with the second coil.
This causes a chenge in flux linkages of coil 2 and is called as mutual inductance denoted by
M. The flux linkage is given by

di

”U(f-) = —11.[]3-(}; (3.2.2)

If there are multiple coils connected in series, the total inductance of a coil is given by
L]': L|+L2+ LJ+ ...... + L,._‘L‘2M2+ ...... (323)

14




The sign for mutual inductance in the above equation depends on whether EMF's are adding

or subtracting with self EMFs. According to Lenz's law self EMFs always oppose the mutual

EMFs indicating negative sign.

(c) Quality Factor (Q): An ideal inductor is lossless. The coil of an inductor is made of metal
wire, which consists of some parasitic resistance. When current flows through the coil it
causes heat loss due to series resistance, which deteriorates the quality of the inductor for a
given design. Measure of heat loss is called as the quality factor of the inductor. It is given as

ratio of inductive reactance to series resistance.
wil (3.2.4)

15




CHAPTER 4

IR

Calculation of Inductance Using Equivalent
Radius Method

Consider a loop of radius R as shown in Figure 4.1 of circular cross- section, where a is the

k radius of the wire.

,observation point

. . cross-section
center-line :

4 source point

Figure 4.1: A circular loop of wire carrying a current I

The vector potential A near the wire is given by

Mo "‘iiir')¢f\" .
Ai(r) = EJ{!J ‘r—---——-“ 7] =X, Y2

(4.1)

Observing a point in the wire we can see that there is only component of J, namely Jg and

16




!

)= L;,(ma\-sin P+ aycosrp')

(4.2)
: where J is the magnitude of the current density and is uniform throughout the cross- section
Writing Considering a point on the x-z plane where (=0
fr=r'| = J(l' ~x) ey -y + a2
& \/RI + 2 = 2RrsinOcos g’ (4.3)
i i (Ho )fR o (~sind’)d¢’ .
o] | 3
dn/ Jo JRZ472-2RrsinGcos ¢’
I * (cosd o'
Ay = (iﬂ)m j M
' 4 \ﬁ(z + 12 = 2RrsinOcos ¢’
(4.4)

The first equation is zero since the integrand has odd symmetry about =, the second equation is
not zero and is Ay and the third equation is zero since J,=0. The second equation can be

expressed in terms of the complete elliptic integrals K and E,

n 4IR 2 - k2)K(k) - 2E(k (4.5)
Where Ay = (f’“’)( 7 )[( : U:) E{Ul
/N VRZ 472+ 2Rrsin 0 S ‘
o @
-t alrsing
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for =R , 0=m/2 we find that k=1. On closer examination we discovered that K(k) becomes

inﬁnity but E(k) remains finite and =1. The functions near this point can be approximated by

1 g1 i) a7y - e Y
K@)z = .,Eln(],wz)(l e +0((z-1) ))+l:x4+3(1 =AM L+ L~ “rm

z—1 z—1 . 3 5
E@)z—1 =1+ nﬁmZ)( )+T(—2t;14+1+L}((:_n-q) (4.7)
We can see from these equations that as z— 1 the larger terms in these expansions are

Kzl .01 m% In(1 - 2)+ Ind (4.8)

E@)lry ~ 1 (4.9)

Which we introduce into equation (4.5)

;m) 16 \ (4.10)
L= 2l{=1In -2

A ) (47_' ( ] . k)

where we have substituted r = R in the loop. We know proceed to evaluate 1-k on the inside of

the wire. We allow r= R+ p where p< a (the radius of the loop). Here we find the Taylor series

expansion of k is

p* P} (4.11)

g @ P (#ul )(k\ %ﬁ B 2) (4.12)

18




ing first only on the area of cross section

Integrat

A¢I¢pld¢ldpl -_=I¢J‘J.A¢pfd¢idp:

(poi)(nnz)Jj(ln_ ,.2) ‘d'dp’
= (%3—;)(;-55 (21‘t)f(ln—b-{,i ——2)p'dp’

P e e £ 5T

-
WA

-2 5 A
Since f[.\’in(SR/x) —2x}dx = '}——l—n(SR/'\) = .3.;_

R R B 4

X e i

5 j AgJop'd)dp’ = (‘: )m-2-2n)—3[1n(8R/n}»-H]
2

Jl therefore @13)
(” )[ln(SR/n)-——}
Integrating along the wire
W tol”
w=2nR x| 2 [1 (8R/a) —]
(4.14)
Hol?
o [1 (8R/a)— -}
-
12
I =g
; which gives the inductance of a single turn to be
L= mR [ln(BR Ja) - g] (4.15)

e,

S| SESSSEES
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Chapter 5

Analysis of Inductor Geometries and Results

The purpose of this work is to examine inductor geometries which may be fabricated on-chip and

find the best option based on calculations of mutual coupling with the external coil. However, in

order that these coupling calculations may be considered reliable, we need to first validate the
results obtained for simpler structures via measurements or known calculation methods. If the
l computational results are in good agreement with the measurement results, the validity of the
computational method will be established and it may be used to confidently predict the

inductance values of various structures with reasonable accuracy and speed.

TestIStructures and Results

1) Circalar Spiral Inductor( Circular Cross Section )

’

Figure 5.1

Circular Spiral Inductor

20
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To test the validity of our assumption for the dimensions of on-chip inductors, we perform the
calculations for the approximate range of values for the various on-chip dimensional parameters
_ line width W, metallization thickness T, distance of separation D and length of segments L.

In the above approximation, we consider the worst case scenario for estimating the value of D.
Since smaller values of D will lead to larger error, we take the smallest value of D expected,
which is the track separation between oun-chip inductor segments. The track separation is
assumed to be equal to the line width, which is generally the case. The specific case we shall
consider for our calculations is that of two circular segments as shown in Figure 5.1 and compare

the values of mutual inductance obtained to research paper.

For the on-chip inductors, the values of the dimensional parameters are approximated to be in the

following range:

In the table 5.1 the mutual inductance has been calculated with respect to variation in length of
the inductor from 1.25mm to 5Smm using equivalent radius formulation. In the following graph
the result obtained from equivalent radius method has been compared to estimated value of
grover’s formula. The graph fig 5.1 shows that the results obtained from equivalent radius

method are in close approximation with the grover’s formula.

‘.Irq{e table 5.2 the error between the values estimated by grover’s equation and equivalent radius
‘method has been shown. The following graph fig 5.1 clearly shows that equivalent radius method

provides result in close approximation but the error increases for the higher radius.
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R1
R2

R1
R2

R1
R2

R1
R2

R1
R2

R1
R2

R1
R2

Length(metres) 11 and 12(H)

0.00125

0.001407

0.0015
0.001657

0,002
0.002157

0.003
0.003157

© 0.0035
0.003657

0.004

0.004157

....... 0' 005
0.005157

6.63524E-10
7.80156E-10

8.50925E-10

9.72977E-10

1.24964E-09
1.38034€-09

2.11774E-09

2.26077E-09

2.5786E-09

2.72636E-09

3.0538E-09
3.20567E-09.

~ 4.04039E-09

4.19914E-09

Table 5.1

Table showing Mutual Inductance
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mutual inductace(H)

7.1948E-10

9.09907E-10

1.31336E-09

2.18809E-09

2.65145E-09

3.12881E-09

4.119E-09




5E-09
4.5E-09
4E-09
3.5E-09
3E-09
2.5E-09
2E-09
1.5E-09
1E-09

5E-10
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—

0.00125 0.0015 0.002 0.003 0.0035 0.004 0.005

e MUTUAL
INDUCTANCE

«®

Figure 5.2

Figure showing the comparison between calculated value and Etd values
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Radius  mutual inductance(H) ETD VALUES(H) ERROR %
R1 7.1948E-10 7.40E-10 2.77291302 '
R2
R1 9.09907E-10 9.44E-10 3.611579104
R2
R1 1.31336E-09 1.38E-09: 4,82873702
R2
R1 2.18809E-09 2.30E-09 4.865769
R2 :
R1 2.65145E-09 2.78E-09 4.62403783
R2
R1 3.12881E-09 3.54E-09 11.7263951
R2

L Rl 4.119E-09 4.33E-09 4.872934854
R2 :

Table 5.2

Table shows the percentage error of mutual inductance
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Figure 5.3

Figure shows the error percentage graph
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Total Self
| No. of loops Inductance
| 5 1.13E-08
% 6 1.48E-08
i 7 1.78E-08
!} 8 1.88E-08

Table 5.3

Above table shows the total self Inductance of Circular Spiral Inductor

No. of Inductance Inductance
loops | (Calculated) (H) (Empirical)(H) Error(%)
5 1.13E-08 1.05E-08 -6.94E+00
| 6 1.38E-08 1.33E-08 -3.7TE+00
7 1.67E-08 1.64E-08 -1.66E-+00
8 1.88E-08 1.85E-08 -1.55E+00
Table 5.4

Table Shows the comparison between the calculated and empirical values and percentage error
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2.00E-08

1.80E-08

1.60E-08

1.40E-08

1.20E-08

1.00E-08

8.00E-09

6.00E-09

4.00E-09

2.00E-09

0.00E+00

s Total Inductance (calculated)

e Total Inductance (Empirical)

Figure 5.4

Comparision between total inductance (calculated) and (empirical)
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Figure 5.5

Error between empirical and calculated total inductance
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2) Circular Spiral Inductor ( Square Cross Section )

To test the validity of our assumption for the dimensions of on-chip inductors, we perform
the calculations for the approximate range of values for the various on-chip dimensional
parameters — line width W, metallization thickness T, distance of separation D and length of
segments L. In the above approximation, we consider the worst case scenario for estimating
the value of D. Since smaller values of D will lead to larger error, we take the smallest value
of D expected, which is the track separation between on-chip inductor segments. The track

separation is assumed to be equal to the line width, which is generally the case. The specific

cases we shall consider for our calculations is that of two circular segments as shown in Fig.

and compare the values of mutual inductance obtained to research paper.

For the on-chip inductors, the values of the dimensional parameters are approximated to be in

the following range:

D =25 pm; W=25 pm; T = 0.3pm; L = 1.25mm — Smm

In the table 5.3 the mutual inductance has been calculated with respect to variation in length of
the inductor from 1.25mm to Smm using equivalent radius formulation. In the following graph
the result obtained from equivalent radius method has been compared to estimated value of
grover’s formula. The graph fig 5.4 shows that the results obtained from equivalent radius

method is in close approximation with the grover’s formula .

In the table 5.4 the error between the values estimated by grover’s equation and equivalent radius
method has been shown. The following graph fig 5.5 clearly shows that equivalent radius method

provides result in close approximation but the error increases for the higher radius.
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Radius  Length(m) 'CIRCULAR INDUCTANCE(H) MUTUAL INDUCTANCE( H)
R1 0.00125 7.367276-10 7.99E-10
R2 0.001407 8.66227E-10
R1 0.0015 9.44803E-10 1.01E-09
R2 0.001657 1.08032E-09
R1 0.002 1.38751E-09 1.46E-09
R2 0.002157 ~ 1.53262E-09
R1 ' 0.003 2.35138E-09 2.43E-09
R2 0.003157 2.51019E-09
R1 , 0.0035 2.86308E-09 2.94E-09
R2 0.003657 3,02715E-09
R1 0.004 3,39071E-09 3.47E-09
R2 0.004157 3.55933E-09
RL 0005 4.48615E-09 4,57E-09
R2 0.005157 4.66242E-09
Table 5.5

Calculated Self inductance and Mutual inductance

30 4




5E-09

4,5E-09

4E-09

3.5E-09

3E-09

2.5E-09 +—

2E-09

1.5E-09

1E-09

5E-10

¥ e T ( ¥ ¥

0.00125  0.0015 0.002 0.003 0.0035 0.004 0.005

il

wsaen T D
—

Figure 5.6

Comparision between calculated values and etd values
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Radius  CIRCULAR INDUCTANCE(H) MUTUALINDUCTANCE ( H) ERROR %
R1 7.36727E-10 | 7.99E-10 -8,260076509
R2 8.66227E-10
R1  9.44803E-10 1.01E-09 -7.681821775
R2 . 1.08032€-09
R1 1.38751E-09 1.46E-09 -7.00881581
R2 1,53262E-09
RL 2.351386-09 2.43E-09 -6.441987532
R2 2.51019E-09
R1 ~ 2.86308E-09 | 2.94E-09 -6.314656074
R2 3.02715E-09
R1 ~ 3.39071E-09 3.47E-09 -6.234925606
R 355933609
R1 ) 4.48615E-09 . 457609 | -6.154172675
R2 4.66242E-09

Table 5.6

Error percentage
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[ . Figure 5.7
Graph of percentage error

33




3) Square Spiral Inductor ( Circular Cross Section )

To test the validity of our assumption for the dimensions of on-chip inductors, we perform
the calculations for the approximate range of values for the various on-chip dimensional
parameters — line width W, metallization thickness T, distance of separation D and length of
segments L. In the above approximation, we consider the worst-case scenario for estimating
the value of D. Since smaller values of D will lead to larger error, we take the smallest value
of D expected, which is the track separation between on-chip inductor segments. The track
separation is assumed to be equal to the line width, which is generally the case. The specific
case we shall consider for our calculations is that of two circular segments as shown in Fig.

and compare the values of mutual inductance obtained to research paper.

For the on-chip inductors, the values of the dimensional parameters are approximated to be in

the following range:

D =25 pm; W =25 pm; T = 0.3pm;L = 1.25mm — Smin

In the table 5.3 the mutual inductance has been calculated with respect to variation in length of
the inductor from 1.25mm to Smm using equivalent radius formulation. In the following graph
the result obtained from equivalent radius method has been compared to estimated value of
grover’s formula. The graph fig 5.4 shows that the results)obtained from equivalent radius

method are in close approximation with the grover’s formula.

In the table 5.4 the error between the values estimated by grover’s equation and equivalent radius

method has been shown. The following graph fig 5.5 clearly shows that equivalent radius method

provides result in close approximation but the error increases for the higher radius.
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Mutual inductance of square spiral inductor

Total Self Inductance for Square Spiral

Total Self Inductﬂ.fﬂ.mce
No. of loops (H)
S 1.2$E-08
6 1.76E-08
7 1.85E-08
8 2.35E-08
Table 5.7
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Inductance Inductance
No. of loops (Calculated)(H) (Empirical)(H) Error (%)
5 1.25E-08 1.27E-08 1.24E+00
6 1.66E-08 1.62E-08 -2.32E+00
7 1.85E-08 1.94E-08 4.47E+00
8 2.35E-08 2.33E-08 .- -8.62E-01

Table 5.8

Comparision between calculated and empirical inductance and its error
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Comparision between calculated and empirical total inductance
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Percentage error in square spiral inductor
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Graphical comparision of total inductance
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Graphical comparision of mutual inductance
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CHAPTER 6
CONCLUSION

This thesis has developed a computational method for inductance predictions of inductors and
investigated novel geomeltries for spiral inductor. This chapter summarizes the major

contributions of this work and identifies areas that merit future study.

Present work provides detail information on integrated inductors. Construction and modeling of
an IC inductor has been discussed briefly. The equations that are used for inductor calculations
are analyzed. Inductor behavior with respect to its internal dimensions such as 4, w, t, and [ is

calculated using equivalent radius method.

Specific conclusions have been drawn from the plots after careful observations. While working
on the design procedure, it was observed that some of the equations believed fo be accurate are

conducive for design. This can be explained by comparing results with Grover's equation.
The graphs clearly show that the results are in good approximation to_the Grover's equation,

although the error increase as the net radius of spiral inductor increases. But in case spiral

inductor with square cross area the results are in better approximation with results.
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