oo we i

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. S 6%0]2. Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action. ;

¢ Any defect noticed at the-time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

N

I

I

SPO

|

Real Time Implementation of Ant Colony
Optimization

Abhishek Dullu (071266)
Atul Prakash (071269)
Gagandeep Chawla (071334)

Richa Agarwal (071339)

» Under the Supervision of

Dr. Satish Chandra

Submitted in partial fulfillment of the Degree of
Bachelor of Technology

Department of Computer Science Engineering

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT
SOLAN, HIMACHAL PRADESH
2011

s e Gk

TABLE OF CONTENT__S

Chapter No. Topics ~ Page
No.
Certificate from the Supervisor 2
Acknowledgement 3
Summary 4
Chapter 1 Introduction 5
Chapter 2 An Ant Colony Framework 8
Chapter 3 The TSP 12
Chapter 4 Local search optimization 17
Chapter 5 Implementation 23
Chapter 6 ReSLllts and Conclusion 36
Appendices 39
References 39

CERTIFICATE

e EWW
|

This is to certify that the work titled “Real Time Implementation of Ant Colony
Optimization” submitted by “Abhishek Dullu, Atul Prakash, Gagandeep Chawla, Richa
Agarwal” in partial fulfillment for the award of degree of B. Tech of Jaypee University of
Information Technology, Waknaghat has been carried out under my supervision. This work
has not been submitted partially or wholly to any other University or Institute for the award of
this or any other degree or diploma.

Signature of Supervisor /

Name of Supervisor Dr. Satish Chandra
Designation Associate Professor
Date

ACKNOWLEDGEMENT

We first and foremost want to thank Retd. Brig. S.P Ghrera without whose help and support
this project would not have been possible at all.

I 'would like to acknowledge Dr. Satish Chandra for his gracious support and guidance in this

project. We appreciate his immense help and his feedbacks which helped us in developing the
project so successfully.

Abhishek Dullu
Atul Prakash
Gagandeep Chawla

Richa Agarwal

SUMMARY

The project necessitated a thorough study and implementation of Ant Colony Optimization
technique. As such the main focus of the project has been to solve a combinatorial problem.

We have chosen to solve Travelling Salesman Problem (TSP) using Ant Colony Optimization
technique. In this problem we have a given set of cities. A salesman has to visit each city once in
such a way that the tour takes minimum time.

We took an existing ant colony system framework with an accompanying TSP algorithm, which

we changed by implementing different afgorithms and extra functionality, in an attempt to
achieve better tour constructions.

|
|
|
i

Chapter 1
Introduction

Starting from the hive they are prone to walk randomly around until they find a point of interest,
c.g. a food source. When traveling back to the hive, they will deposit a chemical substance called
pheromone as they go, which will help them find their way back to where they came from. When
other ants encounter the path of pheromone, they will follow it, becoming less random in their
movement. These will then also deposit pheromone, strengthening the already existing path.
Because pheromone is a volatile substance, a constant stream of ants is required to keep up the
strength of the trail. This means that if a shorter trail exists, the power of this trail’s pheromone
will be stronger, as the ants will traverse the trail in a shorter amount of time, while the
pheromone still evaporates at the same speed. After a (relatively) short time span, the majority of
the ants

will therefore be following the shortest path, as this path has the strongest pheromone.

’_,' Y ~,
~ ~ £ NS
i - ; -
) k. \ . s X ri o o i "
%\ I
;L /
\ \
\ 3\ ;’ .\-‘ % |_“
! / & ".‘
L2
% 71 ;
k) Y \ X
b VA C A
\ /
» ™ B e -
4 PR S { e e
3 ") . 4 o p. e
= ¥ ¥ ; . G, W
» B i R » » = el - JEHEHIY
‘\‘% / 3 \v \ (. Y
N ‘.'. ,"r "\. ‘l'< { / /
\ |" /’ ‘I. / !."
; “% \ i / \ \ £y
x / / \ % '.\ / j, f
» i A ﬁa \ '
\RVAEY AW
\ i l‘i ."i ! "‘-. g “-, 1Y
a7, \ '\
W ‘,‘"‘ ".\ & /

At first the chances to take either left or right are 50/50, but as the ants traverse the two

distances, the pheromone increases faster on the shorter route and more ants end up taking that
route.

The problems that ACO can be applied to are too many to mention here, but one of the most
popular ones is the Traveling Salesman Problem, known as the TSP. The TSP is the classical
mathematical problem where a salesman has to pass through » cities (also called "nodes” as a

more general term), and because he wants to complete the travel in the smallest amount of time,
he needs to find out which route is the shortest.

1.1 Motivation

These new techniques can sometimes be used in modern day technology to solve problems that
might be too time-consuming.The concept of having something as simple as ants (or rather
simulated ants) to solve a seemingly complex mathematical problem seemed interesting, and we
wanted to find out if this method really was as good and functional as several sources claimed.

The purpose of our project is to design a framework for an ACO algorithms based on an existing
one, that can be applied for constructing solutions for the TSP.

1.2 Problem Formulation

Our level of efficiency is measured in accordance to the following settings:
* TSP tour solutions
* Time consumption

In order to approach the problem, we have split our problem definition into smaller problems:

* Tour Construction:

Use Chirico’s framework for Ant Colony Systems applied to the TSP, and make changes without
ruining it’s overall performance and usability as a framework.

.

o Tour Optimization:

Extend the framework applied to the TSP so that it uses local search algorithms for improving ;
retrieved tours from the ACO framework. |

* Visual Observation:
Implement a GUIT for tours” visualisation and a control panel for setting parameters.

e Experimental Observation:

Change the values of the parameters for experimental analysis and general program evaluation.

1.3 Target audience |

The target audience for this report is people who want to study the basics of ACO and how to '

apply it to a real life problem like TSP. Previous knowledge about ACO and TSP is not
necessary, as we will introduce the reader to the necessary theory. A

As this is a computer science project, it will be an advantage to have basic knowledge of the ‘J
tools and methodologies used in this field of study. We will be doing all the programming in
Java, so knowing the language will clearly be an advantage.

Chapter 2

An Ant Colony Framework

The design of ant colony algorithms is based on the search behavior of real ants, The ants’ search
; behavior is based on a positive feedback from the cooperative behavior, based on the trail
following of the other ants to reinforce good solutions on a problem. A solution for a shortest
path problem is determined by the back and forth movements of ants on the path where shorter
distances are more prioritized due to the higher concentration of pheromone.

2.1 Designing Ant Colony Algorithms

Let us consider an environment similar to the Double Bridge Experiment' where we have a

i colony of /i ants traversing two branches AB and AC from A, the nest, to two food sources B

| and C.+_ 13 and 71" are defined following a random distribution of a constant ¢ over [0,1].
C

@

L {
&
§%)

P AL

Figure 2.1: An ant’s choice.

The random distribution is to give both branches a chance to be chosen by an ant, and it is

|
i between 0 and 1 as it is a random probability. i ith as ant id, we define the following
| expression: f i ; s
! T A e] ' N B e
T AR o= ; o = 2ot
! 1B+ 1 T AR, ¢ > Puag :
|
T U R T B -
The probabilit * - Wir = I rAC,. 0 T2 4 o L&-< 15 the
next state position 1n the environment. 1t I enunciated by:
P TAD
AR T s AR A
: (2.3)
: TAC
(Tesp. Pan = =
e

Remarks

o Pap+Pac=1l.
e It is obvious from equation 2.3 that the more ants traversing a branch, the greater the probability
on that branch will be, and the higher are the chances for that branch to be chosen.

The traversal of a branch by an ant is equivalent to the deposit of pheromone, which makes the
pheromone plays a big role in the choice of the moves of an ant in the environment. Therefore,
an ant colony algorithm is an algorithm made on the basis of the pheromone trail and the state
transition moves.

2.2 The Pheromone Trail Update

The pheromone biologically defines the modifications of the colony trail on the branches in the
environment. As it is a volatile substance there is a time limit on its impact on the other ants. For
such reasons, its computation is made under two considerations:

¢ The quantity of pheromone layed on a branch that has been used. Such quantity is expressed by
two parameters, the parameter of deposit depending on the type of ants used for the simulation,
and a parameter of decay for the deposit of pheromone evaluted as a probability between
[0,1].The parameter of deposit is usually set proportionally to the inverted length of the branches
traversed by the ant, so that short branches gets high pheromone deposit, simulating the
environment described earlier.

e The quantity of pheromone evaporated after the ant has crossed a branch. The evaporation is set
to control the evaporation on a path, based on the parameter of decay of the pheromone deposit
by the previous ant(s).

! However, for ant simulations and optimizations, there has been defined two rulesfor the
pheromone update:

1. The local update : The local update is the update of the pheromone on a single branch when it is
traversed by an ant.

-+

2. The global update: The global update is there inforcement of the branches in the best path
found after each iteration of the ants in order to find the overall best path.

2.3 The State Transition Rule

The state transition rule is a set of rules that defines the next move of an artificial ant. Those rules
are determined by using:

e The Constraint Satisfaction : This is a memory that helps ants to construct possible good
solutions. As we have said when presenting ants, ants are chosing their path following a random

probability. Constraint settings make an ant’s choice of moves to be more constructive rather
than a total dependance on a random choice.

e The Heuristic Desirability : This is an evaluation of the closest steps, based on the inverted)
length on each branch. It is used to increase the amount of pheromone on small branches. A

The state transition rule can be expressed as a random probability move function of the Heuristic Y
Desirability and the Pheromone update. The transition rules are known as exploitation and i
exploration. 8

I. The exploitation rule: The exploitation rule is determined by the choice of edge with the
highest amount of pheromone. It is straight forward using the heuristic desirabil- ity, the |
pheromone trail and several parameter settings.

2. The exploration rule : The exploration rule is the search among all possible edges for the most E!
probable edge that can be used to construct a good solution for the ant. However, such choice -
belongs to a probability that is set as well following parameters on ants’ behaviors.

2.4 A Framework for an ant colony algorithm

=

An ant colony algorithm can be used for solving a huge variety of combinatorial problems as
described-in-[DS04]following-the-above structure. However, the parameter settings of the ’
pheromone trail update rule and the state transition rule depend on the problem the colony will
have to solve, and the level of optimization the colony would have to perform. Building a
framework is modelling a data structure on a higher level abstraction that can be extended for
solving such applications of the ant colony and/or used for other data-modelling. Following !
Dorigo in [DG97], Chirico in [Chi04] designed his framework as a distributed system of a !

10 i

colony of ants where ants perform the tasks described above; moving and updating the pherome

in an environment represented by a graph. We have decided to keep the same general abstract
design for two reasons:

A graph is a simplified representation of a physical or abstract environment using nodes and
edges/cost.The different states an ant can move among in the environment are represented by the
nodes in the graph, and the branches or arcs connecting such nodes built by ants are edges. Edges
can also be assimilated as cost, as it still involves the connection between two states.

A distributed system where each ant represent a thread and the colony is the shared object. The
global update is assigned to the colony as it is the update that affects the behavior of the whole
colony, while the local update is affected to the threaded ant, as such update is controlling the
individual ant on its single meta-heuristic move.

The framework developed in [Chi04] was well structured in terms of classes and we ended up
with the same classical construction: '

The Graph object : This is the object defining the environment in which ants are capable of
performing their moves.

The Ant Colony object : Ants are created using this object and run following a set amount of
iterations. On an initial run, the pheromone is set on each path, and after
each iteration, only the best path is being updated.

The Ant object : This object performs single moves of an ant, which is moving in the graph
according to the state transition rule updating the pheromone after the state move.

However, a few changes have been made, and we applied the improved version of the
framework on the TSP, a combinatorial problem solved efficiently using ants in [DG97] and
[DS04].

11

r

Chapter 3

The Travelling Salesman Problem

In our project we are working with the symmetric TSP, meaning that the distance between two
cities @ and b will be the same as between b and a. The TSP is known to be a NP-hard problem,
so unless we settle for an approximated result, computations will be very time consuming. The
easiest way (but as we will see not the quickest way) to find a solution is just to find all the paths,
and then choose the shortest one. Unfortunately not many cities are necessary before we end up
with an unmanageable number of tours, which again will require an unlimited amount of
calculation power. When leaving the first city starting a tour (where the tour will consist of #
cities), there will be n—1 cities to choose among, and so on after the next city has been visited.
This will end up giving us (» — 1)!I. But as back and forth is the same (because of the
symmetrical nature of the problem), we can divide it by two and get the expression:

(n— 1)
9

Number of towrs =

3.1 A heuristic tour construction

An approximate algorithm for solving the TSP is a heuristic construction based on the following:
1. Compute the cost for traversing an edge.
2. Select the minimum cost for a set of edges in the graph that form a cycle

The nearest neighbor is a simple heuristic construction where starting from a random city, the
next city visited is the closest unvisited city until the last unvisited city. At the last unvisited city,
the next move is to the starting city. The time complexity of the nearest neighbor is based on the
visit of all the nodes # and their neighbors » — 1, giving a quadratic computation time of O(n2).
There are other several heuristic algorithms that are more efficient than the nearest neighbor with
better computation time such as:

* The greedy algorithm, where the solution is constructed from the set of
sorted edges.

* The christofides algorithm with solutions constructed by an Eulerian cycles5,
where nodes are not visited twice.

12

3.2 Heuristic Search List

An ant colony algorithm uses two heuristic lists for instantiating the moves of ants in the graph. |
The two lists are the neighborhood list and the heuristic choice list, also known as the tabu list. |

3.2.1 Neighborhood List

A heuristic tour construction starts from a tour which is getting improved as long as the
algorithm runs. The neighborhood list is used to improve the minimal tour construction starting
from the nearest neighbor tour, as we believe that the overall best tour may contain a subset of
the nearest neighbor tour. Moreover, the neighborhood list is used to determine the length of the
nearest neighbor tour used for setting the initial deposit of the pheromone by an ant on an edge in
the local update rule.

Ll .)]
3.2.2 Choice List
The choice list is the list of cities the ant has to visitto perform a tour. The characteristic)
of the choice list is that once an ant has chosen the next city to visit, that city is removed from !
the choice list. The procedure of searching in the list ends when there are no more cities to visit; 1

at this point the ant has to go back to the starting city. In Chirico’s implementation of the TSP,
there was no consideration of the return of the ant which led to unrealistic results.

3.3 The State Transition Rule

In the TSP state transition rule, the move to the next state is determined by a value ¢ randomly
distributed over an interval [0,1] and another value Q0 also set between [0,1]. The two values are
compared, and their comparison leads to one of the two possible rules:

1. Exploitation if ¢ < Q0.
The exploitation is the maximum value obtained by combining the concentration of the
pheromone on an edge with its heuristic desirability.

2. Exploration if ¢ > Q0.
Inthis rule, the transition is based on the choice of the city with the highest probability using the

probability expression or the random proportional choice defined in equation.

The following expression denotes the description given above of the nodes’ transition states for
the TSP.

13

, - argmazx,, o {[mi (0] - [:)?} if g = QY
Sl if ¢ > Qg

ni,u is the inverted length between the nodes 7 and u.

tiu, the amount of pheromone on the edge (i,).

1, the iteration number.

Jk

i, the set of cities to visit by ant £ at city 7 or the choice list.
u 0 Jk

i, acity randomly selected.

J, the most probable node to be chosen by an ant while being at position i. @ and f are used for
tuning the expression in 3.2 and 3.3. According to [D304], for « = 1 and f = 2, the tour

constructed is similar to the greedy construction defined above. In fact, by setting 5 to 2 and « to
I, only small distances will have a high concentration of pheromone and by using a choice list,
only edges with lower concentration will remain.

[ri g () - [:.4)°

> ue I ru) - Il

B —

b Fan
Frsll) =

3.4 Pheromone Update rule

By distinguishing the local update as an update made by an ant to improve path search, and the

global update as a reinforcement of an iteration’s best tour, the following update rules are made
for the TSP:

3.4.1 The local updating rule

For the TSP, Chirico expressed the parameter of deposit by combining the sum of all the average
lengths between the nodes and the number of nodes to obtain the following:

)i~ 1

; ‘li eS|
Lt

n is the number of nodes.

o(1,s), the length between node r and node s .

14

Chirico did not expand on why he had used this expression, so we decided instead to chose the
expression 3.5 given in [DG97] and [DS04], where the parameter of deposit is based on the
length constructed by the nearest neighbor list and the number of nodes

To = | 13l e jh l

With n as the number of cities and Lnn the length produced by the nearest neighbor list. Equation

3.5 is used to spread the pheromone using equation 3.6 on each edge used by an ant. The fact that

the pheromone is spread along all edges traversed by an ant opens for all possible solutions.
Tig(t) = (L =& n;(t)+ €m0

P is the parameter of decay and ¢ is the iteration number when the update is performed

3.4.2 The global updating rule

We set the global update to be:
Ti.j 1,-‘! — (1 - o) R Tij (t e J{)AT"-.-‘ ‘-‘L:

where p is still the parameter for the pheromone decay and AT k i,j a parameter of deposit

defined by
" W
._X T‘n G . —
=t L best

Where Lbest is the length of the best cycle, and W is a parameter ranged be tween [1 100]. Our
choice of is based on the settings of Bonabeau et al described in [JMO03].

3.5 TSPLIB

The tests made using the TSP algorithm are based on real cases using TSPLIB as a reference.
TSPLIB is an online library, developed by the university of Heidelberg in Germany that contains
several samples of TSP and similar related problems ranged on a list of different files. It has
become a standard reference in modern research and the documentation can be obtained in
[Rei95]. We chose solely to focus on instances of the type Symmetric Euclidian TSP, referenced

15 ‘.

as 2 , meaning that distances (or weights) between nodes are expressed on an Euclidean EUC-2D
coordinate system. The coordinates are decimal numbers (or doubles), including negative values
and the distances between the nodes are computed according to the Pythagoras equation.

Based on the framework structure, we extended the TSP for tour optimizations and implemented
methods for local search based on the 2-opt and 2,5-opt algorithms.

1]

16

Chapter 4

Local search optimization

No matter how effecient a TSP algorithm is, it will in theory always have some shortcomings, as
the updating rules can not possibly take all situations into account when being designed.
Therefore it will always be an advantage to set an optimization method, which can be used after
retrieving an initial result from the TSP algorithm for improvement. The heuristic used for
optimizing the TSP is local search.

The most commonly used optimization algorithms for the TSP are 2-opt, 2,5-opt, 3-opt and the
Lin-Kernighan. The Lin-Kernighan algorithm is generally seen as being the most efficient
optimization algorithm right now, particularly after Keld Helsgaun created and published his
own implementation[Hel98]. Its efficiency is to be seen in its complexity, which convinced us
from the beginning, that even if it could have been better to get it involved in the project, we
would have to drop it as we didn’t have the required time and experience to implement it. Instead
we turned ourselves towards implementating a 2-opt, hoping to have time to also implement a
2,5-opt and 3-opt algorithm. As time went by, and despite the simplicity of the 2-opt algorithm
and implementation, we ended up spending a lot of time struggling to get it to work properly and
optimizing the code. This resulted in that we after this only had time to implement a 2,5-opt
algorithm, meaning that we had to give up on trying to implement a 3-opt algorithm.

4.1 2-opt

The 2-opt is a basic case of the local search optimization heuristics, and as such it is capable of
obtaining useful results very fast. Even if the other more advanced options, such as the Lin-
Kernighan, would give us a higher chance of a near to optimal (if not the optimal) tour, the 2-opt
is a feasible choice when looking at its results versus the time required to obtain these results.
The implementation of the 2-opt is based on the following points as shown in figure 4.1:

Take two pairs of consecutive nodes, pairs A & B and C & D from a tour.
Check to see if the distance AB + CD is higher than AC + DB.
If that is the case, swap A and C, resulting in reversing the tour between the two nodes.

The tour should be run through from the beginning to check for any possible swaps every time a
swap is made, as every swap results in a new tour being made. The swap can be performed in

two different ways:

Search until the first possible improvement is found, and perform the swap.

17

Search through the entire tour to find all possible improvements, and perform only a swap on the
best improvement.

We chose to use the first option (as seen in code fragment 4.1), as the second one could possibly
run for a much longer time before returning a result, as it has to run through its entire list of
neighbors before it performs a swap, whereas the first on performs the swap as soon it hits the
first possible improvement. The disadvantage of choosing the first one over the second one is that
we might loose a potential good improvement.

Figure 4.1: A 2-opt operation.

For shorter tours it is feasible to let the algorithm run until it cannot find another swap, but for
larger tours it is recommended to implement a check which at some point during optimizing
should go in and stop the process, as it would run for an undesirably long time. This could be a
simple limit on how many swaps should be done until it stops. The disadvantage of doing it like
this is that the chances for achieving the optimal tour length decreases dramatically, as you are
not letting the program run undisturbed until it can’t find more possible optimizations. On the

18

other hand you limit the runtime and are therefore not forced to wait for an unknown amount of
time before it completes the run.

As it can be seen the codes themselves are simple, and it is very easy to recognize what is going
on. As mentioned earlier, the complexity of the code itself is not what requires the long
computation time, but rather the actual calculations and operations that have to be done as the
algorithm works itself through the tour.

According to [DS04, page 94], the time complexity for running a neighborhood search in 2-opt
is (J(n?) , which is significantly lower than thi-opt's (J(n®) . Using various optimization
techniques these times can be lowered, but as the algorithm says above, a neighborhood search
will have to be performed for every node in the tour. The version we have implemented has
already been optimized in respect to how the algorithm originally was conceived, as using the
nearest neighbor list is part of the optimization techniques mentioned in [Nil03]. By doing that it
is possible to limit how many nodes each node should check when looking for a possible
improvement. We chose from the beginning to use the complete neighbor list to make sure we
don’t miss a possible swap, but in doing that we have not saved any time compared to if we
hadn’t implemented the

Code 4.1: The 2-opt algoritinn

i [l
2 node A= Tirgt nodse- (Anyonode) - in’ the=tout
do
i node B = A.next
for {each of B's neighbors) {
6 node ¢ = B's neighbor
. node D = C. previous
A il {{distance(A,B)+distance(C,D}) >
(distance (A, D)+distance(B.C)) |
swap ()
. break so the algorithm starts over again
12 f’
1a }
14 A = Al next
Fowhile (A l="11rer nade)
bowhile {there has been made changes;

19

Code 4.2: The 2-opt's swap algorithm

node temp

. | for (all the nodes from A to C){
temp = node. next
node . next = node. previous
node . previous = femp

neighbor list. Instead we could have limited the list to only contain 20% of the total number of
nodes, decreasing the required computation time greatly, but also increasing the risk that we
won’t end up having a fully optimized tour. According to [IM97, page 26] the improvemnent in
a tour when going from 20 to 80 neighbors is only app. 0,1-0,2% on average, which means that
our concerns about not finding all the possible improvements were unnecessary. This changes the
time complexity for the 2-opt from (=) to O (rr) where m is the number of neighbors.

4.2 2,5-opt

The concept of the 2,5-opt algorithm is simpler compared to the 2-opt algorithmas as it only
performs a move of a single node. The simplicity of the algorithm affects the results that can be
gained by using the 2,5-opt, which is why our opinion is not to use this optimization algorithm
alone, but rather use it in combination with another, which in our case is the 2-opt. But it can be
useful as a finishing touch; after running another optimization algorithm, it can be used to find
small improvements throughout the tour that the former optimization did not find, thus
decreasing the distance a little more. The structure of the 2,5-opt algorithm is as seen in figure
4.2:

Take two consecutive nodes A and B.
Check to see if the distance is decreased if C is moved in between A and B.
If that is the case, insert C in between A and B .

From the visual representation in figure 4.2, it is obvious that the 2,5-opt only performs a simple
move of a node, solely dependent on that the distance AB + CD + DE is higher than the distance
CE+ AD+BD.

20

B A B0 o

Figure 4.2: A 2.5-opt operation.

Its simplicity can be seen in the code fragment 4.3.

Code 4.3: The 2,5-opt algorithim

i do

2 node A = first node (any node) in the tour

do {

1 node B = A, next

for (each of A’s neighbors) {
6 node D = B's neighbor
nade C = . previous

5 node E = D.next

5 if ({(distance(A,B)+distance(C,D)+distance(D.E}) >

.-‘)

| (distance(A.DN=distanceB.D<distance((" EV
i1 swap ()

L break so the algorithin starrs over again

1 .l-

1 ‘>

T A=A next
1% } while (A l= first node)
= |y while [(there

lias been made changes)

Code 4.4: The 2,5-opt’s swap algorithm

v | Gadiext = B
E.previous =
A.next =D
B.previous = D
D.previous = A
Deotiext = B

even if the actions done by the algorithm are simpler than those of the 2-opt algorithm, the
complexity of the code is slightly higher, as another node is to be involved to enable the
computations. But this does not change the fact that the algorithm only affects these 5 nodes,
whereas the 2-opt algorithm impacts not only the 4 named nodes, but also all those nodes
between A to C.

Comparing to the potential time consumption of the 2-opt algorithm, the 2,5-opt therefore has the
advantage that less computation time is needed for changing nodes, as only 5 nodes are to be
changed. A way to optimize the 2,5-opt can also be done by using a neighborhood search similar
to the one in the 2-opt, with the results in a time complexity of (771, o1 Ot if you chose
to limit the neighbor list.

Chapter 5

Implementation

In this chapter we will introduce the functionality of Chirico’s original program,followed by
introducing our version with the changes we have made including extra classes we implemented
to get the functionality we wanted.

5.1 The original code

The original code has an implementation of an ACS framework, including solutions for the TSP
and SP6 that take advantage of the ACS. Since we didn’t investigate the SP, we will only focus
on the ACS framework and the TSP. Figure 5.1 gives an UML diagram of the framework
structure and its TSP extension.

The program is run through a command prompt where the required inputs are the number of ants,
nodes, iterations and repetitions. Before creating a Graph object and starting the AntColony, the
number of nodes is used to create a delta matrix which is the matrix defining the distance
between the nodes. These distances were calculated based on a random number generator, so the
results retrieved from the program were not comparable in any way with the official instances
found on TSPLIB.

5.1.1 The ACS framework

1. The graph

When starting the application, an object of the type AntGraph is created, containing the matrices
delta described above and tau for setting the pheromone on the edges of the graph. The class also
contains methods that enables changes in these matrices during runtime, such as updating the
pheromone on the edges and resetting tau for a new repetition.

2. The ant colony

After creating the graph, an AntColony object is created, with the graph as one of its parameters.
This way, the ants can - through the colony — always get access to the graph so they know what
options-they have when going to their next node. The colony keeps track of all the ants
associated with this colony (as the framework supports more than one colony at a time), which is
accomplished by having an array of ant objects. The ant colony also stores information of the
best tour performed by the ants at each iteration. Before the first iteration is run, the abstract
method createAnts is called to create the ants, taking the graph and number of ants to be created
as parameters. All the iterations are then run through, and each iteration begins by starting all the

23

ants, which report back to the colony using the update method when they have created a new
tour. When the ants have been started the abstract method globalUpdatingRule is called,

<<interface>>
java.util.Observer

java.util. Obsererable

<<interface>>
java.lang.runnable

<<interface>>
java.io.Serializable

—

A
: 7 T #
I i !
| ! |
T — | |
1 J |
AntColonyFramework AntFramework AntGraphFramework
m_ants:AntFramework]] # m_dPathLength:double - m_delta:double '
m_gragh:AntGraphFramework - m_nAntID:int - m_dTau0:double

m_nAntCounter:int
m_nAnts:int

- m_niD:int

m_nlteration:int

m_niterCounter:int
- m_outs: PrintStream
- s_nldCounter:int=0

+ AntColonyFramework (AntGraphFramework, int, int)
creatAnts (AntGraphFramework, int): AntFramework |
+ done():boolean

m_nCurNode:int

m_nStartNode:int

m_obsener,Obsener

m_path:int[][]

m_tour:ArrayList<Integer>

s_antColony: AntColonyFramework

+ s_bestPathLength:double=Double. MAX VALUE
+ s_bestTour:ArrayList<Integer> = null
- s_nAntiDCounter:int = 0

+ s_nLastBestPathlteration:int = 0

- §_outs:PrintStream

- m_nNodes:int
- m_tau:double[](]
- nodesList:ArrayList<Node> = new ArrayList<Node>()

+ getAntID():int

+ getants():int

+ getBestPathLength():double

+ getGraph():AntGraphFramework
+ getID():int

+ getlterationCounter():int

+ getlteration():int

+ getLastBestPathiteration():int

globalUpdatinRule():void

- iteration(): woid

+ start():wid

+ update(Observable, Object):woid

+ AntFramework(int, Obsenver)
better(double, double): boolean
+ createThread():void

+ end():boolean

+ getBestPath():int[]

+ init():void

+ localUpdatingRule(int, int):void
+ reset(): wid

+ run():void

+set AntColony (AntColony Framework): void
+ stateTransitionRule(int):int

+ toString():String

+ AntGraphFramework{ArrayList<Node>, double[](])
+ AntGraphFramework(ArrayList<Node>, double[][], double[][]}
+ computelLength(ArrayList<Node>):.double

+ delta(int, int):double

+ etha(int, int):double

+ getNodesList():ArrayList<Node>

+ nodes():int

+ resetTau():wid

+ tau(int, int):double

+ tau0().double

+ toString(): string

+ updateTau(int, int, double):void

tsp

AntColonyForTSP

AntForTSP

bestPath:int[] = new int{m_graph.nodes()]
RHO:double = Main.GUI.getRho()
W:int = Main. GUI.getW()

- A:double = Main.GUI.getAlfa()
- B:double = Main.GUI.getBeta()
+ balance:double

+ AntColonyForTSP(AntGraphFramework, int, int)

+ getBestTour():ArrayList<integer>

+ getBestTourNodes(): LinkedList<Node>

globalUpdatingRule(): void

+ nodes Tour(ArrayIList<Integer): LinkedList<Node>
- tour{Array List<Integer>):ArrayList<Integer>

creatAnts (AntGraphFramework, int):AntFramework]]

- KSl:double = Main.GUI.getKsi()

+ nNodes:int

+ probability:double

- Q0:double = Main.GUI.getQ0()

- s_randGen:Random = new Random(7)

m_nodesToVisitTble:HashMap<Integer, Integer>

+ AntForTSP(int, Obsener)

+ better(double, double):boolean
+ end(): boolean

+ int():void

+ localUpdatingRule(int, int):void
+ stateTransitionRule(int):int

+ toString(): String

Figure 5.1: UML diagram of the old version of the program.

25

applying the global updating rule to the graph’s edges. When all the ants have reported back and
the global updating rule has been applied, a new iteration is started if there are still any left
according to the colony’s iteration counter.

3.The ant

The Ant object holds information about the start node, the current node, the tour list7, its best
tour so far and the iteration the best tour was made. When the start method for an ant is called, a
new thread is created with the ant as parameter. The thread is then run, finding the next node
for the ant using the abstract method stateTransitionRule. At the end of the method call, it
calculates its new tour length based on the distance to the current node, adds the new node to its
tour list, and deposits pheromone on that edge according to the abstract method
localUpdatingRule. At

the end of the iteration it checks to see if the new tour is shorter (abstract method better) than the
best tour so far, and if this is the case, the new tour becomes the best tour so far.

5.1.2 The TSP implementation

The TSP algorithm for the original code is fairly simplified, as the basic functionality of the ant
already exists in the framework. As an extension to the framework, it is only supplying rules for
the ants’ behaviour.

1. The ant colony for TSP :

As described in figure 5.1, the AntColony4TSP class only holds its constructor and implements
the two abstract methods globalUpdatingRule and createAnts. The colony creates the ants of the
type AntdTSP, resets the ants (by resetting the values for the ants’ best tour), associates them
with this colony, and sets the starting node as a random one. The global updating rule algorithm
used for this TSP solution can be seen in [Chi04, eq 4].

2. The ant for TSP

The Antd4TSP is an extension of Ant that overrides the ant’s initialization or the init method,
adding a Hashtable of nodes the ant needs to visit, and sets an end condition to true if the table is
empty. The localUpdatingRule and stateTransitionRule methods are performed following the
rules described in [Chi04]. The implemented better method simply compares two final tour
distances and select the best.

5.2 Our changes to the code

We very soon found limitations in the original framework; because the nodes were represented
by integers, they would not be able to carry any data, which would make it impossible to give
them any coordinates. This quickly convinced us that we had to change how the framework

26

handled the nodes, as we would replace the integers with Node objects instead. As we were
dealing with TSP files, we also set the framework to be compatible with the files found on
TSPLIB. For a view of the tour, we implemented a GUI and added buttons for setting parameters
without having to go into the Java files. A final goal was to implement one or more local search
optimization algorithms in an attempt to give us better chances of getting an optimal solution.
We ended up with a structure described by the figures 5.2, 5.3 and 5.4. We will be going through
the framework and TSP algorithm stating only the changes that have been made. We also applied
changes to the class names, as we were warned about a possible mis-interpretation for an object-
oriented framework.

27

<<interface>> : : <<interface>> <<interface>>
(java.util. Obsener it i java.lang.runnable java.io.Serializable
rd
I Y 3
I
! i
‘ i
I
W w :
T
1
AntColonyFramework AntFramework AntGraphFramework
m_ants:AntFramework(] # m_dPathLength:double - m_delta:double
m_gragh:AntGraphFramework - m_nAntID:int - m_dTau0:double

m_nAntCounter:int

m_nAnts:int

- m_niD:int

m_niteration:int

m_nlterCounter:int

- m_outs:PrintStream
- s_nldCounter:int=0

+ AntColonyFramework (AntGraphFramework, int, int)
creatAnts(AntGraphFramework, int): AntFramework|
+ done():boolean

m_nCurNode:int

m_nStartNode:int

m_obsenver,Obsener

m_path:int[][]

m_tour:ArrayList<Integer>

s_antColony:AntColony Framework

+ s_bestPathLength:double=Double. MAX VALUE
+ s_bestTour:ArrayList<Integer> = null
- s_nAntIDCounter:int = 0

+ s_nlLastBestPathiteration:int = 0

- §_outs:PrintStream

- m_nNodes:int
- m_tau:double[](]
- nodesList:ArrayList<Node> = new ArrayList<Node>()

+ getAntID():int

+ getants()int *

+ getBestPathLength().double

+ getGraph():AntGraphFramework
+ getID():int

+ getlterationCounter():int

+ getlteration():int

+ getLasiBestPathiteration():int

globalUpdatinRule(): void

- iteration(): woid

+ start():void

+ update(Cbsenable, Object):wid

+ AntFramework(int, Observer)
better(double, double); boolean
+ createThread(): void

+ end():boolean

+ getBestPath():int[]

+ init():void

+ localUpdatingRule(int, int):void
+ reset().void

+ run():void

+set AntColony (AntColonyFramework):void
+ stateTransitionRule(int):int

+ toString(): String

+ AntGraphFramework(ArrayList<Node>, double](])
+ AntGraphFramework(ArrayList<Node>, double{][], double[][])
+ computeLength{ArrayList<Node>).double

+ delta(int, int):.double

+ etha(int, int):double

+ getNodesList():Array List<Node>

+ nodes():int

+ resetTau():wid

+ tau(int, int):double

+ tau0().double

+ toString():string

+ updateTau(int, int, double):void

tsp

AntColonyForTSP

AntForTSP

bestPath:int[] = new int[m_graph.nodes()]
RHO:double = Main.GUI.getRho()
W:int = Main.GUL.getW()

- Azdouble = Main.GUl.getAlfa()
- B:double = Main.GUIl.getBeta()
+ balance:double

+ AntColonyForTS P(AntGraphFramework, int, int)

creatAnts(AntGraphFramework, int): AntFramework(]
+ getBestTour():ArrayList<integer>

+ getBestTourNodes():LinkedList<Node>

globalUpdatingRule(): wid

+ nodes Tour{ArraylList<Integer):LinkedList<Node>

- tour(Array List<Integer>):ArrayList<Integer>

- KSl:double = Main.GUIl.getKsi()

+ nNodes:int

+ probability:double

- Q0:double = Main.GUI.getQo()

- 5_randGen:Random = new Random(7)

m_nodesToVisitTble:HashMap<Integer, Integer>

+ AntForTSP(int, Obsener)

+ better(double, double):boolean
+ end():boolean

+ int():void

+ localUpdatingRule(int, int):void
+ stateTransitionRule(int):int

+ toString():String

Figure 5.2: UML diagram of the new version; the framework. Aco’s and tsp packages.

28

5.2.1 The ACS framework

1. The graph class

To have the list of nodes with their coordinates and ID available at all times in the program, we
chose to change the constructor of the AntGraph Framework, so instead of taking the number of
nodes in the instance, it takes an ArrayList containing all the Node objects. Another change
made was the way the framework computes 70 as described in chapter 3. We implemented a
method called computeLength for finding the length built by the nearest neighbor list as seen in
the code (see 5.1).

2. The ant class

The AntFramework class is almost identical to the Ant class. Some minor changes were made
such as the replacement of the Vector type to an ArrayList to easily manage the Node object. We
renamed the start method to createThread to avoid confusion with the threads’ start method,and

Code 5.1: computeLength method
I while (tabuList . size () I= 1) { «]
currNode . setNeighbors (myNodes) ;

3 for (Neighbor nabo : currNode . neighbors) {

4 i f(tabuLi s t . containsKey (nabo . toNode . nodelD)) {
5 length += currNode . di s tanc e (nabo . toNode) ;

6 tabuList . remove (new Int eger (currNodelD)) ;
7
8
9

o

currNode = nabo . toNode ;
currNodelD = nabo . toNode . nodelD;
break ;

10 }

11 }

12

13 length += currNode . di s tance (f'irs tNode) ;

14 return length ;

we removed the int[][] s bestPath in the global updating rule, since we ended up not using it.

3. The ant colony class

Also the AntColonyFramework is very much alike its predecessor AntColony with only a very
few changes done to it. We added an access point to the ant counter from outside the class,
removed access to the tour vector because the tour could be retrieved directly from the ant object
instead, and we also removed the acces to the path array, int[][] s bestPath, for the reasons
described above.

29

5.2.2 The TSP algorithm

Our TSP implementation has gone through some more extensive changes than the framework, as
a result of actually simulating the basic behaviours of the ants. Apart from the algorithms, the
most noteworthy changes have been made to accomodate the Node objects instead of Integers,
and making the parameters in the algorithms get their values from the GUI. The local updating
rule of the AntForTSP class has not been changed if looking at the computations that are done,
but the p has been swapped with ¢ to follow Dorigo’s terminology as seen on page 78 in [DS04].
The only big change as such has been done in the state transition rule method. First of all it now
checks if the current ant is the first ant in the first iteration; if that is the case it will be doing a
tour using the nearest neigbor heuristic. Otherwise the ant has the choice between exploitation
and exploration; the former is unchanged compared to the one in Ant4TSP, but the latter has
been changed. Instead of using the equations found in [Chi04, eq 1&2], we implemented the
equation 3.6 as seen in code fragment 5.2. The AntColonyForTSP class has had some extra
functionality added which provides retrieval of the best tour in a list, either filled with Integers
being node IDs, or actual Node objects. The global updating rule method has been changed

Code 5.2: The local updating rule

1 publ ic void localUpdatingRule (int nCurNode , int nNextNode) {

2 final AntGraphFramework graph = s antColony . getGraph () ;
3 double val = ((double) 1 — KSI) = graph . tau (nCurNode ,

4 nNextNode) + (KSI #(graph . tau0 ()));

5 graph . updateTau(nCurNode , nNextNode , val) ;

6/

Code 5.3: The global updating rule

1 protected void globalUpdatingRule () {

double dEvaporation ;

3 double dDeposit ion ;

4 for(inti=0;i<m graph.nodes();i++)

5 bestPath [i] = AntForTSP. getBestPath () [i];
6 for(intr=0;r <m graph . nodes () ;r++) {
7
8

no

for(ints=r+ 1;s < m graph.nodes ();s++) {
for(inti=0;i<super.getAnts ();i++){

9 double deltaTau =

10 (W / AntForTSP.s_dBestPathLength) ;

11 dEvaporation = ((double) I — RHO) =

12 m graph . tau (bestPath [r |, bestPath [s]);
13 dDeposition = RHO #deltaTau ;

14 m graph . updateTau(bestPath [], bestPath [s],
15 dEvaporation + dDeposition) ;

30

16)
17)

18 .

19

slightly;Az is now calculated as seen in 3.8. The im_p-iéﬁz_n_t'éfibhr of the evaporation and
deposition have also been changed in accordance to equation 3.7 and code fraction 5.3.

5.2.3 Additions to the code

We put the additions to the code into 4 packages; Node, 10, tsp.optimization and Main.

The Node package

The Node package contains two classes; the Node and Neighbor classes. The node class creates a
node object which contains the node’s coordinates and ID. It also has the possibility of assigning
a list of Neighbor objects sorted by the distance to the node. The neighbor is just a node object
put together with a distance to the node to which the neighbor belongs.

31

<<interface>>
java.awt.event. ActionzListener

javax.swing.JFrame

Main

Gul

- ALFA:String = "/u03B1"

- alfaSpinner:JSpinner

- antColony:AntColonyForTSP

- BETA:String = "fu03B2"

- betaSpinner:JSpinner

+ canvas: TSPCanvas = new TSPCanvas()

+ CANVAS_HEIGHT:int = WINDOW_HEIGHT -200
+ CANVAS_WIDTH:int = WINDOW_WIDTH/2-40
- canvasJPanel:JPanel :

- clearButton: Button

- doOpt: JCheckBox

- doTwoHOpt: JCheckBox

javax.swing.filechooser.FileFilter

<t

TSPFileFilter
+ accept(File):boolean

java.awt.Canvas

+ getDescription(): String
- getExtension(File): String

TSPCanvas

- greatestXint
- greatestY:int
- length:int = 0

- doTwoOpt: JCheckBox

- filePath: JTextField

- giveOutput: JCheckBox

- KSI:String = "/u03BE"

- ksiSpinner: JSpinner

- locateQutputFolderButton: Button
- locateTspFileButton:Button
- nuOfAnts: JTextFeild

- nuOfiteration: JTextFeild

- outputPath: JTextFeild

- qOSpinner: JSpinner

- result:JTextFeild

- RHO:String = "u0381"

- rhoSpinner: JSpinner

- runBotton:Button

- statusJLabel: JLabel

- totalTimeJLabel: JLabel

- tourTimeJLabel: JLabel

- tourLengthJLabel:JLabel

- WINDOW_HEIGHT:int = 800
- WINDOW WIDTH int = 1000
- wSpinner: JSpinner

- scale:double = 0.0

- smallestXint
- smallestY:int
- tour:LinkedList<Node>
- xCoords:int[)
- yCoords:int[)

+ TSPCanvas()

+ TSPCanvas(LinkedList<Node>)
+ TSPCanvas(TwohOpt)

+ TSPCanvas(TwoOpt)

- adjustToCoordinates (): void

- adjusttoScale(): void

+ paint(Graphics):woid

- scaleTour():void

+ GUI

+ actionPerformed(ActionEvent):woid

- addSpinner(Container, String, SpinnerModel). JSpinner
- display GUI(): woid

- distance(double, double, double, double):int
+ getAlfa().double

+ getBeta().double

+ getKsi():double

+ getOutputPath() string

+ getQO():double

+ getRho():double

+ getW():int

+ main(string[]):void

+ makeOQutput():boolean

- runProgram(): void

Figure 5.3: UML diagram of the new version; the Main package

32

The 10 package

The program accesses the external tsp files via the InputFile class in the 10 package. This class
takes the path and filename of a file, takes the data found in the file and converts it into Node
objects and puts them into an ArrayList which can be retrieved using the getNode method.

The tsp.optimization package

Any optimization of a tour is done in the tsp.optimization package, where the classes TwoOpt
and TwohOpt resides. These perform a 2-opt and 2,5-opt optimization on a given tour,
respectively. For more details on how the optimizations are performed, please refer to chapter 4
on page 15. For the twoOpt our method ended up looking like the pseudo code 5.4. As it can be
seen, the algorithm is not as efficient as it can be, as we are handling a lot of lists - lists that we
could have avoided had we had the skills and time to implement a more effective algorithm. The
swap for the 2,5-opt on the other hand was very simple, as we were using a LinkedList to hold
the tour:

33

<<interface>>
java.lang.Comparable

A
:
II
|
I
|
/p’L"(s,_otimization Node !
TwoOpt Neighbor
i+ bestLength_:doub_Ie g ‘ : $ distarice-double
+ ?or:!je(tjour.L|nkedl|st<Node>— newLinkedList<Node>() + toNode:Node
-11:Node
i :2-Node + neighbor(Node, double)
! :3:Node + compareTo(neighbor):int
- t4:Node + toString(): String
-temp1:LinkedList<Node>= new LinkedList<Node>()
- temp2:LinkedList<Node>= new LinkedList<Node>() Node
+ TwoOp(LinkedList<Node>, double) + neighbors:priority Queue<Neighbor>= new Priority Queue<Neighbor>()
- pred(Node):Node : “f’:e'gli'”‘
+ printTour(LinkedList<Node>): String 4 Xj dguble
- reverseTour(LinkedList<Node>): Linkedlist<Node> AL L
- suc(Node):Node + Node(int, double, double)
- swap():wid + distance(Node):int
- twoOpt():woid + setNeighbors(LinkedList<Node>):wid
+ toString():String
twohOpt
+ bestLength:double
+ nodeTour:LinkedList<Node>= new LinkedList<Node>(
-11:Node
-t3:Node 10
+ TwohOpl(L'inkedList<Node>, double) InputFile
;pngmglgg:zalir:l?edgLis!(No de>):String - nodelList:ArrayList<Node>= new ArrayList<Node>()
- suc(Node):Node + InputFile(String)
- swap():woid + getNode():ArrayList<Node>
- twohQOpt(): wid

Figure 5.4: UML diagram of the new version; the Node, 10 and tsp.optimization
packages.

34

Code 5.4: Our swap method for the 2-opt

1 ArrayList templ , temp2 ;
2 node=T2

3.doy

4 insert node into templ
5 node = node . next

6}

7 whil e (node !=T4}

8 insert T4 into temp|

9 node=T3

10 do {

11 insert node into temp2
12 node =node . next

13 }

14 while (node!=TI)

15 empty the tour list

16 insert temp2 and reversed temp1 into the tour list

Having the add and remove methods already built in the LinkedList object, we are saved from a
lot of work of changing the properties of T3’s neighboring nodes.

Code 5.5: Our swap method for the 2,5-opt.

1 remove 13 from the tour
2 addittotheindex after Tl

The Main package

The Main package contains the GUI, TSPCanvas and TSPFileFilter classes, which exist to make
it easy for the user to control the program, as he in a user interface can find the TSP instance file
he wants to use, define the parameters p, o, £, & Q0 and W, choose the number of ants and
iterations, choose what kind of optimization he wants to have done on the tour (if any), and lastly
get a graphical representation of the tour when it has been found together with its length.

The GUI is the main classs containing means for managing the values of the parameters. The
GUI extends JFrame which utilizes action listeners for tracing user interactions with the GUIL
The inner class InputVerifier makes sure that the user only enters valid integers when choosing
the number of ants and iterations. The TSPFileFilter class makes the file chooser (which is used
when looking for a tsp file) only show folders and tsp files. The TSPCanvas is our customized
version of Canvas; it takes a tour, twoOpt or twohOpt object, and draws the optimal tour on the
canvas, scaling it so that it fits in the canvas, whithout getting stretched.

35

Chapter 6

Results and Conclusion

We took Chirico’s original program and changed it so it supports node objects instead of
integers, and we applied a few changes in the structure based on Dorigo’s implementation of the
TSP. Unfortunately we did not have time for testing different combinations of the program’s
parameters, trying to find a golden combination that would give us a better result than other
combinations, and instead we decided to go with values recommended by Dorigo.

We added a GUI which gave the user an easy-to-use interface, where he or she could find and
choose what instance he wanted to test, and change the parameters. We also added a graphical
view of the tour, giving the user the opportunity to see how a tour looked when it had been
created.

Output using different set of inputs.

No. of cities No. of Ants Iteration Best tour length

20 10 50 2.5118568295153025
30 10 50 1.5501922784261288
50 10 50 2.130735899811355

Randomly generated graph for input set 1.

-
DR &1 A &

1.0,0.3485336321335565 0.3665831374116423 0.42745763725148423 0.2520506753668965,0.570644377 2646639 ,0.8541315535038251 0.96005167 30601832
0.3485336321335585 0.0,0.4157 1853007597037 0.92098868377 18181 0.7309224979794647 [0.58727 48794694559 0.322450459344 1583 0.3015897 199652193
0.3855831374116423 0.4157 1853007597037 0.0 0.5613054499856636 0.42324426543098326,0.91 10533464884624 [0.42529481546915515 0.47607789077735¢
| 0.42745783725148423 0.92098665377 16161 0.5613054499856636,0.0,0.24841734675129246 0.8917830429492565 0.362691 23353644126 ,0.47735143393089(
1‘ 0.2620506753868985 0.7309224979794647 0.42324426543098326 0.24841734675129246,0.0 0.1670456490634804 0.21 60955610162082,0.459475397761617,
-i 0.5706443772646639 0.567 27 48794694559 0.9110533464884624 0.8917830429492665 0. 1670456490634804 0.0 0.5660346885463247 0.26083516145772844
0.5541315535038251 0.3224504893441593,0.42529481546915515,0.36289123353644126 0.2160955610162082,0.5660348885463247 0.0,0.979913307 267532
| 0,9680515738501832,0.3015897199552193.0.4750??8907?73592.0.4??35143393099044,9,45‘34?5397751517?,5‘26083518145??2844.0.97991330725?5329‘01
| D.9055911467622691 0.48319358358577036,0.8201959522677359,0.41912084742254174 D. 22756361 260912972 [0.25148663593394416,0.4122527656986805,
(0.4553297995653969 0.6161372682915007 0.67 1702387081471 ,0.4680518959297778 01294327 2646724058 (0.30595826816177474 0.467042266007 4542 0.1
0.311079218005363,0.3102647386302723 0.09920567014359739 0.7750761426815396 0. 2232376815639131 [0.06307 114796950597 0.6603879419062019 0.4
0.14918493673770084 0.7082673045853614 0.35706455623434926 0.8533973479963673,0.6114132785987349 0.9941439516454758,0.17348996146166417 0
0.9575233670507385 0.6032049487695461 0.34612561798337626,0.323694234730277 14 0.351230878975335,0.061293759095751 410.41451097014713423 0
0.7277565209840965 0.16811583912012364 0.2035615277263062 0.7 27 1868029767777 0.63257 52866699905 0.24719323809673277 0.9784465510696222 0.
0 EA27700596632927 0.2914957273577514 0.637694497 7360904 ,0,8393031946897013 0.856880832925376 0.15596460507110788,0.7012704384824745 ,0.54.
0.05556278327 143805 0.457909125851929 0.9420166463502655,0.4562266580910613,0.894794531901491 0.1 5622499831035952,0.540/ 329248951462 0,56
0.6879074280180809 0. 6647658625085008 0. 1833487 4547267332,0.8281280552977732 0.460124364676855 0.704562861 7696683 ,0.7104637565738803 0.63.
| 0.6215685022654738,0.059823563365115184 0.747381 7985972663 0.9567655737 323295 0.3956816558265587 0.033730054866103476 0.9482871537700942,0
| 0.4829491713387859 0 8552368041643295 0.8420265025660324 0.22237498774303543,0.8196702032956939 [0.0377393674814781 0.36163446174079494 0..
0.5233609422242439 0 £619022160913167 065859942947 38365 D.307 16724193320366,0.54455193666357 24 0.236479605022488 0.68257595165690567 0. 32

36

T -

Randomly generated graph for input set 2.

DR 8l & B B

0.0,0.8357104349338126,0.847 2410567752284 0.5293092441714258,0.4864337 446267295 0.1 3685478231087 245 0. 4150264687981716,0.0663691 1422629
0.8357104349338128 0.0 0.43532513471639434 0.4634959368621604 0.13379799208186112 0.3769648077113641 0. 5664A65354468336,0.5067647 231051
08472410567 752284 0.43532513471639434 0.0,0.22652069567 264066 0.9210504079927145 0. 543385564971395 0.555135 4454665268 0.12307 262441577
0.6293092441714258 0.4634959365621604 0.22652089587284086 0.0 0.35043413815169167 0.9473419853487218 01891603297 2629968 0. 86359107354 1
0.4864337 446257295,0.13379799268186112,0.9210504079927145,0.35043413615169167 0.0,0.6325344391 416034 0.05172162410183279 0. 38201 1648843
0.136854762310687245 0.3769546077113641,0.54338556497 1395 0.947 3419853467218 0.6326344391416034 0.0 0.7769332681016967 0.730696767 440853
0.4150264667951716,0.5664565354468336,0.5551354454665268 0.18916032972629968 0.05172182410183279 0.7769332681016987 0.0 0.37 25020255314
0.065308911422629567 0.5067647231061494 0.12367262441577662 .66959107 36414633 ,0.38201 16488439239 0.739696767 4408536 0.37 25020255314670
0.28563632298461195 0.1923526070221977 0.4221430666456677 0.9850277764989505,0.4353421944330059 0.327919175257 25156 0.96631477 11841475
0.4615533180187932,0.030917 437531474136 0.5431815646629236 0.2214185946241679 0.4670987 158692542 0.652097 2262923892 0.1014437915785503
0.48645849125024365 0.6542066795608607 0.859150987749956 0.211197957624277860.735520007 0756656 0.06325015823765407 0.9625241935930843
0.6739837004880275,0.642076474322282 0.406354571797 3329 0.6407778778766942 0. 42841953447 316206 0.9496506427907395 0.11062661629262233 (
0.8647374143113485,0.9528691024055767 0.47566287635222715 0.40606003632121 0.29250039066252265,0.011179181581827957 0 240259427937 143
0.22734145830943343 0. 22756196464055542 0.63639977 47623061 0.32575176960951906,0.95209377 35111667 0728671787 2773065 0. 90391 2286286522
0.24626110559743743,0.18418453766349774 0.023536460179862646 0.6766086124552964 0.567 1068580782126 0.0023A6404A35267404 0115768915646
0.05467271866785929 0. 9476345013136756,0.08899422443451721 0.7778108437677486,0.16369263176499904 0.77 316787 33741292 0. 9455025509 16343
0.6497642436269374 0.33616191625953096 0.4456753677790971 0.8158729864433454 0. 47595867 10382717 1. 6630142468333412 0.7232238R95 188067 [
0.4520124224218096,0.07 2209257 44552342 0.8991833054966976 0.7654537 23066206 0.011351265278264993 0. 16999933152089242 0.9334200887 53622
0.6345114658621437 0.45970787 762668406 ,0.03836203847 321673 0.581762020544071 0.753369943965945 0.3456365540369958 0.091797 11440305938 (
0.6983361451022521 0.21828013069656377 0.3744630756969356 0. 108157129087 35087 0.594323044327 3677 0.09637794468461214,0.97 4393104087216
0.3839959323497 4605,0.93631113176834482 0.569637 3210266934 0.4458398447 2263955 0.5291031536040993 0.9160626493526445 0.7511205531467031
0.5511060977769067 0.40970487 45213019 0.3458581 23804893315 0.9192950168630056,0.21563361123175418 0.23237 265810831746 0. 54723117 21703348
0.3420169293867965,0.01189957657 4637774 0.554305766641023 0.3376327228923621 0,683366643007 3033 0.58934857 76670965 0. 131356826344 18977
0.274353852607244 D.005386163575306641,0.36635905517 143674 0.5336164364442363 0,6336216636055142 0.4707 260427657709 0.481107 4524190644
0.6525541915514893 [1.6255763763263654 0.04506564976352179 0.61565163017362293 0.719675079042071 0.3155075665659919 0.77 38205377 369525 0.
- 0.8897172510063065 0.9024427825206225,0.937 485047 4565599 0.36579438566565034 0. 248473192007 36526 0.4370461342797082,0.4193383317 112304
. 0.06673023851773319,0.1949277 263859171 ,0.5784570468551575,0.96667 36113910964 0.8417605197 499158 0.38789009661 648677 0.2324768975863542
| 06339561589592194 0.14663440445395626,0.07 2857 4444605058 0.16658243459476104 0.8637006168396125,0.9848116580659522 0.7251895909659527
0.50920642260207510.5033665460430186,0.94513968041126011,0.191527 43751344337 0.7405173250168614 0.00185657 50269468437 0.31221695825596
(.34768651625193453 0.83766266626434 0.9875366384941017 0.504254567 3052146 0. 1696843227 2677427 0. 2457059357 960372 0.991 4592206051386 0.

37

Randomly generated graph for input set 3.

DEHER A B &

010,0.07690233783448031 0.7696312947525304,0.791114052977 1863 0.04370896697 22656694, 0.04788667661062474 (107963541 40146673, 0.57597 27806047165, 0 818026043
(01076002337834460131 (10,0.1793364063761651 0. 185547 10451456302, 0437467497 240867) 7145781321265343 D A631258975657685 . 65435766.46316613 0.77 3002452271
(0.7696312947625304 0.1793364063761651 0.0,0. 3444563406271733 0.7 333851 2830236813 (1. 85226621997 7616 0. 486215915367 19044 [.7165 20 246.3388934 D 6630016243271
0791114052977 1883 0 18864710451 456302,0. 344456940527 17335,0.00. 184340036147 24856, 0.09241 15091 1530893 0. 53738 14881452335 0. 9403628331 316188 0. 4106491300
004370696697 2266604 0. 4537 474G 2406857 0.7 333651 289023613,0.18434093615724855,0.0,0.35305292927052995, 0. 526599935499603,0.659219 144326365 0 8570530064,
01.04788667651062474 0.7145781321 285343 0. 852268219977618,0.09241 15091 1530893 0. 35306292927 052996,01.0,0 92757896591 0961 ,0.2865401893101309 0. 405423088306
0.0795354140145673,0.6630258575667695,0.486215915367 19044 0 5373148814523, 0. 526599936499803 0.92767896591 0961 01.0,0.1323100650327078 0.016.20616479855-
(15750727806047165 0 6543676646616613,01.7165202463386934 09403626331 316198, 0.8592181 44326365 0. 2865401693101309,0.13231 00650327078, 0.0,0. 6967 280068637
0.81602604305047 0.7 3002452270540, 0.6630916243276372,0.410649130010973 0.53670536805445.238 0 AD5423965396094 . 016208184798564784 [8367 280068683735,
0473637277 1640839 0.6870592539227 149 0.1731927 4558364214 0.7 330401 376297463 0. 50898538594 26299 0. 004596058571310341 0 470167 2321576733 0 5123097 493610¢
0.8997960910465322,0.627 4366270330617 [8699365497534429 0. 226465685221 36754 0.09836.282377851 295 . 51616556897.32468 0. 79536769541 44844,0. 31651648881 197:
019701647 390487089, 0.77409865012657666,0.37798 15667 250652, 0649685 5009349052,0.191 2340082340436 0 452537 16947841550 15758992743549427 0 5333629995 1 6032
0.5190473499307926 0 961835621 2937024 0.9967122083398205,0.33833652069477427 D 234831 3549860449 0.1 4902870335203965 0.4890894 231 3645654 0. 2982061091045¢
(1619096363307 226 . 76B5461902302424 0.9690966522237941 07717457 345987096, 0,496 1067800608225 0. 2704765882466763 0. 22277593682422003 [6295 2865 2953516
(141812766855565024 0.4380131127244485,0.753570667 264431 0.36006541209231 434 0. 2608249984342101 .739278413455799 0,857 3449245500617 0.175221 3339366101
0.8940295625807041 0. 9159579239646256,01.7320006898454569,0.1301122349441934 0.9508959077143143 0. 22464541160725137 0.6336016823198241 0.3031 21624064945,
0 8748641626873347 0. 714178171447304 0. 29620649296547 426 0.004767695524147454 0.8764874123142459 0. 03382320450404952 0,021 03365540991 292 0.8192495.3556¢
0 81879%6901009814 0.0381793760999276536,0.553655R590051395,0.5679236090300177 0.4951666133122862 0 3440320324301267) 53338623061 14011 0 45109049056092;
079932867 76325013 0 290930096334822,0.S066679341265526 0.0172222951 39413424 0.19401 04840252348, 0 41 053240671757 16,0.090807 40837004997 0.1 14856515427 23,
(1 2634599641365463 0 43296012379226555,0.9415040184356925. . 645131 129862785, 0. 24305184552200764 0 426905605650 156565,0.4319141 176814213 (1. 0822669799056 3¢
(0.4364447771510782 0 7533027061763101,0.7670674461342753 0.3447860925685348 0. 49036 5050356941 0.903 1843688716907 0. 43946929683629745 0,87 308647 13209738,
019841932091465936,0.6574763229656264 0. 56207 75229666366) A048516881762017 (1. 75769242857 17580 1) 2697 41247075325 0. 983216927 37012366, 0. 193697098936 12154
0.32103956551836097 (1 3532364583220049,0.357 269021 32417486, 0. 46631697096847 247 .64127 327685640908 . 23067 266693020044 0. 2090442616267 716,0.2301 28355668
(656637 1640120027) 5980632326199261 0.0427634B06524525,0.749746.37 16980506, 0.7861054762119211 0.29661301752108393 0. 16656787 364212338, 0. 137 2682687960
0.36024639601533727 1. 33323203705906869,0.31540893510332246,0.1037563221 2563252 0.47416271 39869811 0. 407 2425368497471 0.09017658395504619 0. 2406612967 34¢

(1. 26431926364527945.01.3002165779033214 0.9133972049909374,0.4597333305625274 0. 203997 32257 264724 0. 853712618474996 0.606B34 1968742045, 0. 2933163229364+

38

|

UORRTRANCG

3%

254j1 0 pavund S}{nsa) BIRIDALLIEIAL R

Appendices A
Screenshots

3047 Jo sai

safeidwon [T
speopusmog [

[pAUS) WEGS

J8pj04 3DURUIN o0k

wBokog]

input

File

40

- 4

B Contents on the CD

We have enclosed a CD containing a few things we felt would be convenient for the reader to
have access to.

The root consists of four folders; Report, JavaDoc, Code and TSPFiles.

The Report folder contains the report in a PDF file format.

The JavaDoc folder provides the Java documentation written in our application’s code.

The folder TSPFiles contains the tsp files of the type Eucledian 2D which we have used for
benchmarking.

41

T M

C Sample Codes
C.1 AntColonyForTSP.java

import java.util.*;
import Node.Node;
public class AntColonyForTSP extends AntColonyFramework

{

protected static final double RHO=Main.GUI.getRho();

protected static final int W= Main.GUI.getW();

int[] bestPath= new int[m_graph.nodes()];

public AntColonyForTSP(AntGraphFramework graph, int ants, int iterations)
{

super(graph, ants, iterations);

}

public AntFramework|] createAnts(AntGraphFramework graph, int nAnts)

{

AntForTSP.reset();

AntForTSP.setAntColony(this);

AntForTSP ant[]= new AntForTSP[nAnts];

for(int i=0;i<nAnts;i++)

ant[i]= new AntForTSP((i%graph.nodes()),this); |
return ant;

}
public void globalUpdatingRule() |

{

double dEvaporation;

double dDeposition;

bestPath=AntForTSP.getBestPath();

for(int r=0;r<m_graph.nodes();r++)

{

for(int s=r+1; s<m_graph.nodes(); s++){

double deltaTau=(W/AntForTSP.s_dBestPathLength);
dEvaporation=((double)1-RHO)*m_graph.tau(bestPath[r], bestPath([s]);
dDeposition=RHO*deltaTau;

m_graph.updateTau(bestPath[r], bestPath[s], dEvaporation + dDeposition),
m_graph.updateTau(bestPath[s], bestPath[r], dEvaporation + dDeposition);

}

St

42

public LinkedList<Node> getBestTourNodes()
{

return nodesTour(AntFramework.s bestTour);

;

public ArrayList<Integer> getBestTour()
{

return tour(AntFramework.s_bestTour);

}
public LinkedList<Node> nodesTour(ArrayList<Integer>tour)

{

LinkedList<Node> myTour= new LinkedList<Node>();
for(Integer i: tour)

{

for(Node n: m_graph.getNodeList())

{

if(n.nodelD+1==1)

myTour.add(new Node(n.nodelD+1,n.x,n.y));

\
S

h

return myTour;

} y
public static ArrayList<Integer> tour(ArrayList<Integer>tour)
{

for(int i=0;i<tour.size();i++)

{

tour.set(itour.get(i)+1);

H

return tour;

)

1
J

43

Y ™

C.2 AntColonyFramework.java

import java.util.*;

import java.io.*;

public abstract class AntColonyFramework implements Observer
{

private PrintStream m_outs;

protected final AntGraphFramework m_graph;

protected AntFramework[| m_ants;

protected final int m_nAnts;

protected int m_nAntCounter;

protected int m_nlterCounter;

protected final int m_nlterations;

private final int m_nID,;

private static int s_nIDCounter=0;

public AntColonyFramework(AntGraphFramework graph,int nAnts, int Iterations)
{

m_graph = graph;

m_nAnts = nAnts;

m_nlterations = nlterations;

s_nIDCounter++;

m_nlID =s_nlDCounter ;

1
J

public synchronized void start()

{

m_ants= createAnts(m_graph, m nAnts);

m_nlterCounter=0;

if(Main.GUL.makeOutput())

{

try

{

m_outs=new PrintStream(new FileOutputStream(Main.GUI.getOutputPath() + m nID +" " +
m_graph.nodes() + "x" +m_ants.length + "x" + m_nlterations + " colony.txt"));
}

catch(Exception ¢)

{

e.printStackTrace();

}

}

while(m_nlterCounter<m_nlterations)

44

{
if(m_nlterCounter%5==0)

System.out.println("iteration:" +(m_nlterCounter +1));
iteration();

try

{

wait();

}

catch(InterruptedException ex)

{
it

ex.printStack Trace();

!
i

synchronized(m_graph)

{

globalUpdatingRule();

h

¥
if(Main.GUIL.makeOutput())

{

if(m_nlterCounter==m_ nlterations)

{

m_outs.close();

}

}

¥

public void iteration()
{

m_nAntCounter=0;
m_nlterCounter++;
for(AntFramework ant:m_ants)
ant.createThread();

1
public AntGraphFramework getGraph()

{
return m_graph;

7}
J

public int getAnts()
{

return m_ants.length;

1
J

45

public int getlterations()

i
§

return m_nlterations;

h

public int getlterationCounter()
5

return m_nlterCounter;

;

public int getID()

{

return m_nlD;

h
public int GetAntID()

{

return m_nAntCounter;

}

public synchronized void update(Observable ant, Object obj)
{

m_nAntCounter++;

if(m nAntCounter==m_ants.length)

{

if(Main.GUI.makeOutput())

m_outs.printIn(";"+ AntFramework.s dBestPathLength);
notify();

}

}

public double getBestPathLength()

{

return AntFramework.s dBestPathLength;

i
public int getLastBestPathlteration()

{

return AntFramework.s nLastBestPathlteration;

1
S

public final boolean done()

{

return m_nlterCounter==m_nlterations;

}

protected abstract AntFramework|] createAnts(AntGraphFramework graph, int ants);
protected abstract void globalUpdatingRule();}

46

C.3 GULjava

import java.util.*;

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.border.*;

public class GUI extends JFrame implements ActionListner

{

private static AntColonyForTSP antColony;

public static TSPCanvas canvas=new TSPCanvas();

public static JTextField filePath, outputPath, nuOfAnts, nuOflterations, result;
private Button rnButton, defaultButton, clearButton, locateTspFileButton;
private Button locateOutputFolderButton;

private static JCheckBox giveOutput;

private static JCheckBox doTwoOpt,doTwoHOpt,doOpt;

private JPanel canvasJPanel;

private static JSpinner alfaSpinner, betaSpinner, wSpinner, q0Spinner;
private static JSpinner ksiSpinner, rhoSpinner;

private static JLabel statusJLabel, tourLengthJLabel, total TimeJLabel;
private static final String ALFA="\u03B1";

private static final String BETA="\u03B2";

private static final String RHO= "\03C1";

private static final String KSI= "\u03BE";

private static final int WINDOW_WIDTH=1000;

private static final int WINDOW_HEIGHT=800;

public static final int CANVAS_WIDTH= WINDOW_WIDTH/2-40;
public static final int CANVAS_HEIGHT=WINDOW HEIGHT-200;
public GUI()

{

displayGUI ();

H
public void displayGUI ()

{

JPanel parameterJPanel, buttonJPanel, numberJPanel, optimizationJPanel;
JPanel fileJPanel, extralPanel, statusJPanel, visuallPanel, datalPanel;
JPanel innerPJPanel;

SpinnerModel alfaSpinnerModel, betaSpinnerModel, wSpinnerModel;
SpinnerModel rhoSpinnerModel, ksiSpinnerModel, q0SpinnerModel,;

47

JTextArea resultArea;

IScrollPane scrollPane;

setSize(new Dimension (WINDOW_ WIDTH, WINDOW HEIGHT));
setTitle("TSP output ");

setDefaultCloseOperation(EXIT ON_CLOSE);

setLayout(new GridLayout(1, 2));

visualJPanel= new JPanel();

visualJPanel.setLayout(new BorderLayout());

canvasJPanel=new JPanel(new BorderLayout());

canvasJPanel setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
canvaslPanel.add(new Label (" Visual repre sentat ion of the TSP", Label .CENTER) ,"North");
dataJPanel=new JPanel();

datalJPanel.setLayout(new GridLayout(2,1));
datalJPanel.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
tourL.engthJLabel=new JLabel();

result= new JTextField(40);

resultArea=new JTextArea(1,40);

resultArea.setEditable(false);

result.setEditable(false);

scrollPane=new JScrollPane();
scrollPane.setVerticalScrollBarPolicy(ScrollPaneConstants. VERTICAL SCROLLBAR NEVER);
scrollPane.setHorizontalScrollBarPolicy(ScrollPaneConstants

.HORIZONTAL SCROLLBAR ALWAYS);
scrollPane.setColumnHeaderView(result);

datalJPanel.add(tourLengthJLabel);

dataJPanel.add(scrollPane);

visuallPanel.add(canvas]Panel);

visuallPanel.add(datalPanel,"South");

parameterJPanel=new JPanel(new BorderLayout());
parameter)Panel.setBorder(BorderFactory.createBevelBorder(BevelBorder.RAISED));
innerPJPanel=new JPanel(new GridLayout(3,1));

parameterJPanel.add(new Label("Parameters ",Label. CENTER),"North");
buttonJPanel=new JPanel(new FlowLayout());
buttonJPanel.setBorder(BorderFactory.createEtchedBorder());

runButton=new Button("RUN");

clearButton=new Button("Clear settings");

defaultButton= new Button("Use default values");
runButton.addActionListener(this);

clearButton.addActionListener(this);

defaultButton.addActionListener(this);

48

buttonJPanel.add(runButton);

buttonJPanel.add(clearButton);

buttonJPanel.add(defaultButton);

numberJPanel= new JPanel(new GridLayout(9,2));
alfaSpinnerModel = new SpinnerNumberModel(0.1, 0.0,1.0,0.01);
betaSpinnerModel = new SpinnerNumberModel(2.0,1.0,10.0,0.1);
wSpinnerModel = new SpinnerNumberModel(1,1,100,1);
qOSpinnerModel = new SpinnerNumberModel(0.8,0.0, 1 .0,0.01);
rhoSpinnerModel = new SpinnerNumberModel(0.1,0.0,1 .0,0.01);
ksiSpinnerModel = new SpinnerNumberModel(0.1,0.0,1.0,0.01);
nuOfAnts= new JTextField(20);

nuOflterations = new JTextField(20);

nuOfAnts.setSize(100,10);

nuOflterations.setSize(100,10);

alfaSpinner = addSpinner(numberJPanel, ALFA, alfaSpinnerModel);
betaSpinner = addSpinner(numberJPanel, BETA betaSpinnerModel);
wSpinner = addSpinner(numberJPanel, "W" ,wSpinnerModel);
qO0Spinner = addSpinner(numberJPanel, "Q0" ,q0SpinnerModel);
rhoSpinner = addSpinner(numberJPanel, RHO, rhoSpinnerModel);
ksiSpinner = addSpinner(numberJPanel, KSI, ksiSpinnerModel);
numberJPanel.add(new Label("Number of ants"));
numberJPanel.add(nuOfAnts);

numberJPanel.add(new Label ("Number of iterations"));
numberJPanel.add(nuOflterations);
numberJPanel.setBorder(BorderFactory.createTitledBorder("Numbers"));
class intVerifier extends InputVerifier

{

public final boolean verify (JComponent comp)

{

boolean returnValue= false;

JTextField textField = (JTextField)comp;
try

{
if{Integer.parselnt(textField.getText())>0)
returnValue = true;

clse
Toolkit.getDefaultToolkit().beep();
}

catch (NumberFormatException ¢)

| |

49

; Toolkit.getDefaultToolkit().beep();
E

‘ return returnValue ;

| }

H

nuOfAnts.setinputVerifier(new intVerifier());

‘ nuOflterations.setlnputVerifier (new intVerifier());

fileJPanel= new JPanel(new FlowLayout());
fileJPanel.setBorder(BorderFactory.createTitledBorder("File settings"));
locateTspFileButton = new Button("Locate TSP file");

locateTspFileButton.add ActionListener(this);

filePath = new JTextField(40);

fileJPanel.add(locateTspFileButton);

fileJPanel.add(filePath);

giveOutput= new JCheckBox("Do you want intermediate results printed to files?" ,false);
locateOutputFolderButton =new Button("Find output folder");
locateOutputFolderButton.setEnabled(false);

outputPath = new JTextField(40);

outputPath.setEnabled(false);

giveOutput.addActionListener(this);

locateOutputFolderButton.addActionListener(this);

fileJPanel.add(giveOutput);

; fileJPanel.add(locateOutputFolderButton);

i fileJPanel.add(outputPath);
|

optimizationJPanel = new JPanel(new GridLayout(2 , 2));
optimizationJPanel.setBorder(BorderFactory.createTitledBorder("Optimization"));
doOpt= new JCheckBox("Use local search optimization",true);
doTwoOpt= new JCheckBox("Use 2-opt ",true);

doTwoHOpt= new JCheckBox("Use 2 -opt ",true);

a doOpt.addActionListener(this);

| optimizationJPanel.add(doOpt);

optimizationJPanel.add(new JLabel());
optimizationJPanel.add(doTwoOpt);
optimizationJPanel.add(doTwoHOpt);

statusJPanel=new JPanecl(new GridLayout(2;1));
statusJPanel.setBorder(BorderFactory.createTitledBorder("Status"));
statusJLabel= new JLabel("",SwingConstants. CENTER);
statusJLabel.setVisible(true);

totalTimeJLabel= new JLabel("",SwingConstants. CENTER);

| 50

total TimeJLabel.setVisible(true);

statusJPanel.add(statusJLabel);

statusJPanel.add(total TimeJLabel);

extraJPanel= new JPanel(new GridLayout(2,1));

extral]Panel.add(optimizationJPanel);

extralPanel.add(statusJPanel);

innerPJPanel.add(numberJPanel);

innerPJPanel.add(fileJPanel);

innerPJPanel.add(extralPanel);

parameterJPanel.add(buttonJPanel,"South");

parameter]JPanel.add(innerPJPanel);

this.add(parameter]Panel);

this.add(visualJPanel);

this.setVisible(true);

canvas.repaint();

) \
public void actionPerformed(ActionEvent e)
{ {
JFileChooser fc;

String missingParameters;

double startTime, endTime, totalTime;
if(e.getSource()==doOpt)

{

if(doOpt.isSelected())

{

doTwoOpt.setEnabled(true);
doTwoHOpt.setEnabled(true);

1
J

else

{

doTwoOpt.setEnabled(false);
doTwoHOpt.setEnabled(false);

}
}

else
if{e.getSource()==giveOutput)
{

if(giveOutput.isSelected())

f
1

locateOutputFolderButton.setEnabled(true);

51

outputPath.setEnabled(true);

}

else

{
locateOutputFolderButton.setEnabled(false);
outputPath.setEnabled(false);

h
h

else

if(e.getSource()==runButton)

{

missingParameters="";
if(nuOfAnts.getText().equals("")||nuOfIterations.getText().equals("")||filePath.get Text().equals("")]|(
giveOutput.isSelected()&&outputPath.getText().equals(""))||(doOpt.isSelected ()& &(!doTwoOpt.isS
elected()&&!doTwoHOpt.isSelected())))

(.)
if(nuOfAnts.getText().equals("")) .
missingParameters += "Number of ants\n"; {
if(nuOflterations.getText().equals(""))

missingParameters +="Number of iterations \n";

if(filePath.getText().equals(""))

missingParameters +="The tsp file \n";

if(giveOutput.isSelected() && outputPath.getText().equals(""))

missingParameters +="The path where you want your preliminary output\n";

if(doOpt.isSelected()& &(!doTwoOpt.isSelected()||!doTwoHOpt.isSelected()))

missingParameters +="The type of local search optimization\n";

JOptionPane.showMessageDialog(this, "Please fill out all the parameters.\n\nYou are missing the
following:\n" +missingParameters," Warning", JOptionPane .WARNING MESSAGE);

}

else

{

int n=JOptionPane.YES OPTION;
if(giveOutput.isSelected())

f
1

n=JOptionPane.showConfirmDialog(this," It will take an extended amount of time\nto print the
results to files\n\nDo you want to continue ?","Warning",JOptionPanc.YES_NO_OPTION,
JOptionPane. WARNING MESSAGE);

}
if(n==JOptionPane.YES_OPTION)

{

52

statusJLabel.setText("Working . . . ")
totalTimeJLabel.setText("");
startTime=System.currentTimeMillis();

runProgram();

endTime=System.current TimeMillis();

total Time=end Time-start Time;

statusJLabel.setText("Done!");

statusJLabel.repaint();

totalTimeJLabel.setText("It took"+total Time/1000+" seconds to compute the result");
totalTimeJLabel.repaint();

canvasJPanel.add(canvas,"Center");

canvas.repaint();

}

}

}
else
if(e.getSource()==clearButton)
{
nuOfAnts.setText(" "); ,
nuOflterations.setText(" ");

filePath.setText(" ");

outputPath.setText(" ");

giveOutput.setSelected(false);

locateOutputFolderButton.setEnabled(false);

outputPath.setEnabled(false);

alfaSpinner.setValue(0);

betaSpinner.setValue(1);

wSpinner.setValue(1);

qOSpinner.setValue(0);

rhoSpinner.setValue(0);

doOpt.setSelected(false);

doTwoOpt.setSelected(false);

doTwoHOpt.setSelected(false);

doTwoOpt.setEnabled(false);

doTwoHOpt.setEnabled(false);

H

else

if(e.getSource()==defaultButton)

{
nuOfAnts.setText("51");

b

53

nuOflterations.setText("100");

outputPath.setText(" ");

giveOutput.setSelected(false);

locateOutputFolderButton.setEnabled(false);

outputPath.setEnabled(false);

alfaSpinner.setValue(0.1);

betaSpinner.setValue(2);

wSpinner.setValue(1);

qOSpinner.setValue(0.8);

rhoSpinner.setValue(0.1);

doOpt.setSelected(true);

doTwoOpt.setSelected(true);

doTwoHOpt.setSelected(true);

doTwoOpt.setEnabled(true);

doTwoHOpt.setEnabled(true);

! n.
else
if(e.getSource()==locateTspFileButton)
{ |
fc=new JFileChooser();

TSPFileFilter filter= new TSPFileFilter();

fc.setFileFilter(filter);

int returnValue= fc.showOpenDialog(this);

if(returnValue== JFileChooser. APPROVE_OPTION)

{

File file=fc.getSelectedFile();

filePath.setText(file.getAbsoluteFile().toString());

}
}

else

if(e.getSource()==locateOutputFolderButton)

{

fc=new JFileChooser();

fe.setFileSelectionMode(JFileChooser. DIRECTORIES ONLY);
int returnValue=fc.showOpenDialog(this);

if(returnValue== JFileChooser. APPROVE_OPTION)

{

File file=fc.getSelectedFile();
outputPath.setText(file.getAbsoluteFile().toString());

1
s

54

}

}

public ISpinner addSpinner(Container ¢, String label , SpinnerModel model)
{

JLabel | = new JLabel(label);

c.add(l);

JSpinner spinner=new JSpinner(model);
((JSpinner.DefaultEditor)spinner.getEditor()).get TextField().setColumns(10):
l.setLabelFor(spinner);

c.add(spinner);

return spinner;

H

private void runProgram()

{

int nNodes, nAnts, nlterations:

ArrayList<Node> nodes;

TwoOpt twoOpt;

TwohOpt twohOpt; 5
try {
{

new InputFile(filePath.getText());

}

catch(Exception ¢)

{

System.out.printIn("File error:"+e);

}

nodes=InputFile.getNode();
nNodes=InputFile.getNode().size();
nAnts=Integer.parselnt(nuOfAnts.getText());
nlterations=Integer.parselnt(nuOflterations.get Text());
double delta[][]= new double[nNodes][nNodes];
for(int i=0;i<nNodes;i++)

{

for(int j=i+1; j<nNodes; j++)

{

double ix; iy, jx, jy;

ix= nodes.get(i).x;

iy=nodes.get(i).y;

Jx=nodes.get(j).x;

Jy=nodes.get(j).y;

55

delta[j][i]=delta[i][j]=distance(ix,iy.jX,jy);

}

}

AntGraphFramework graph=new AntGraphFramework(nodes, delta);
try

{

if(makeOutput())

{

ObjectOutputStream outs=new ObjectOutputStream(new
FileOutputStream(getOutputPath()+nNodes+" antgraph.bin"));

outs.writeObject(graph.toString());

outs.close();

FileOutputStream outs1=new FileOutputStream(getOutputPath()+nNodes+" antgraph.txt");

for(int i=0;i<nNodes;i++)

{

for(int j=0;j<nNodes;j++)

{

outs1.write((graph.delta(i,j)+",").getBytes());

) f
outsl.write("\n');

}

outsl.close();

j
if(makeOutput())

{

PrintStream outs2=new PrintStream(new
FileOutputStream(getOutputPath()+nNodes+"x"+nAnts+"x"+nlterations+" _results.txt"));
graph.resetTau();

antColony=new AntColonyForTSP(graph,nAnts,nlterations);

antColony.start();
outs2.printIn(1+","+antColony.getBestPathLength()+","+antColony.getLastBestPathIteration());
outs2.close();

}

else

{

graph.resetTau();

antColony=new AntColonyForTSP(graph,nAnts,nlterations);
antColony.start();

H
;

56

catch(Exception e)

{

System.out.println(e+"no file output™);

}

canvasJPanel.remove(canvas);

if(!doOpt.isSelected())

{
tourLengthJLabel.setText(String.valueOf(antColony.getBestPathLength()));
result.setText(antColony.getBestTour().toString());

canvas=new TSPCanvas(antColony.getBestTourNodes());

1

clse

{
if('doTwoHOpt.isSelected())
{

twoOpt=new
TwoOpt(antColony.nodesTour(antColony.getBestTour(),antColony.getBestPathLength()));
tourLength]Label.setText(String.valueOf(twoOpt.bestLength));
result.setText(twoOpt.printTour(twoOpt.nodeTour));

canvas=new TSPCanvas(twoOpt);

}

else

{
if(!doTwoOpt.isSelected())

{

twohOpt=new
TwohOpt(antColony.nodesTour(antColony.getBestTour(),antColony.getBestPathLength()));
}

else

{

twoOpt=new
TwoOpt(antColony.nodesTour(antColony.getBestTour(),antColony.getBestPathLength()));
twohOpt=new TwohOpt(twoOpt.nodeTour,twoOpt.bestLength);

}
tourLengthJLabel.setText(String.valueOf(twohOpt.bestLength));

result.setText(twohOpt.print Tour(twohOpt.nodeTour));
canvas=new TSPCanvas(twohOpt);

}

b

h

57

public static int distance(double x ,double y ,double a, double b)

{
return(int)(Math.sqrt(Math.pow(x-a,2)+Math.pow(y-b,2))+0.5);
}

public static void main(String [] args)

{

new GUI();

}
public static double getBeta()

{
return Double.parseDouble(betaSpinner.getValue().toString());

}
public static double getRho()

{
return Double.parseDouble(rhoSpinner.getValue().toString());

}
public static double getQ0()

{
return Double.parseDouble(q0Spinner.getValue().toString());

}
public static int getW()

{
return Integer.parselnt(wSpinner.getValue().toString());

}
public static double getAlfa()

{
return Double.parseDouble(alfaSpinner.getValue().toString());

}

public static double getKsi()

{
return Double.parseDouble(ksiSpinner.get Value().toString());

}

public static boolean makeOutput()

{

return giveOutput.isSelected();

}

public static String getOutputPath()

{
return outputPath.getText()+"\";

1

58

Refrences

L]

Marco Dorigo , Mauro Birattari, and Thomas St"utzle, Ant Colony Optimization, Ants as
a Computational Intelligence Technique, Universit'e Libre de Bruxelles, BELGIUM.

Chirico, Chirico’s framework for Ant Colony Optimization.

Eric Bonabeau, Marco Dorigo, Guy Theraulaz, Swarm Intelligence From Natural To
artificial Systems, A Volume In The Santa Fe Institute Studies, In The Sciences Of

‘Complexity, New York Oxford, 1999,

WWW.aco.0rg

Christian Blum, Daniel Merkle(Eds.), Swarm Intelligence, Introduction And
Applications, Barcelona, Odense , April 2008.

E . Murat ESIN, Senol Zafer ERDOGAN, Self Cloning Ant Colony Approach and
Optimal Path Finding, Turkey.

59

