frar T e

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num.S PD70?3 Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

@ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

i

[l

07093

ll

Techniques For Bandwidth Reduction In
“Controller Area Network

Name of Students: Geetika Gupta (071040)

Sudip Shukla (071049)
Hemant Kumar (071066)

Name of Supervisor: Dr. Rajiv Kumar

Submitted in partial fulfillment of the Degree of
Bachelor of Technology
B..Tech

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY,WAKNAGHAT

e .

Chapter No.

Chapter-1

Chapter-2

Chapter-3

Chapter-4

Chapter-5

TABLE OF CONTENTS

Topics

Certificate from the Supervisor
Acknowledgement
Summary
List of Figures
List of Tables
Introduction
1.1 Development of CAN
1.2 History
1.3 User Benefits Of CAN
1.4 Applications Of CAN
Problem Formulation and Literature Survey -
2.1 Important features of CAN
2.2 Basic concepts
2.3 Data Link Layer
2.3.1 Bus Access and Arbitration
2.3.2 Frame Formats
2.3.3 Error Detection
2.3.4 Error Handling
2.4 Physical layer
2.4.1 Message Coding
2.4.2 Bit Stuffing
2.4.3 Bit Synchronization
2.4.4 Bit Construction
Solution Approach 1: Available Data Reduction Techniques
3.1 Why Data Reduction
3.2 A Generalized Data Reduction Algorithm
3.2.1 Data Compression Process
3.2.2 Data Decompression Process
3.3 Adaptive Data-Reduction Algorithm
Solution Approach II: Application Of Huffman Coding For
Data Reduction in CAN
4.1 Huffman Coding
4.2 Algorithm for building a Huffman tree
4.3 Building a Huffman Coding Tree
4.4 Encoding -
4.5 Decoding
Conclusion and Results
APPENDIX A
APPENDIX B
REFERENCES

I

Page No.

I
v

VI
VIII

VN oy WM — —

[\ BN DN [y —
NRGELORREBEESIG

32
33
34
34
37
38
40
43
47
53

CERTIFICATE

This is to certify that the work titled “ Techniques for Banwidth Reduction in Controller
Area Network “submitted by “Geetika Gupta, Sudip Shukla, Hemant Kumar” in partial
fulfillment for the award of degree of. Bachelor Of Technology of Jaypee University of
Information Technology in 2011 has been carried out under my supervision, This work has
not been submitted partially or wholly to any other University or Institute for the award of

this or any other degree or diploma.

Signature

Dr. Rajiv Kumar

Assistant Professor

Department of Electronics and Communication
Jaypee University Of Information Technology,
Waknaghat.

Date :

IH

ACKNOWLEDGEMENT

We are extremely grateful to our project in charge Dr. Rajiv Kumar for motivating and
mentoring us in our project. He has been our guiding light and source of inspiration
throughout the entire project. Besides providing us with technical assistance he has also been
a moral support and a motivating figure during difficult times.

We once again express our sincere gratitude towards him and look forward to his assistance
and expertise for any future endeavour.

We would also like to thank all the staff members of Jaypee University of Information
Technology, Waknaghat, for providing us all the facilities required for the completion of this
project report.

eehilq S udib VM

Geetika Gupta Sudip Shukla Hemant Kumar

Enrollment no. 071040 Enrollment no, 071049 Enrollment no. 071066

ECE ECE ECE

Date: ~3|o5|2ap|| Date: 23/5-/!/ Date: 23/05'/” 1

v

.
g U -WRW

SUMMARY

As automobile industry prospered it incorporated more and more advanced features into

vehicles, there developed a growing need for enhanced processing power. Moreover
functional integration of individual sensors was considered necessary for applications such as
collision avoidance These additional functionalities were achieved by increasing the number
of nodes or Electronic Control Modules (ECM’s), sensors and actuators that could exchange
data among various other nodes in the network.

As the complexity grew in the functions implemented in these systems there was a growing
need for an exchange of data between them .With traditional systems, data was transferred
by means of point to point networks , but it became increasingly difficult and expensive as
control functions became more complex. In the case of complex control systems, the number
of connections could not be increased much further as it demanded a large number of
multipoint networks,which had lots of complexities .Hence ,a number of systems were
developed which needed to implement functions covering more than one control device. For
instance, vehicles requires the synchronization of engine timing and carburetor control in
order to reduce torque when drive wheel slippage occurs. Another example of functions
spanning more than one control unit is electronic gearbox control, where ease of gear
changing can be improved by a brief adjustment to ignition timing. To overcome the
limitations of conventional control device linkage, there developed a need of networking the
system components using a serial data bus system.

It was for this reason that Robert Bosch developed the “Controller Area Network” (CAN),
which has International Standardization Organization (ISO) and the Society of Automotive
Engineers (SAE) standardization and has been used extensively by several semiconductor
manufacturers. Using CAN, peer stations (controllers, sensors and actuators) are connected
via a serial bus.

However, the data traffic over the high-speed communication bus Controller Area Network
(CAN) increased significantly wi-th. the increase in the number of nodes. Another important
requirement was to communicate data between the various ECM’s in real time for safety-
critical applications. Failure to communicate data within a given period of time lead to

degradation in system performance.

H

Solution to satisfy the bandwidth requirements of future vehicle networks was to use a higher
bandwidth bus or to use multiple buses. But, the use of a higher bandwidth bus would
increase the cost of the network. Similarly, the use of multiple busses would increase the cost
and the complexity of the wiring. Another option was the development of a higher layer
protocol to reduce the amount of data to be transferred. For this reason several data reduction
techniques were developed. These techniques help to transfer large amounts of data while
consuming very less bandwidth thereby increasing the efficiency of the network.

A data reduction technique that consumes least network bandwidth and zero message latency
would be considered the best.

Our project deals with the use of adaptive data reduction algorithm for reduction of
bandwidth in CAN. It also elaborates on the use of Huffman Coding for reducing the

bandwidth consumption.

Geetika Gupta (Signature) !
Ty Dr. Rajiv Kumar !
Sudip Shukla ‘.
WMewant Date: |

Hemant kumar

VI

) T

LIST OF FIGURES

S.No Figure - Pg.No

. 1.1 Components of Motor Vehicles 1

1.2 Point to Point Wiring in Vehicles 1

1.3 Use of CAN in Vehicles 2

a 2.1 Basic Concepts 6

; 2.2 Bus Characteristics 7

i 2.3 Bus Access and Arbitration 8

! 2.4 Data Frame 9

[2.5 Remote Frame 10

{ 2.6 Error Frame 11

' 2.7 Overload Frame 12

2.8 Interframe Space 13
2.9 Cyclic Redundancy Check 14
2.10 Cyclic Redundancy Check(contd.) 14
2.11 Error Detection- Acknowledge 15
2.12 Error Detection — Frame Check 15
2.13 Error Detection — Bit Monitoring 16
2.14 Error Detection- Bit Stuffing Check 17
2.15 Error Handling 17
2.16 Error Handling (contd.) I8
2.17 Message Coding — NRZ code 19
2.18 Bit Stuffing 19
2.19 Bit Synchronization 20
2.20 Bit Construction 21
3.1 Automotive multiplexing system consisting of ‘n’

number of ICM’s 25
3.2 Adaptive data-reduction algorithm 28
33 Adaptive data-reduction algorithm continued 29
34 Adaptive data-reduction algorithm continued 30
35 Data-decompression process 30
3.6 Data-decompression algorithm 31
4.1 Sorted, sequence-based, priority queue 35
4.2 Binary tree (contd.) 35
4.3 Binary tree (contd.) 36
44 Binary tree (contd.) 36
45 Binary tree (contd.) 36
4.6 Final Tree Formed 37
4.7 Decoding 38
VII
H
i

LIST OF TABLES
S.No Table Pg.No

|Vt I AT 906 R, 6 AT

I Character Frequency Table 34

I Compression Table 37

48 AR W AT W T YT MO BV T e u e T e B

VIII

i
!
i

CHAPTER 1
INTRODUCTION

1.1 Development Of CAN

The above figure [Fig.1.1] shows how the various electronic devices that are implemented in
vehicles.These devices include power seats,power windows,brakes,accelerator etc. As the

number of devices increased , there developed a need for CAN.

Fig 1.2: Point to Point Wiring in Vehicles

.

P

Eatlier the information exchange between the various devices in any vehicle was point to

point [Fig.1.2] But as the need for information exchange increased , it required connectors of

very large length which led to an increase in the overall cost and complexity of the system.

Fig 1.3: Use of CAN in Vehicles

To overcome the problem of point to point wiring, there occured a need for a serial bus

communication system[Fig 1.3] which was fufilled by the development of CAN(Controller

Area Network).Using CAN, various devices can be connected through one single

communication bus.

1.2 History

1985
1986
1991

1992

1993
1994
1998
1999

Start of development of CAN at Robert Bosch GmbH

V1.0 specification of CAN

Specifications of the extended CAN2.0 protocolPart 2.0A —11-bit identifier
Part 2.0B -29-bit identifier (extended frame format)

CAN in Automation (CiA) established as the international users and
manufacturers group |

First car, a Mercedes S-class, equipped with CAN

First standardization at ISO is completed

Development phase of time-triggered CAN (TTCAN) networks

Explosion of CAN-linked equipment in all motor vehicle and industrial applications.

2

e

1.3 User Benefits Of CAN
CAN is low cost

» Low cost protocol device available driven by high volume production in the automotive
and industrial markets

CAN is reliable

* Sophisticated error detection and error handling mechanisms results in high reliability
transmission

+ Erroneous messages are detected and repeated

+ Every bus node is informed about an error

CAN means real-time

+ Short message length (0 to 8 data bytes / message)

» Low latency between transmission request and actual start of transmission.

* Multi Master using CSMA/CD + AMP method

CAN is flexible

* CAN Nodes can be easily connected / disconnected (i.e. plug & play)

* Number of nodes not limited by the protocol

CAN allows Multi-Master Operation

* Each CAN node is able to access the bus

* Bus communication is not disturbed by faulty nodes

* Faulty nodes self swith-off from bus communication

CAN means Broadcast Capability

* Messages can be sent to single/multiple nodes

* All nodes simultaneously receive common data
CAN is standardized

* ISO-DIS 11898 (high speed applications)

* ISO-DIS 11519-2 (low speed applications)

1.4 Applications Of CAN
CAN is used in a variety of fields;

1) Vehicles (cars, trucks, buses, trains)

Enables communication between ECUs like engine management system, anti-skid braking,
gear control, active suspension, used to control units like dashboard, lighting, air
conditioning, windows, central locking, airbag, seat belts etc. (body control), used in
construction vehicles, forklifts, tractors ,power train and hydraulic control.

2) Industrial Automation

For connecting all kinds of automation equipments like control units, sensors and actuators,
for initialization, programming of various components, Machine control ,connection of the
different intelligent subsystems.

3} Medical Equipments

Computer tomographs, X-ray machines, dentist & wheel chairs

4) Building Automation

For heating, air conditioning, lighting, surveillance etc.
5)Household Appliances

Dishwashers, washing machines, even coffee machines.

0 P

CHAPTER 2
PROBLEM FORMULATION AND

LITERATURE SURVEY

Problem formulation
Robert Bosch developed the ”Controller Area Network” (CAN), which has 1SO 11898

standardization and was used extensively by several semiconductor manufacturers. Using
CAN, peer stations (controllers, sensors and actuators) are connected via a serial bus.
Howevér, the data traffic over the high-speed communication bus Controller Area Network
(CAN) increased significantly with the increase in the number of nodes. Failure to
communicate data within a given period of time lead to degradation in system performance.
One straightforward solution to satisfy the bandwidth requirements of future vehicle
networks was to use a higher bandwidth bus or to use multiple buses. However, the use of a
higher bandwidth bus would have increased the cost of the network. Similarly, the use of
multiple busses would also have increased the cost and the complexity of the wiring. Another
option was the development of a higher layer protocol to reduce the amount of data to be
transferred. For this reason several data reduction techniques were developed. These
techniques help to transfer large amounts of data while consuming very less bandwidth
thereby increasing the efficiency of the network.

A data reduction technique that consumes least network bandwidth and zero message latency
would be considered the best.Hence adaptive data reduction was considered a good solution

and served as a data reduction algorithm which solved some of the bandwidth concerns,

Our project deals with the use of adaptive data reduction algorithm for reduction of

bandwidth in CAN. Huffman Coding is also discussed as an alternate solution approach for

data reduction

Literature Survey

2.1 Important Features Of CAN

CAN was developed for the use in motor vehicles by Robert Bosch in 1980s. It is an
advanced serial bus system used for support of distributed control systems. However there
are a number of higher level protocols available for CAN, it uses the Data Link Layer and
the Physical Layer in the ISO - OSI model. There are about 20 million CAN nodes in use

worldwide.

2.2 Basic Concepts

Multimaster | « Easy

Concept | : connection/
- disconnectiol

: Number of § . ofnodes

= Broadcast/ §
Multicast
capability

- addressing,
Message |
identifier CAN-Bus
specifies | (logical)
contents & |
priority

Fig 2.1: Basic Concepts

* There is no limitation in number of nodes in CAN .It is a multi-master bus with a linear
structure [Fig.2.1] , and multiple nodes can be connected to it.

*In the CAN protocol the address is identified by the identifiers of the transmitted messages,
indicating the message content and the priority of the message.

*One major advantage of CAN protocol is that the number of nodes can be changed without

affecting the communication of the bus.

e

B Ly A S ——

g M O R

B) prw e sy

CAN allows multicasting and broadcasting, it has several error detection and error handling
mechanisms like the CRC check . With their use errors can be removed, and faulty messages
can be retransmitted.

«The CAN protocol uses NRZ bit coding. For synchronization purposes, bit stuffing is used.
*There is a high data transfer rate of 1000 kilobits per second at a maximum bus length

of 40 meters or 130 feet when using a twisted wire pair which is the most common bus
medium used for CAN. Message length is short with a maximum of 8 data bytes per message
and there is a low latency between transmission request and start of transmission.

*The CAN protocol follows Carrier Sense Multiple Access/Collision Detection with Non-
Destructive Arbitration. This means that collision of messages is avoided by bitwise

arbitration without loss of time.

[T T TTTT 0= cominent

1" = recossive
“0” = dominant

AS scon as one hode nodes transmits

'!U‘S'ts in Ee !ommam slate.

Only if all nodes transmit

sl a 'state_

Fig 2.2 : Bus Characteristics

* In CAN there are two bus states, it uses a "Wired-AND" mechanism, that is, "dominant
bits" (equivalent to "Zero" logic level) and the "recessive" bits (equivalent to the logic level
"One").

*Recessive state is achieved only if all nodes transmit recessive bits (ones), even if one node

transmits a dominant bit (zero), the bus comes in the dominant state.

2.3 Data Link Layer
2.3.1 Bus Access And Arbitration

RO | - st “‘Idéﬂﬁﬁe'rFiela
mm Arbitration ! ;

phase |
- Node B
1 Remainder . node ©

Transmit CAN Bus o=
Request ||

Node B loses Arbitration Nade C loses Arbitration

2 Bus Access and Arbitration [18]

*The CAN protocol handles bus accesses according to the concept called “CSMA with
Arbitration on Message Priority”. This arbitration concept avoids collisions of messages
whose transmission was started by more than one node simultaneously and makes sure the
most important message is sent first without time loss. We see [Fig.2.3] the trace of the
transmit pins of three bus nodes called A, B and C, and the resulting bus state according to
the wired-AND principle.

*If two or more bus nodes start their transmission at the same time after having found the bus
to be idle, collision of the messages is avoided by bitwise arbitration. Each node sends the
bits of its message identifier and monitors the bus level.

*At a certain time nodes A and C send a dominant identifier bit. Node B sends a recessive
identifier bit but reads back a dominant one. Node B loses bus arbitration and switches to

receive mode. Some bits later node C loses arbitration against node A. This means that the

message identifier of node A has a lower binary value and therefore a higher priority than the

ROV £ Y R At 4 ropetet g Vv s e merees, berm.aome -«1-1

e LR MR e R AT

T NG Y R o £

[—

RIS R

Yoo =

messages of nodes B and C. In this way, the bus node with the highest priority message wins
arbitration without losing time by having to repeat the message.

«Nodes B and C automatically try to repeat their transmission once the bus returns to the idle
state. Node B loses against node C, so the message of node C is transmitted next, followed by
node B’s message.

JIt is not permitted for different nodes to send messages with the same identifier as

arbitration could fail leading to collisions and errors.

2.3.2 Frame Formats
+*These are the existing Frame formats in CAN :

1. Data Frame

2. Remote Frame
3. Error Frame

4. Overload Frame
5

Interframe Space

Standard Data Frame . 4 [oterFrame Space

LTS

Fig. 2.4 : Data Frame [18]
*A "Data Frame" is generated by a CAN node when the node wishes to transmit data. The
Standard CAN Data Frame ris shown above. The frame begins with a dominant Start Of
Frame bit for hard synchronization of all nodes.

*The Start of Frame bit is followed by the Arbitration Field consisting of 12 bits, The 11-bit

Identifier,which reflects the contents and priority of the message, and the Remote

r—

P D TG R

e e e

e e T |

| PR

Transmission Request bit. The Remote transmission request bit is used to distinguish a Data
Frame (RTR = dominant) from a Remote Frame (RTR = recessive).

+The next field is the Control Field, consisting of 6 bits, The first bit of this field is called the
IDE bit (Identifier Extension) and is at dominant state to specify that the frame is a Standard
Frame. The following bit is reserved and defined as a dominant bit. The remaining 4 bits of
the Control Field are the Data Length Code (DLC) and specify the number of bytes of data
contained in the message (0 - 8 bytes),

*The data being sent follows in the Data Field which is of the length defined by the DLC
above (0, 8, 16,, 56 or 64 bits).

*The Cyclic Redundancy Field (CRC field) follows and is used to detect possible
transmission errors. The CRC Field consists of a 15 bit CRC sequence, completed by the
recessive CRC Delimiter bit.

*The next field is the Acknowledge Field. During the ACK Slot bit the transmitting

node sends out a recessive bit. Any node that has received an error free frame acknowledges
the correct reception of the frame by sending back a dominant bit (regardless of whether the
node is configured to accept that specific message or not). From this [F ig. 2.4] it can be seen
that CAN belongs to the "in-bit-response" group of protocols. The recessive Acknowledge
Delimiter completes the Acknowledge Slot and may not be overwritten by a dominant bit,

*Seven recessive bits (End of Frame) end the Data Frame.

Fig 2.5 : Remote Frame [18]

10

T T s

e

__j

+Generally data transmission is performed on an autonomous basis with the data source node
(e.g. a sensor) sending out a Data Frame. It is also possible, however, for a destination node
to request the data from the source by sending a Remote Frame.

«There are 2 differences between a Data Frame and a Remote Frame Firstly the RTR-bit is
transmitted as a dominant bit in the Data Frame and secondly in the Remote Frame there is
no Data Field. In the very unlikely event of a Data Frame and a Remote Frame with the same
identifier being transmitted at the same time, the Data Frame wins arbitration due to the
dominant RTR bit following the identifier. In this way [Fig.2.5] , the node that transmitted
the Remote Frame receives the desired data immediately.

*If a node wishes to request the data from the source, it sends a Remote Frame with an
identifier that matches the identifier of the required Data Frame. The appropriate data source

node will then send a Data Frame as a response to this remote request.

R

Fiaic within

ErrorFrama. &

morcrame. 3
ke S

Fig 2.6 : Error Frame [18)

*An Error Frame is generated by any node that detects a bus error. The Error Frame consists
of 2 fields, an Error Flag field followed by an Error Delimiter field. The Error Delimiter
consists of 8 recessive bits and allows the bus nodes to restart bus communications cleanly
after an error, There are, however, two forms of Error Flag fields. The form of the Error Flag
field depends on the “error status” of the node that detects the error.

*If an “error-active” node detects a bus error then the node interrupts transmission other

Current message by generating an “active error flag”[Fig 2.6]. The “active error flag” is

11

R A

S —

auee g

P e e g

composed of six consecutive dominant bits. This bit sequence actively violates the bit
stuffing rule. All other stations recognize the resulting bit stuffing error and in turn generate
Error Frames themselves. The Error Flag field therefore consists of between six and twelve
consecutive dominant bits (generated by one or more nodes). The Error Delimiter field
completes the Error Frame. After completion of the Error Frame bus activity returns to
normal and the interrupted node attempts to resend the aborted message.

«If an “etror passive” node detects a bus error then the node transmits an “passive Error Flag”
followed, again, by the Error Delimiter field. The “passive Error Flag” consists of six
consecutive recessive bits, and therefore the Error Frame (for an “error passive” node)
consists of 14 recessive bits (i.e. no dominant bits). From this it follows that, unless the bus
error is detected by the node that is actually transmitting (i.e. is the bus master), the
transmission of an Error Frame by an “error passive” node will not affect any other node on
the network. If the bus master node generates an “error passive flag” then this may cause

other nodes to generate error frames due to the resulting bit stuffing violation,

S — \ i
i ‘%%"“ % 'K:EZ* L
e - - e e

Intertiame

~ Fig 2.7: Overload Frame [18]
*An Overload Frame has the same format as an “active” Error Frame. An Overload Frame,

however can only be generated during Inter-frame Space. This is the way then an Overload
Frame can be differentiated from an Error Frame (an Error Frame is sent during the
transmission of a message). The Overload Frame consists of 2 fields, an Overload Flag
followed by an Overload Delimiter{Fig.2.7]. The Overload Flag consists of six dominant bits
followed by Overload Flags generated by other nodes (as for “active error flag”, again giving
a maximum of twelve dominant bits).The Overload Delimiter consists of eight recessive bits.

An Overload Frame can be generated by a node if due to internal conditions the node is not

12

£ wr

o

r

yet able to start reception of the next message. A node may generate a maximum of 2

sequential Overload Frames to delay the start of the next message.

. Interframme Space : -_‘(,‘CAH'Frame

25
41

Fig 2.8: Interframe Space [18]

*Interframe Space separates a preceeding frame (of whatever type) from a following Data or
Remote Frame. Inferframe space is composed of at least 3 recessive bits, these bits are
termed the Intermission. This time is provided to allow nodes time for internal processing
before the start of the next message frame. After the Intermission, for error active CAN
nodes the bus line remains in the recessive state (Bus Idle) until the next transmission starts.

*The Interframe Space has a slightly different format for error passive CAN nodes which
were the transmitter of the previous message.In this case, these nodes have to wait another
eight recessive bits called Suspend Transmission before the bus turns into bus idle for them
after Intermission and they are allowed to send again. Due to this mechanism error active
nodes have the chance to transmit their messages before the error passive nodes are allowed

to start a transmission.

2.3.3 Error Detection

Following types of errors are detected in CAN :
1) CRC Error
2) Form Error
3) Stuff Error
4) ACK Error
5) Bit Error

13

*The CAN protocol provides sophisticated error detection mechanisms discussed below :

Node A

Calculated Calculated
CRC Checksum CRC Checksum O ldle

& Receive

Transmitted Received O Transmit

CRC Checksum CC Checksum:

Fig 2.9: Cycllc Redundancy Check [18]
*With the Cyclic Redundancy Check, the transmitter calculates a check sum for the bit
sequence from the start of frame bit until the end of the Data Field. .
*This CRC sequence is transmitted in the CRC Field of the CAN frame.
+The receiving node also calculates the CRC sequence using the same formula and performs

a companson to the received sequence[Flg 2.9].

Calculated "Ca!cu!ated :
RC Checkstim: CRC Checksum

Error Frame

Fig 2.105 Cyclic'Redundancy Check(contd.) [18]
*If node B detects a mismatch between the calculated and the received CRC sequence , then a
CRC error has occurred.
*Node B discards the message [Fig.2.10] and transmits an Error Frame to request

retransmission of the garbled frame.

14

Ack. Field

Node A
O ldle

OReceive
@ Transmit Deminont
i

e

@ Receive TX
_OTransmit_Poeminent

. CAN Busg "=
Qe
@ Aclive Dominant

Fig 2.11 : Error Detection- Acknowledge [18]
*With the Acknowledge Check the transmitter checks in the Acknowledge Field of a message
to determine if the Acknov;rledge Slot[Fig.2.11], which is sent out as a recessive bit,
contains a dominant bit.
«If this is the case, at least one other node, (here node B) has received the frame correctly.
*If not, an Acknowledge Error has occured and the message has to be repeated. No Error

Frame is generated, though.

Vriter EFrame Ogate

T

Fig 2.12: Error Detection — Frame Check [18]
*Another error detection mechanism is the Frame Check. If a transmitter detects a dominant

bit in one of the four segments:

1. CRC Delimiter,

15

Lt - — W N

2. Acknowledge Delimiter,
3. End of Frame or
4. Interframe Space
then a Form Error occurs and an Error Frame is generated [Fig. 2.12]. The message will then

be repeated.

Artifration” Conrot B
£ OField Feid

*All nodes perform Bit Monitoring: A Bit Error occurs if a transmitter sends a dominant bit
but detects a recessive bit on the bus line or, sends a recessive bit but detects a dominant bit
on the bus line [Fig.2.13].

*An Error Frame is generated and the message is repeated.

*When a dominant bit is detected instead of a recessive bit, no error occurs during the
Arbitration Field or the Acknowledge Slot because these fields must be able to be

overwritten by a dominant bit in order to achieve arbitration and acknowledge functionality.

16

Standard Dala Frame Inler Frame Geace

R

Fig 2.14 : Error Detection- Bit Stuffing Check [18]

«If six consecutive bits with the same polarity are detected between Start of Frame and the

CRC
Delimiter, the bit stuffing rule has been violated [Fig. 2.14].

«A stuff error occurs and an Error Frame is generated. The message is then repeated.

2.3.4 Error Handling

Node_ (e

Error Frame
g L o

. Data Frame
[uruy

—

Fig 2.15: Error Handling [18]
sDetected crrors are made public to all other nodes via Error Frames.

«The transmission of the erroneous message is aborted [Fig.2.15] and the frame is repeated as

soon as possible.

17

Fig 2.16: Error Handling (contd.) [18]

«Each CAN node is in one of three error states "error active", "error passive" or "bus off"

according to the value of their internal error counters.

«The error-active state is the usual state after reset. The bus node can then receive and
transmit messages and transmit active Error Frames (made of dominant bits) without any
restrictions. During CAN communication, the error counters arc updated according to quite
complex rules. For each error on reception or transmission, the error counters are
incremented by a certain value. For each successful transaction, the error counters are
decremented by a certain value. The error active state is valid as long as both error counters
are smaller than or equal to 127.

JIf either the receive or the transmit error counter has reached the value of 128, the node
switches to the error-passive state[Fig.2.16]. In the error-passive state, messages can still be
received and transmitted, although, after transmission of a message the node must suspend
transmission. It must wait 8 bit times longer than error-active nodes before it may transmit
another message. In terms of error signaling, only passive Error Frames (made of recessive
bits) may be transmitied by an error-passive node.

«If both error counters go below 128 again due to successful bus communication, the node
switches back to the error-active state.

«One feature of the CAN protocol is that faulty nodes withdraw from the bus automatically.
The bus-off state is entered if the transmit error counter exceeds the value of 255. All bus

activities are stopped which makes it temporarily impossible for the station to participate in

18

A St A

the bus communication. During this state, messages can be neither received nor transmitted.
To return to the error active state and to reset the error counter values, the CAN node has to

be reinitialized.

2.4 Physical Layer
2.4.1 Message Coding

Fig 2.17: Message Coding — NRZ code [18]
*The CAN protocol uses Non-Return-to-Zero or NRZ bit coding. This means that the signal
is constant for one whole bit time and only one time segment is needed to represent one bit.
*Usually, but not always, a "zero" corresponds to a dominant bit, placing the bus in the
dominant state, and a "one" corresponds to a recessive bit [Fig.2.17], placing the bus in the

recessive state.

2.4.2 Bit Stuffing

12345678.. 12345678 ..
i iH data stream
5 ‘ﬂ S _ff [S!Lff
ﬁ #1 Auj bit stream
1‘12344112344123 1123"

Fig 2.18: Bit Stuffing [18]
15

A e F S

*One characteristic of Non-Return-to-Zero code is that the signal provides no edges that can l
be used for resynchronization when transmitting a large number of consecutive bits with the
same polarity.

*Therefore Bit stuffing is used to ensure synchronization of all bus nodes.

*This means that during the transmission of a message, a maximum of five consecutive bits
may have the same polarity.

«Whenever five consecutive bits of the same polarity have been transmitted, the transmitter |
will insert one additional bit of the opposite polarity into the bit stream before transmitting ‘
further bits[Fig.2.18]. I

*The receiver also checks the number of bits with the same polarity and removes the stuff !

|

bits again from the bit stream. This is called "destuffing".

2.4.3 Bit Synchronization

Intermission /
Idle

All nodes synchronize on
leading edge of SOF bit
{Hard Synchronization)

t 0 1
Re- Re- Re-
synch synch synch synch

Fig 2.19: Bit Synchronization [18]

«In contrast to many other field buses, CAN handles message transfers synchronously.

«All nodes are synchronized at the beginning of each message with the first falling edge of a
frame which belongs to the Start Of Frame bit.

+This is called Hard Synchronization.

*To ensure correct sampling up to the last bit, the CAN nodes need to re-

synchronize[Fig.2.19] throughout the entire frame. This is done on each recessive to

dominant edge.

20

2.4.4 Bit Construction

CAN frame

1 Bit Time

Fig 2.20: Bit Construction [18]

*One CAN bit time (or one high or low pulse of the NRZ code) is specified as four non -
overlapping time segments.

*Each segment is constructed from an integer multiple of the Time Quantum.

*The Time Quantum or TQ is the smallest discrete timing resolution used by a CAN node.

*Its length is generated by a programmable divide of the CAN node's oscillator frequency.

*There is a minimum of 8 and a maximum of 25 Time Quanta per bit.

*The bit time, and therefore the bit rate, is selected by programming the width of the Time
Quantum and the number of Time Quanta [Fig.2.20] in the various segments.

*The first segment within a CAN bit is called the Synchronization Segment and is used to
synchronize the various bus nodes.

*On transmission, at the start of this segment, the current bit level is output.

*If there is a bit state change between the previous bit and the current bit, then the bus state
change is expected to occur within this segment by the receiving nodes.

*The length of this segment is always 1 Time Quantum.

*The Propagation Time Segment is used to compensate for signal delays across the network.

*This is necessary to compensate for signal propagation delays on the bus line and through
the electronic interface circuits of the bus nodes.

*Phase Buffer Segment 1 is used to compensate for edge phase errors. This segment may be

between 1 to 8 Time Quanta long and may be lengthened during resynchronization.

21

«The sample point is the point of time at which the bus level is read and interpreted as the

value of the respective bit. Its location is at the end of Phase Buffer Segment 1 (between the

two Phase Buffer Segments). _

«Phaise Buffer Segment 2 is also used to compensate for edge phase errors. This segment may
be shortened during resynchronization.

+Phase Buffer Segment 2 may be between 1 to 8 Time Quanta long, but the length has to be
at least as long as the information processing time and may not be more than the length of
Phase Buffer Segment 1,

«The information processing time begins with the sample point and is reserved for calculation

of the subsequent bit level. It is less than or equal to two Time Quanta long.

22

/

R
i

RO, 1 W

CHAPTER 3
SOLUTION APPROACH: 1

3.1Why Data Reduction Techniques Are Required

The two parameters that affect system performance are bandwidth occupied by a message
and latency.
s latency is an initial network cost, paid for every message that is transmitted in it, even
for the theoretical message of zero byte length.
» bandwidth is the maximum network performance, achieved theoretically with
messages of infinite size; the network gets close to them in messages of large length.
 If a message consumes less bandwidth, more messages would be able to be passed in
the same time , therefore improving system performance.
The following equations show how the time of transmission required by a message is related

to the bandwidth occupied.

Let’s say the time in seconds that a network needs to send a message with n bytes is given
by:

T(rn) = o+ G
This is a line equation of the form y=mx+e¢ where o is the constant, and P is the line siope .

The parameter o is called laténcia, or even “zero byte latency”, which is the time required to
p ¥ Y q

transmit a message of zero bytes .

To understand the meaning of B in the formula for T(n), we will first consider the transfer
rate B(n) that is achieved for n bytes which is calculated dividing the number of bytes that
have been transferred by the time that the transfer spent. In mathematical terms .

72

B(n) = 7o) o —+ e

23

S

e

L () a4+ fn oo

== o — 3 w3 Y-
73 (1) oy T oy =+ 3, supposing rn 7% 0
. i
B ¥ L —— B —
(f&) Lo I . ﬁ

Tk
When n is too large, the ratio a/n becomes too little
A

That is the maximum transfer rate that could be achieved in this network. So, it is usual to

call the parameter 1/p as network bandwidth

If a message consumes less bandwidth, more messages would be able to be passed in the

same time , therefore improving system performance.

In any CAN network ECM’s i.e the electronic control modules are responsible for exchange
of data among various nodes. As they are increased, the data traffic increases. Since CAN is
a real time network , it becomes necessary that the data is transmitted within a given period
of time. For this it is required that a large number of messages be sent in a short period of

time. So every message on the bus should use minimal bandwidth of the network.

“Several data-reduction techniques have been developed using which large amounts of data
can be transmitted in a short period of time, consuming very less bandwidth. An optimum
DR technique can be characterized as the one that consumes the least network bandwidth and

has zero message latency.”

We now present a generalized data-reduction algorithm that could be applied to all data

classes found in automotive multiplexing environment.

3.2 A Generalized Data Reduction Algorithm|[15]

We present an algorithm for data compression(reduction of the storage space required for
data by changing its format) and decompression (Decoding the original message) in order to
reduce bandwidth and message latency.

o In the given algorithm, the T (DCB)bit is set to “1” and “0” to indicate compression

and no compression, respectively.

24

¢ Each control module in the multiplexing system consists of a transmit buffer
(TRANSBUF) and a receiver buffer (RECBUF)[Fig.25].

* Each Control Module keeps a copy of the most recently transmitted message in the
TRANSBUF and a copy of the most recently received message in the RECBUF.

e Suppose an CM transmits a message Mi every t time units. |

e The transmitting CM keeps a copy of message Mi in its TRANSBUF.

¢ The next time the CM transmits a message Mi after t time units, the CM compares the
data field of the previous Mi, saved in the TRANSBUF, with the current message
being transmitted.

* In the event that two or more of the data bytes of the current transmitted message are
of same magnitude as of the message in TRANSBUF[Fig.3.1], the transmitting CM
realizes that few of the data bytes have been repeated.

o The transmitter then initiates a series of steps outlined below, to implement data

compression

N g

Fig 3.1 : Automotive multiplexing system consisting of ‘n’ number of ICM’s[11]

3.2.1 Data Compression Process

1. The transmitter sets the R bit or data compression bit (DCB) in the PDU to “1.

2.The transmitter prepares a '¢0mpre53ion code (CC) to indicate repeated bytes in the
recently transmitted message.

3. Bach bit in the CC indicates a data byte in the message. The bits in the CC are set to “1” or
“0” to indicate a repeated byte or non-repeated byte in the message, respectively. For

example, if byte 3 in the message is repeated then bit 3 in CC is set to “1” and so on.

25

4.The non-repeated bytes are concatenated after the CC in the data ﬁelld of the message
being transmitted over the bus.

At the recciver, the ICM keeps a copy of the most recently received message in its R BUF

to perform decompression. The following steps are involved in data decompression process

at the receiving end,
3.2.2 Data Decompression Process

1. The receiver checks the DCB of the received message.

2. IfDCB is “17, then the receiver treats the first byte in the data field of the received
message as the CC,

3. The receiver retrieves the repeated data bytes by indexing through the R_BUF and
fetching bytes whose corresponding bits in the CC have a value “1”. For example, byte
3 is fetched if bit 3 in CC is “1”.

4. The entire message is recreated using the repeated bytes from R_BUF and non-repeated

bytes from the received message.

This algorithm works very well when data bytes within the message remain constant with
high probabilities. However, in real life situations, one or more parameters in the message
may fluctuate at low rates. For example, during braking, car speed may decrease at a

constant rate say 8 miles/sec, or during acceleration the speed may increase at 4 miles/sec?.
Under such conditions, the above protocol would transmit the entire length of the data bytes
used to represent the particular parameter even though the change in value of the parameter
is very less. In the worst-case scenario, if all the parameters in the message change by small
amounts, the algorithm would transmit all the eight bytes of the message without leading to
any DR. This is highly undesirable since it would lead to high bus utilization and
consumption of unnecessary bandwidth.

To overcome this drawback of the previous DR algorithm, we use an Adaptive Data-

Reduction (ADR) algorithm which consists of adaptive and non-adaptive data reduction.

26

N gy T e

3.3 Adaptive Data Reduction Algorithm[15]

The proposed ADR algorithm consists of two parts

* Non-Adaptive data-reduction

* Adaptive data-reduction

Adaptive DR is based on the technique of delta modulation that is widely used .It is based on

the principle that instead of sending the absolute value of a signal at each time instant, only

the changes in the signal values from one time instance to another (delta) are transmitted.

To achieve data reduction, the first byte in the data field of the CAN message is used to

indicate delta compression. This byte is called the delta compression code (DCO).

In the ADR technique[Fig.3.3], if one or more signal fields in the message Ci transmitted at

time m + t change their value since their previous transmission at time m, the transmitting

node executes the following series of steps.

The transmitting node computes a delta compression code (DCC). A value of “1” in
the DCC indicates the delta change in the value of the signal rather than the absolute
value. A value of “0” in DCC indicates no change in the value of the signal.

Since a copy of the message transmitted at time m is stored in TX_BUF, the
transmitting node computes differences (deltas) in the value of the corresponding
signals in TX_BUF at time m with that at time m+t.

The compressed version of the original CAN message having an identifier whose
value is one less than the value of the identifier of the original message is encoded
with the delta signal values.

The delta-compressed CAN message carrying the delta signals is sent over the CAN
bus to the receiving node.

. In the event that the value of a delta signal exceeds the length of the assigned field,
the absolute values of all the signals (i.e. the original CAN message) are transmitted
rather than the delta-compressed version of the message. This assumption is based on
the fact that a drastic change in the value of a particular signal could reflect a critical
condition in which case it would be necessary to communicate absolute values of all
signals within the message.

The receiving node in the system decompresses the delta-compressed CAN

message[Fig3.6] sent by the transmitter. The following series of steps are executed to

27

-

perform data-decompression. Assuming that a delta-compressed message DPi is
received.

* The receiving node checks the identifier of the CAN message DPi.
If the message is a delta-compressed message, the first byte in the data

field of the message is treated as the DCC.

The receiver then fetches a copy of the most recently received Pi from the REC_BUF.
* The DCC acts as an index to the corresponding signal fields within the delta-
compressed message. For example, a value of “1” in the first bit position of the DCC
means that the first signal field within the message is a delta signal of the first signal
field within the message Pi from REC_BUF. This delta signal is either added to or
subtracted from the corresponding signal field within the message Pi from REC_BUF

to get the new value of the signal.

A value of “0” in the DCC means that the corresponding signal has not changed its
value since the previous transmission. The absolute value of this signal is fetched
from the previous Pi in REC_BUF[Fig.3.2].

The receiver reconstructs all the signals within the message in a similar fashion,

The receiver then updates the REC_BUF with this new message, overwriting the

previous Pi.

£ o o i r o o o
Do
-4 o o 7 -5 3 8 7z
Lxci

22 | 30 0 S0 Fo o0 20 o0

L 'l L l PJIviazzs o firom BRX _BUF
16 320

<FLX 7 65 14 o0 164G

New message of in RX_BUF

Fig3.2: Data-decompression process

28

_ No
Is it the first
message?

.|

4
Compare current massage
of time m + fwith message

Store mesgsage in TX_BUF

y at time m.

Y]

Change¥,.,

-

/
4 4
Send entire CAN miessage onlo Do nit send message ontd
the bus the bus
F |
Yes :
Message not
trgnsmitted for &

petiod “y"?

Fig.3.3 : Adaptive data-reduction algorithm[15]

29

Store messape in
TX_BUF

Is value of delta
signal = lenpth of
assigned dalia

field?

b

Transmit entire CAN
messape with absoluts

® wvalues of all sipnals.

Fig.3.4 : Adaptive data-reduction algorithm continued[15]

Prepare Delta compression
cods {(DCC)

!

Prepare della-compressed message
with DCC and delta signals,

l

Fig.3.5 : Adaptive data-reduction algorithm continued [15]

30

1s it the first
massape?

Store message in
RX_BUF
y Check identifier of the
message
N . \
" - Delta compressed h

magsage?

Reconstruct CAN message by adding delta signals in
Det to previous of in RX_BUF basad on DCC and
Fetch non-repeated signal fields ffom previous ef in
RX_RBUF

Fig 3.6 : Data-decompression algorithm [15]

31

CHAPTER 4

SOLUTION APPROACH: 2
Application Of Huffman Coding For Data Reduction In CAN

Five data reduction techniques have been developed which can be applied in automotive

environment. They are discussed as follows:
1) Simple Huffman coding
2) Arithmetic coding
3) Higher order arithmetic coding
4) Textual substitution coding

5) Command data stream reference coding

1) Simple Huffman Coding
Huffman coding works on the principle of assigning a shorter bit sequence to the characters

having high frequency of occurrence, and a longer bit sequence to the characters having low
i

frequency of occurrence so that the encoded string becomes shorter in length. The main ﬁ}
limitation of Huffman coding is the requirement of keeping a copy of the probability table at

each node in the automotive multiplexing system.

2) Arithmetic Coding

In this coding, after assigning a frequency of occurrence to each symbol, a range of real

numbers is assigned to each symbol. The length of this range is equal to the probability of the

symbol. For example, if the symbol has a probability 0.1, then the assigned range of numbers

will be [0.0 to 0.1]. Following the arithmetic algorithm, a message consisting of a stream of

symbols can be represented by a single floating-point number

3) Higher Order Arithmetic Coding

An extension of arithmetic coding is higher order arithmetic coding, in which the probability '
of each incoming symbol is calculated on the basis of the context in which the symbols were

previously encountered. After determining these probabilities, encoding of arithmetic coding

is used. A higher order arithmetic coding scheme requires a large amount of memory at each

node.

32

4) Textual Substitution Coding

In a textual substitution algorithm, variable length strings of symbols are encoded into a '
single token. This token is used as an index to a phrase dictionary maintained at the receiving

end.

5) Command Data Stream Coding

The above mentioned data-compression algorithm has been used to devise another algorithm, |

CDSR coding. The CDSR coding scheme is especially designed for automotive multiplexing

application. In the CDSR scheme, a reference dictionary is maintained at each node in the
multiplexing system. When a message is generated, the reference dictionary at the
transmitting side is referred, and a token is generated instead of the actual message. This
token indicates the position of the first symbol in the transmitted message and the message
length. A copy of the message available at the receiving end is located with the help of the
transmitted token. Kempf and Strenzal further investigated the application of common data- W
stream coding and proposed a communication protocol to overcome the drawback associated

with it. Among all six data-compression algorithms, simple Huffman coding and common

2o

data-stream coding are two promising candidates for automotive multiplexing. The major
drawback of all the DR techniques was that they could only be applied to text-data classes in

automotive body electronics .
4.1 Huffman Coding

In 1951, David A. Huffman worked on the problem of finding the most efficient binary code.
He hit upon the idea of using a frequency-sorted binary tree and quickly proved this method
the most efficient.

Huffman coding is a statistical technique which attempts to reduce the amount of bits
required to represent a string of symbols. The algorithm accomplishes its goals by allowing
symbols to vary in length. Shorter codes are assigned to the most frequently used symbols,
and longer codes to the symbols which appear less frequently in the string.

A set of symbols and their frequency of occurrence is given and we have to form a binary

code (a set of codewords) with minimum expected codeword length . This is how the length

of a message passed through CAN would be minimized.

33

T T S P

Huffman coding uses a specific method for choosing the representation for each symbol,
resulting in a prefix code (somectimes called "prefix-free codes", that is, the bit string
representing some particular symbol is never a prefix of the bit string representing any other
symbol) that expresses the most common source symbols using shorter strings of bits than
are used for less common source symbols. Huffman was able to design the most efficient
compression method of this type: no other mapping of individual source symbols to unique
strings of bits will produce a smaller average output size when the actual symbol frequencies
agree with those used to create the code. A method was later found to design a Huffman code

in linear time if input probabilities (also known as weights) are sorted.

4.2 Algorithm for building a Huffman tree

Step 1. Create a parentless node for each symbol. Each node should include the symbol and
its frequency of occurrence[Table.1].

Step 2. Select the two parentless nodes with the lowest frequencies.

Step 3. Create a new node which is the parent of the two lowest frequency nodes.

Step 4. Assign the new node a frequency equal to the sum of its children's probabilities.

Step 5. Repeat from Step 2 until there is only one parentless node left.

A Huffiman Coding Tree is built from the observed frequencies of characters in a document.

* The document is scanned and the occurrence of each character is recorded.

* Next, a Binary Tree is built in which the external nodes store the character and the

corresponding character frequency observed in the document
4.3 Building a Huffman Coding Tree

Consider the observed frequency of characters in a string that requires encoding:

Table I. Character Frequency Table

Character C D E F K L U Z

Frequency 32 42 120 24 7 42 37 2

34

B

The first step is to construct a Priority Queue and insert each frequency-character (key-

element) pair into the queue.

Step 1: The queue is arranged in ascending order of frequency of the nodes.

IHITMUMRImImamam
Z+K+F+C+U+L Dq_E

Fig: 4.1 Sorted, sequence-based, priority queue.
In the second step, the two Items with the lowest key values are removed from the priority

! queue.

* A new Binary Tree is created with the lowest-key Item as the leff external node, and the

second
lowest-key Item as the right external node.
« The new Tree is then inserted back into the priority queue.

Step 2: The leftmost two nodes are combined to form one parent node

24 ™ 32 ™ 37 ™ 42 7 42 120

[N
-~
T

Fig 4.2:Binary tree (contd.)
The process is continued until only one node (the Binary Tree) is lefi in the priority queue. |

Step 3: This process is repeated successively.

35

|
]
i

NN

A

Step 4: The step again is shown here.

| 42

Fig.4.3: Binary tree (contd.)

Fig.4.4: Binary tree (contd.)

Step 5: The binary tree is being formed here

L 22 " .
] D | Ll P
e
a3z
C
a 24
F
2
Z

Final tree, after n = 8 steps:

85).

120

120

Nk

A

Fig.4.5: Binary tree (contd.)

36

120

Fig.4.6: Final Ti‘ee Formed

4.4 Encoding

Once a Huffman code has been generated, data may be encoded simply by replacing each

- symbol with its code. Given a code (corresponding to some alphabet) and a message it is

B~ T

easy to encode the message. Just rcpléce the characters by the codewords.
Method for encoding :
1) Perform a traversal of the tree to obtain new code words

2) Going leftisa 0

3) Goingrightisal
4) Code word is only completed when a leaf node is reached

Create a lookup table storing the binary code corresponding to the path to each letter

Table II. Compression Table

Character | Frequency | Code | #bits
c 32 1110 4
D 42 110 3
E 120 0 1 .
F 24 it | 5 '
K 7 111101 6 |
L 42 101 3
U 37 100 3
Z 2 111100 6
37

Encode:

DECK

110ECK

1100CK

11001110K

110001110111101

ASCII representation would require 32 bits. Huffman encoding requires 15 bits.

This is how we can make use of Huffman Coding Algorithm in serial bus communication
like the CAN. Since it occupies less bits, the message bandwidth would be reduced which

would help increase the system performance.

4.5 Decoding

To decode a bit stream (from the leftmost bit), start at the root node of the Tree:

1) Move to the left child if the bit is a “0”.

2) Move to the right child if the bit is a “1”.

3)-When an external node is reached, the character at the node is sent to the decoded string.

4) The next bit is then decoded from the root of the tree.

120
E

Fig 4.7: Decoding

38

Decode:

for example if we decode “FED”
111110110

FO110

F E110

FE D

39

Tt

CHAPTER 5
CONCLUSION AND RESULTS

Output For Adaptive Data Reduction In CAN

2:wrjting
13 exit

the current content of the file are

fcontroller area network is my final vear project by sudeep geetika and hemant
1.reading

2.uriting

3 exit

llenter the choice

enter the string

project guide rajiv kumar
1.reading

2.uriting

13 exit

inter the choice

the current content of the file are

controller area network is my final vear project by sudeep geetika and hemantgui
de rajiv kumar

{1l .reading

2.uriting

3 exit

enter the choice

Here first we saved a string in a file named “record.txt” this file read “ controller area
network is my final year project by sudeep geetika and hemant “. The switch option gives us

options whether to read the file, write in the file or to exit . If we choose the read option then

40

the contents of the file will be displayed on the screen . Then on write option we want to feed
another message to the saved string now we will enter the string to be saved let it be “project
guide rajiv kumar” .Here in normal case whole string would have been get saved in the
“record.txt” but now project is already there in the saved string so only “guide rajiv kumar”
gets appended at the end of saved data and the saved data gets edited now the whole string
along with new appended data gets saved in “record.txt” i.e. only the strings which are not
present in the saved file gets appended in the saved data hence there is a data reduction is

being performed here.

Output of Huffman Coding

1 Turbo C++ I0ETTH

enter the_data_}
jliavpee university
13

following letters are unique
ype univrst ; :)
characters, weight, left child, right child and parent are

FI T Yo o 77 B == =

T A P T e L SR TR S -
b ek b ok D OO =] TN T R S0 IND b b b e (N b b e 00 [N b

This is the output of C code for Huffman coding here a string “jaypee university of
information technology ” is entered . The code finds out the number of occurrence of each
letters and thus saves the number of occurrences for unique letters, it performs Huffman
algorithm for making tree and a binary tree is being made following the algorithm

In Huffman coding, the assignment of codewords to source messages is based on the
probabilities with which the source messages appear in the message ensemble. Messages
which appear more frequently are represented by short codewords; messages with smaller
probabilities map to longer codewords. This is how it can be used for data reduction in a
serial bus system like CAN.

Have we made things any better by using Huffman coding ?

While discussing Huffman coding we took a string having 306 letters

Character | Frequency | Code | #bits

c 32 1110 4

D 42 110 3

E 120 0 1 \i
F 24 1111 5 '
K 7 111101 6 }
L 42 101 3 /
U 37 100 3

4 2 111100 6

Bits to encode the text = summation of (frequency*bits)

=32%4 + 42%3 -+ 120%1 + 24%5 +-7%6 + 42*3 + 37*3 + 2%6
=128+126+120+120+42+126+111+12
=785

ASCII would take 8 * 306 = 2448 bits

Hence we reduced the data by 16663 bits
This is how the use of Huffinan Coding can be done for reducing the number of bits occupied

by a message passed through CAN thus reducing the bandwidth occupied by a message and |

improving system performance.

42

APPENDIX: A
A_PROGRAM IN ‘C’ FOR ADAPTIVE DATA REDUCTION IN CAN :

#include<iostream.h>

#include<fstream.h>

#include<conio.h>

#include<stdio.h>

#include<process.h>

#include<string.h>

void main()

{

' clrscr();

int ch,flag=1;
char arr[100],check[100],file data[100];
while(1) ‘
{ J

cout<<"1.reading"<<endl,

cout<<"2, writing"<<endl;
cout<<"3 exit"<<endl;
cout<<"enter the choice"<<endl;
cin>>ch;
switch(ch) :
{ |
case 1:
ifstream finl("record.txt"); !
if(!finl) |
{

cout<<"file cannot be opened"<<endl;

cout<<"press any key to exit"<<endl;
getch(); !
exit(1); |

43

}

cout<<"the current content of the file are"<<endl;

while(!finl.eof())
{

finl.getline(file_data,100);
cout<<file data<<" ",

}

finl.close();

cout<<"\n";

break;

case 2: cout<<"enter the string"<<endl;

gets(arr);

. int len=strlen(arr);
arr{len]="";
arr[len+1]1="0" :
int i=0,j=0; J
while(i<=len+1)

{

if(are[i]!=""

{
checklj|=arr[1];
ikt
it

}
else if(arr[i]==""|[arr[i]=="\n'||arr[1]]=="0")
{
check[j]="0';
=0
flag=1;
i+ . |

44

ifstream fin("record.txt");
if(!fin)
{
cout<<"file could not be opened"<<endl;

cout<<'"press any key to exit"<<endl;

getch();
exit(0);
-}
while(!fin.eof())
{
fin.getline(file data,100);
if(stremp(check.file data)==0)
A
flag=0;
break; !"-
} J
}
fin.close(); .
if(flag!=0) ,
{

ofstream fout;
fout.open("record.txt",ios::app);
if(tfout)
{
cout<<"file cannot be
opened"<<endl;
cout<<"!! press any key to
exit!!";
getch();
exit(0);

45

fout<<check<<"\n";

fout.close();

}
}
}
break;
case 3: cout<<"press any key to exit..."<<endl;
exit(0);
default:cout<<"wrong choice"<<endl;
break;

33

46

APPENDIX: B
A PROGRAM IN ‘C’ FOR HUFFMAN CODING :

#include<iostream h>
#include<conio.h>
#include<stdio.h>
#include<string.h>

class basic

{
public:
char ch;
int weight;
}s
class huff tree “
{ /
public:
basic asdf;
int parent,leftchild,rightchild;
15
void select(huff_tree *ht,int n,int *s8,int *59)
{

int min1=9999;
int min2=9999;
int posl,pos2;
for(int i=0;i<n;i++)
{
if(ht[i].parent==-1)
{
if(ht[i].asdf. weight<=minl)
{

47

pos2=posl;
min2=minl;
posl=i;

minl=ht[i].asdf weight;

}
else
{
pos2=i;
min2=ht[i].asdf weight;
}
}
}
*s8=posl;
*$9=pos2;
}
void createtree(huff tree *ht,int count,basic *obj)
{

int m=(2*count)-1;
int s1,52;
for(int i=0;i<m;i++)
{
if(i<count)
{
ht[i].asdf.ch=obj[i].ch;
ht[i].asdf.weight=obj[i].weight;

}
else
{
ht[i].asdf.ch="~,
ht[i}.asdf. weight=-1;
}

48

ht[i].parent=-1;
ht[i].leftchild=-1;
ht[i].rightchild=-1,

}
* for(i=0;i<m;i++)
{
cout<<"\n"<<ht[i].asdf.ch<<" "<<ht[i]. asdf.weight<<" ";
} Y
for(i=count;i<m;i++) ‘
{

select(ht,i,&s1,8&s2);

ht[i].asdf.weight=ht[s1].asdf. weight+ht[s2].asdf weight;
/f ht[i].asdf.ch=ht[s1].asdf.ch+ht[s2].asdf.ch;

ht{i].leftchild=s1;

ht[i].rightchild=s2;

ht[s1].parent=i;

ht[s2].parent=i;
}
cout<<"the characters, weight, left child, right child and parent are"<<endI;
for(i=0;i<m;i++)
{
cout<<"\n"<<ht[i].asdf.ch<<" "<<ht[i].asdf.weight<<" "<<ht[i].leftchild<<"

"<<ht[i] rightchild<<" "<<ht[i].parent;

}
¥
void huffman_code(huff tree *ht,int count)
{
}
void setfreq(basic *obj,int count,char *data)
{

49

for(int i=0;i<count;i++)

{
int j=0;
int count=0;
while(j<strlen{data))
{
if(obj[i].ch==datalj])
{
count++;
) !
jH
} .
obj[i].weight=count;
} 'l
cout<<endl;

/1 cout<<"the character with weight are as follows"<<endl;

/* for(i=0;i<count;i++)

{
cout<<obj[i].ch<<" "<<objfi].weight<<"\n",
I
}
void setdata(basic *obj,int count,char *data)
{

int i,j,k,flag=0;
obj[0].ch=data[0];
for(i=1,k=1;data[i]!="0";i++)
{

flag=0,

for(j=i-1;j>=0;j--)

{

if(obj[j].ch==datafi])

50

flag=1,
break;
}
1
if(flag!=1)
{
obj[k].ch=data[i];
k++;
)
}
COut<<"\n";

cout<<"the following letters are unique "<<endl;

for(i=0;i<count;i++)

{
cout<<obj[il.ch<<"";
}
}
int check(char *data)
{

int count=0,flag=1;
for(int i=0;data[i}!="0";i++)
{
flag=1;
for(int j=i-1;>=0;j--)
{
if(data[i]==datalj})
{
flag=0;
break;

51

}
if(flag!=0)

{

count++;

}

cout<<count;
return count;

}

void main()

{
clrscr();
char data[1007;
cout<<"enter the data"<<endl;
gets(data);
int count=check(data);
basic *obj=new basic[count];
setdata(obj,count,data);
setfreq(obj,count,data);
int num=(2*count)-1;
huff tree *ht=new huff tree[num];
createtree(ht,count,obj);
huffman_code(ht,count);

getch();

52

REFERENCES

Controller Area Network (CAN) : Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform,
Matthias Rockl

Review of Researches in Controller Area Networks : Evolution and Applicétions :
Wei Lun Ng , Chee Kyun Ng, Borhanuddin Mohd, Ali, Nor Kamariah Noordin, and
Fakhrul Zaman Rokhani
A Unified Approach to High-Gain Adaptive Controllers : Ian A. Gravagne ,John
M.Davis,Jeffrey J. DaCunha

Controller Area Network (CAN) Basics : Author: Keith Pazul Microchip
Technology Inc.

CANOPEN - Higher layer protocol based on CAN supports device profiles for /O
modules ;motion control : Wilfred Voss esd electronics, Inc. Hatfield, MA
Controller Area Network (CAN) : EECS 461, Fall 2007_J. A. Cook I. S.
Freudenberg

A Neural Network Approach for Controller Area Network Message Scheduling
Control : Chuan Ku Lin, Hao-Wei Yen, Mu-Song Chen, and Chi-Pan Hwang

8. CAN : esd gmbh Vahrenwalder Str. 205 D-30165 Hannover

10.

11.

12.
13.

14.
15.

NI-CAN Hardware and Software Manual

Local Interconnect Net\;vork (LIN) — Packaging and Scheduling : Magnus Ahlmark
Malardalen Real-Time Research Centre (MRTC);Department of Computer
Engineering, Malardalen University (MDH)

Bandwidih Reduction for Controller Area Networks Using Adaptive Sampling : Tan
A. Gravagne; John M. Davist Jeffrey J. Dacunhat, Robert J. Marks

Huffman Coding and Compression of Data —Lawrence M, Brown

Huffman Coding -Patrick J. Van Fleet University of South Florida and University of
St. ThomasSACNAS 2009

CAN Introduction and Primer : by Robert boys

An Adaptive Data-Reduction Protocol for the Future In-Vehicle Networks : Praveen
R. Ramteke and Syed Masud Mahmud (Electrical and Computer Engineering
Department, Wayne State University)

33

14.An Adaptive Data Reduction protocol for future in — vehicle networks : Praveen
Kumar
Ramesh Ramteke
15.Atmel Microcontroliers for Controller Area Network (CAN) : By Michel Passemard,
Industrial Control Business Development Director
16. www.wikipedia.org
17. www.can-cia.org

18. http:/fecee.colorado.edu/

19. www.springer.com

54

