Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num.SP0O%Z08§0D Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff inmediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

A

I

L

SP07050




_Optimization in Question Answering System

GROUP NO.38

SUNNY TYAGI  (071260)
ADITYA DUTT  (071288) . =7
PARAS JAIN (071319): "
KESHAV KUMAR (07132:;)'-‘

i \

. )

' : ~ Under the Supervision of: Mr. Ravikant Verma

- Submitted in partial fulfillment of the Degree of Bachelor of Technology

Department of Computer Science & Information technology

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
- WAKNAGHAT, SOLAN
HIMACHAL PRADESH, INDIA

2011




4
2
TABLE OF CONTENTS
| SERITHICATE . o S e s o 4
ACOIANEN B BT €151 151 T VST Sl s L 5
‘ STUI DT PR O e S eI L i e S A M 1430 T Mt ST S 6
B e e 7
B OET IUGRI S, oo e v 6. 58 5 5 Kb S v s o 1 8
: IS OB B B AT T O N MBI s v i it tnmamminniorss o S8 S5ttt 9
: :
CHAPTER 1—SRS DOCUMENT
L T e i a R e T F T 10
2oy OVEIALL DO PO s v v o s s o s 7 o i R e e G R 11
3. External Interface RequiremeIils s wum i iass is v ss s nonsmason o v oo v s socansis 12
’ s T BT e e R e e/ I ¢ 14
2, Qiher Nonfinetional REGUILSITENTS. . ..ol v vishie s v i sseansivessssvans swessers 15
CHAPTER 2—DIAGRAMS
=21 B B e T OGO e R S 1 e MR S S 16
R D D s e e e oy P e ST 17
MRS TN bt s T S e R £ R IR ol -
A SeqUEntal A aRIaAM L v s e i £omiss Vst i b 5 nmeis e s e AT pont 19
CHAPTER 3—QUESTION ANSWERING SYSTEM
T InEROUUBHON: oot fiiilia sl s s nnb it s it e & S s ol o e 20
2, COmponents BF QA SV STEI, i sosias ssiisiss dasmin sasbucsistcans v b s s 21
< PO ) T T U S N T e WY AR 21
U TR TT S R R R o S A e LT 23
5D ZALION L A SV BIOT eis par el it iy sarioitolebdo it 23
CHAPTER 4—INVERTED INDEX
YU 5115 R e W R S oS S S S-S 24
2= tes TIesi BN Bt St oo e it s ir vt s i v i Rt 24
3, 1At IatE Shnctures e s e i 8 w5 5 S B Ev R 23
4.

|
|
|
|

I e N e e e e e o e T 25




|
! 3
5. INAEX METZING....ccmiiiiiiiriiiieiieiniiriisinereieen et esessensrernsneenssens 27
; 6. THE FOrWA IRACK, 1y vomrusus o s taseiinm ihis e smmsmnmnikamsies semmmmmmmmmmio 27
r T COPIDFOEB IO s 57 45 557505 55 b dimaie v 18 55 v o A A e sene s o 28
J Be-leumenl Parsinge, oot v et e S 29
i 9. Challenges in Natural Language Processing.............c.coevvveveunevninn, 29
1 IR E 10 00 b i oo SOAIE TR B ATt 0 & 4 M i e W e 30
LlsLaneuage-Recogiition o s a s i e e e e 31
j AR 133 15 3 L e e A e e s T S S SN 31
] 13 Buildine e Vet IR o o ety o wasit e 32
{ TdiNeal-orInyerted IRt s i v 1 s oseam na s sy 32
T F By S o)1 orer e sy e e 33
? L T e e S oy SV 34
L7 SOULCE - 0OHR vt sy drre st bori S s 15 i e s s e e v s 38
| CHAPTER 5—SVM
Lo IR AU ON v is s s e O T S S T s T S T e ey e 50
2. Viargin Mesinization. L v o b i B e s s s s 52
5 L T I G R S rewran e Lo pae 10 B 08 C AR s Sl R 53
A NECUJOIS VM irimmmmsnsammsmmnim it s i e D 4
5. Advantages of the SVM techniqUe. ........cuiiiviiviininininsrienencnsnensnn 54
6. Disadvantages of'the SVIVM 1CCHIIGUE e i i 14 v nrusns wosnssontnnmsmosmmn s 33
JET s (R (oo e R e O LG P S T B CuE € e 33

i
i
|
|
|
|
|
t




JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT
SOLAN
HIMACHAL PRADESH

CERTIFICATE

This is to certify that the thesis entitled “OPTIMIZATION IN QUESTION
ANSWERING SYSTEM?” is submitted in the partial fulfilment of the award of degree
of Bachelor of Technology(CSE &IT) by JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY, WAKNAGHAT.

pele
, | R,
Signature of Supervisor %/\

.................. )
Name of Supervisor Mr. Ravikant verma
Designation Lecturer, CSE& IT

Date




ACKNOWLEDGEMENT

“Success of any endeavor is always due to contribution from different people”

Some time expressions are more reliable than words. Today we are short of words to express our
deepest and numerous feelings to Almighty (The most beneficial and merciful) who gave us the
mind, ability and courage to perform in a creative way.

We would like to express our sincere thanks to Mr. Ravikant Verma for his invaluable
guidance, patience, support and encouragement extended to us throughout the duration of the
project.

Finally, we wish to express our gratitude to all those who have in one-way or other helped us in
the successful completion of interim part of our project.




SUMMARY

The main focus of QA is to gain the knowledge of the user’s question and retrieve the sentences
that are close to the answer. The QA task expects the system to understand the question and
retrieve the corresponding passage in the text which contains the answer.

The architecture of our QA system is
1) Question Analysis
2) Passage retrieval and

3) Passage selection.

Question analysis involves the classification of the question into pre-defined question types,
extraction of query words and determining the answer type. Passage retrieval searches for
passages in the document collection which are likely to contain the answer. Passage selection
ranks the list of candidate answers to determine the final answer.




OBJECTIVE OF THE PROJECT

To classify the questions into some predefined classes and find out the answers using the

keyword in questions. To rank the answers among a large no of candidate answers. To obtain
the most optimized answer satisfying the question module.




™

8
LIST OF FIUGRES
Figure No. Figure Caption Page No.
1 Data flow diagram 16
2 Functional decomposition diagram 17
3 State chart diagram 18
4 Sequential diagram 19
5 Indexing architecture 33
6 SVM algorithm 40
i Geometrical representation of SVM margin 41




LIST OF ABBREVIATION/SYMBOLS

Abbreviation Meaning

11 Inverted Index

SVM Support Vector Machine

SRS Software Requirements specification
DFD Data Flow Diagram

FDD

Functional Decomposition Diagram




10

CHAPTER 1—SRS DOCUMENT

Introduction

Purpose:

To classify the questions into some predefined classes and find out the answers using the
keyword in questions. To rank the answers among a large no of candidate answers. To obtain the
most optimized answer satisfying the question module.

Example:

What a current information retrieval system or search engine can do is just “document retrieval”
i.e., given some keywords it only returns the relevant documents that contain the keywords.
However, what a user really wants is often a precise answer to a question. For instance, given the
question “Who was the first President of India?”
¢ What a user really wants is the answer “Dr. Rajendra Prasad”, but not to read through lots
of documents that contain the words “first”, “President” and “India’ etc.

-

* Hence in order to correctly answer a question, usually one needs to understand what the
question asks for. Question Classification, i.e., putting the questions into several semantic
categories, can not only impose some constraints on the possible answers but also suggest
different processing strategies.

* For instance, if the system understands that the question “Who was the first President of
India?”asks for a person name, the search space of possible answers will be significantly
reduced.

Document Conventions

No conventions as such.

Intended Audience and Reading Suggestions:

The intended audience for this SRS will be general public, though it will be specifically useful to

users wanting to find just the answer and not to read the whole document containing the text




11

thereby saving time.The developers will also find the SRS useful in designing. No reading
suggestions provided since the S.R.S is very much self explanatory.

Product Scope:

This software system will be an optimization of question answering system produced for the
general public to save their time by giving just the thing asked for and not the whole document.
This system will be designed to minimize the reader’s effort and time in searching a question or

| a paragraph for that matter and giving just the answer to the question.

References
IEEE . IEEE Std 830-1998 IEEE Recommended Practice Jor Software Requirements

|
|
; Specifications. IEEE Computer Society, 1998.
|

Overall Description

Product Perspective:

The product is a self contained product and the SRS contains all the information required for the

user to understand the software. The user will not be needing any other guide or tutorial for the

same.

Product Functions:

*  Question Analysis.

*  Question classification.

i » Text Retrieval.

* Candidate answer extraction.

; * Ranking of candidate answer.

*  Answer selection.




i
!
|
\'
i
:

12

User Classes and Characteristics:

As our project involves general public we don’t need a classification as such. But, since literate
users are more probable of using the software we can classify the users on the basis of literacy-

illiteracy, technical and non-technical.

Operating Environment:

The software can run on any system having command line interface (MS-DOS).

Design and Implementation Constraints:

The software would be generic, open for the general public and would be made having minimum

time complexity and space complexity to avoid any kind of problem for the user.

User Documentation:

The software is not at all complex but is very easy and self-explanatory and thus does not require

any documentation in terms of manuals or tutorials.

Assumptions and Dependencies:

Our assumption is that users question will definitely fall under one of the coarse and fine grained
category.

Other Assumptions:-

Query will happen frequently
* e.g. Find all documents that contain term t
— Delete will be rare
* e.g. Delete document 52
— Update will be rare
* e.g. Correct the spelling of term t in document 52
—add will not happen too often
*e.g. Add new documents




13

Table 1. The coarse and fine grained question categorics.

Coarse | Fine

ABBR | abbreviation, expansion

DESC | definition, description, manner, reason

ENTY | animal, body. color, creation. currency.,
discase/medical, event, food. instrument. language,
letter, other, plant, product. religion. sport, substance.
symbol, technique. term, vehicle, word

HUM |} description, group. individual, title

LG cily, country, mountain, other, state

NUM code, count, date, distance, money. order. other.
percent, period, speed, temperature, size, weight

External Interface Requirements

User Interfaces:

The user will get a search space where he may right his query just like in google or blackle. And
then the user will get the most optimized answer.

Hardware Interfaces:

No as such specific hardware requirements.

Software Interfaces:
* Software model used: Iterative model.

¢ Platform used for SVM: Statistical modeling software .c.g..

--SPSS(STATISTICAL PACKAGE FOR SOCIAL SCIENCE).




--DATA MINER by IBM

* Database used:-mysql

System Features

User Interactive:

The software would be highly user interactive because starting from giving the input to
seeing the output, it all depends on user. At any point of time the user can get back to the
previous menu and edit the query or simply exit. Everything is done keeping in mind the user’s

choice.

Popup menu:

The user will choose any one of following options and will then get a choice to either

print the program, see the output or the related theory. like-
Enter choice

[. Print the program

2. Give related theory

3. Show output.

At each step special messages relating to the inappropriate functioning are generated as in case

of'a wrong input or any logical mistakes.

Proper validations are applied throughout the software.




|
i
\
I

15

Other Nonfunctional Requirements

Performance Requirements:

The code will be as light as possible having minimum time and space complexity. For this
purpose we will try t use as less variables as possible and continually empty the buffer memory

to retain the space complexity.

Safety Requirements:

Precautions should be taken in case of giving input don’t try and give any redundant input, as it

may result in bursty output.

Security Requirements:

The codes will be provided but once the program code is approved by any higher authority the

copyright of the code will be taken and the codes will be then made inaccessible to the users.

Software Quality Attributes:

Adaptability: Will work on all environments like all versions of Windows having cli like (MS-

DOS).

Availability: It would be made available to the recommended users.

Reliability: The software won’t provide any wrong output.

Portability. the code will be light weighted and since it will run on any environment it is very
portable.

Reusability: Since the program is provided as an output the user can reuse the code and
manipulate it according to his needs or the user may contact the developer to do the needful.
Robustness: the software would handle any redundant input and will give the appropriate error
message.

Testability: testability-will-be-done-forevery kind-of redundant-input possible:

T ——

P —



™
16
CHAPTER 2—SOFTWARE DIAGRAMS
DATA FLOW DIAGRAM OF OPTIMIZATION IN QUESTION
ANSWERING SYSTEM
o qu/»f DATABASE i
W~ TN
OU‘j, I keyword \5\_ _____
| lepr | Query | T o | | :
L USER . V_! Question = Keyword - - | Inclex
| Iclassification | selection matching
i
\ ] L L]
A\ |
®, \
"\ - i
%, \\ B e ety
N e . Candts
N\ Most Candidate | ApSwer
N Optimized Je——————  Answer :
selection
Answer ranking
selection
| | DATABASE |
I




17

FUNCTIONAL DECOMPOSITION DIAGRAM OF
OPTIMIZATION IN QUESTION ANSWERING SYSTEM

Searching |

' b ! ¥ x . Voo
Question { Keyword ! Index andidate answe 1:ancliclateanswaf§ Optimized ]
classification || _selection || matching selection ranking 1+ answer |

> Coarse i i X .....R__.__._._.._:ml,.fj ],...,,. e

Vo *{ ‘ey“:_o'( ! 1 Ranking |

Lo Fine | L ranking jj Post

1 * .
Indexing
classification

i e e _——




18

STATE CHART DIAGRAM OF OPTIMIZATION IN QUESTION
ANSWERING SYSTEM

347 ] )
Que.s:nonl - Keyword 1. Query / question classification
Classification Selection
2. Keyward selection / keyworgl
ranking
l Candidate ] 4 Indlex 3. Indexing / Keyword matching ‘
Answer Selection Matching
J 4. Document matching / answer '
selection |
> i
5. Count listing / Answer 1
i

Canclidate 8 Most Optimized ranking
Answer Ranking Answer Selection

6. Answer selection / Optimization




15
SEQUENTIAL DIAGRAM OF OPTIMIZATION IN QUESTION
ANSWERING SYSTEM
User Query  Question Keyword Index Candicate Candidate  Most Database
T classification  selection malching  answer answer oplimized
Query selection ranking answe.rc
nout ' Question selection
Input Query stored

Question| class retrieved

-t

Keyworg selected_

e o

Question type stored
Keyword
matching | Keyword stored

v

Index retrieved

4

Document matched

‘Candidate answer selected

Cand. answer nanked answer stored In
ranked tdatzbase

‘R etrieved from database

Most aptimized i
selected '

Query fulfllled Optimization

I

- | | | | | |




20

CHAPTER 3—QUESTION ANSWERING SYSTEM

INTRODUCTION

To classifies the questions into some predefined classes and find out the answers using
the keyword in questions. The core of our question-answering mechanism is searching
predefined pattern of textual expression that may be interpreted as answers to certain
types of question. The presence of such patterns in analyzed answer-string candidates
may provide evidence of the right answer.

To rank the answers among a large no of candidate answers.

To obtain the most optimized answer satisfying the question module.

Question classification is very important for question answering.

What a current information retrieval system or search engine can do is just “document
retrieval”, i.c., given some keywords it only returns the relevant documents that contain
the keywords.

However, what a user really wants is often a precise answer to a question. For instance,
given the question “Who was the first President of India?”

what a user really wants is the answer “Dr. Rajendra Prasad”, but not to read through lots
of documents that contain the words “first”, “President” and “India” etc.

Hence in order to correctly answer a question, usually one needs to understand what the
question asks for. Question Classification, i.e., putting the questions into several semantic
categories, can not only impose some constraints on the possible answers but also suggest
different processing strategies.

For instance, if the system understands that the question “Who was the first President of
India?”asks for a person name, the search space of possible answers will be significantly

reduced.

P




21

COMPONENTS OF Q/A SYSTEM

*  Typically, a QA system has the following four components:

1) Question Analysis,

2) Document Retrieval,
3) Passage Retrieval, and
4) Answer Extraction.

*  The question analysis component analyzes the question to determine its answer type, and
to produce a list of keywords. Using these keywords document retrieval searches for a set
of potentially relevant documents from the collection. From these documents, passage
retrieval selects passages that are likely to contain the answer.

——

*  Finally, answer extraction searches these passages for the final answer.
*  Typically, question answering system uses the following components:
I. Question analysis: analyzes a given question sentence and determines the question
type and keywords.

Pap—

2. Textretrieval: finds the top N paragraphs that match the output of question

P—

analysis, such as keywords and question types.

3. Answer candidate extraction: extracts answer candidates form the relevant
documents retrieved by the text retrieval component.

4. Answer selection: selects answer to the question from among the answer
candidates based on the result of question analysis.

QUESTION CLASSIFICATION

* Question Classification means putting the questions into several semantic categories.

e We follow the two-layered question taxonomy, which contains 6 coarse grained
categories and 50 fine grained categories, as shown in Table 1. Each coarse grained
category contains a non-overlapping set of fine grained categories.

e Most question answering systems use a coarse grained category definition. Usually the
number of question categories is less than 20. However, it is obvious that a fine grained
category definition is more beneficial in locating and verifying the plausible answers.




22

Table L The coarse and line grained question categorics,

{oarse

abbreviation, expansion

DESC | definttion, description, manner, reason

ENTY | animal. body. color, creation, currency,
disease/medical, even, food, instrument, language.,

| letter, other, plant, product. religion, sport. substance.
symbol, technique, term, vehicle, word

HUM | description, group, individual, title

LOC | cily, country, mountain, other, state

NUM ] cade, count, date, distance, money, order, other, \
wreent, period, speed, lemperature, size, welght

To simplify the following experiments, we assume that one question resides in only one !

category. That is to say, an ambiguous question is labeled with its most probable category. b




23

ALGORITHM USED

We use inverted index, tree map, hashed indexing here for indexing the tokens in the passage so
that on matching the keywords of query with token we can conclude which passage to retrieve.
And rank the passage as per the term frequency of the keyword.

OPTIMIZATION IN Q/A SYSTEM

We use inverted index and hash indexing over other sequential data structures to store the data
and use brute force algorithm for pattern matching and candidate answer selection which reduces
space and time complexity significantly. We use machine learning technique to optimize the
answer .Here we use SVM(support vector machine)specifically to optimize the answer. We train
the machine with training data and further test it with test data and check the optimality.

S a

Ara L B




24

CHAPTER 4--INVERTED INDEX

INTRODUCTION

* Regardless of the retrieval strategy we need a data structure to efficiently store:
— For each term in the document collection
* The list of documents that contain the term
* For each occurrence of a term in a document
— The frequency the term appears in the document (tf).
— The position in the document for which the term appears.
» Position may be expressed as section, paragraph, sentence, location within sentence.

* Aninverted index contains two parts: an index of terms, (generally called simply the term
index, lexicon, or term dictionary) which stores a distinct list of terms found in the
collection and, for each term, a posting list, a list of documents that contain the term.

e Search engine indexing collects, parses, and stores data to facilitate fast and accurate
information retrieval. Index design incorporates interdisciplinary concepts from
linguistics, cognitive psychology, mathematics, informatics, physics and computer
science. An alternate name for the process in the context of search engines designed to
find web pages on the Internet is Web indexing.

e Popular engines focus on the full-text indexing of online, natural language documents.

e Computational and /O costs are O ( characters in collection ).

g

-k E———

Index Design Factors

Major factors in designing a search engine's architecture include

* Merge factors: How data enters the index, or how words or subject features are added to
the index during text corpus traversal, and whether multiple indexers can work
asynchronously.The-indexer must-first check-whether it is updating old content or adding
new content. Traversal typically correlates to the data collection policy. Search engine
index merging is similar in concept to the SQL Merge command and other merge
algorithms.

e Storage techniques: How to store the index data, that is, whether information should be
data compressed or filtered. ‘

¥
_




25

Index size: How much computer storage is required to support the index.

Lookup speed: How quickly a word can be found in the inverted index. The speed of
finding an entry in a data structure, compared with how quickly it can be updated or
removed, is a central focus of computer science.

Maintenance: How the index is maintained over time.

Fault tolerance: How important it is for the service to be reliable. Issues include dealing
with index corruption, determining whether bad data can be treated in isolation, dealing
with bad hardware, partitioning, and schemes such as hash-based or composite
partitioning, as well as replication.

Index Data Structures

Where other data structures will take a minimum of O(logn) time to do any operation
(best was B-trees (balanced trees), developed for efficient database access).
Each internal node contains a key
o Left subkey stores all keys smaller than the parent key.
o Right subtree stores keys larger than the parent key.
B-tree (balanced tree) of order m
o Root has between m and 2m keys, as do all other internal nodes
o ifkiis the i-t key of a given internal node, then all keys in the
(i-1)-th child are smaller than k, while all keys in the i-th child
are bigger.
o All leaves are at the same depth.
Usually, a B-tree is used as an index, and all associated data are stored
in the leaves .
B-trees are mainly used as a primary key access method for large
databases in secondary memory.
To search a given key, we go down the tree choosing the
appropriate branch at each step.
o Number of disk accesses = height of the tree.

Inverted indices

Many search engines incorporate an inverted index when evaluating a search query to
quickly locate documents containing the words in a query and then rank these documents
by relevance. Because the inverted index stores a list of the documents containing each
word, the search engine can use direct access to find the documents associated with each
word in the query in order to retrieve the matching documents quickly. The following is a
simplified illustration of an inverted index:

Catdil. 3

- S E--




26

INVERTED INDEX

Word Documents

the documentl, document3 ,document4, document5

cow document2, document3, document4
says documentb
moo document?

This index can only determine whether a word exists within a particular document, since
it stores no information regarding the frequency and position of the word; it is therefore
considered to be a boolean index. Such an index determines which documents match a
query but does not rank matched documents. In some designs the index includes
additional information such as the frequency of each word in each document or the
positions of a word in each document.

Position information enables the search algorithm to identify word proximity to support
searching for phrases; frequency can be used to help in ranking the relevance of
documents to the query. Such topics are the central research focus of information
retrieval.

The inverted index is a sparse matrix, since not all words are present in each document.
To reduce computer storage memory requirements, it is stored differently from a two
dimensional array. The index is similar to the term document matrices employed by latent
semantic analysis. The inverted index can be considered a form of a hash table. In some
cases the index is a form of a binary tree, which requires additional storage but may
reduce the lookup time. In larger indices the architecture is typically a distributed hash
table:

o T e et Pl P




27

Index Merging

The inverted index is filled via a merge or rebuild. A rebuild is similar to a merge but first
deletes the contents of the inverted index. The architecture may be designed to support
incremental indexing, where a merge identifies the document or documents to be added or
updated and then parses each document into words. For technical accuracy, a merge conflates
newly indexed documents, typically residing in virtual memory, with the index cache residing on
one or more computer hard drives.

After parsing, the indexer adds the referenced document to the document list for the appropriate
words. In a larger search engine, the process of finding each word in the inverted index (in order
to report that it occurred within a document) may be too time consuming, and so this process is
commonly split up into two parts, the development of a forward index and a process which sorts
the contents of the forward index into the inverted index. The inverted index is so named because
it is an inversion of the forward index.

SN

The Forward Index

5 - s

o The forward index stores a list of words for cach document. The following is a simplified
form of the forward index:

Forward Index

Documents Words
Documentl the, cow, says, moo
Document2 the, cat, and, the, hat
Document3 the, dish, ran, away, with,




28

* The idea behind developing a forward index is that as documents are parsing, it is better
to immediately store the words per document. The delineation enables Asynchronous
system processing, which partially circumvents the inverted index update bottleneck. The
forward index is sorted to transform it to an inverted index. The forward index is
essentially a list of pairs consisting of a document and a word, collated by the document.
Converting the forward index to an inverted index is only a matter of sorting the pairs by
the words. In this regard, the inverted index is a word-sorted forward index.

Compression

Generating or maintaining a large-scale search engine index represents a significant storage and
processing challenge. Many search engines utilize a form of compression to reduce the size of
the indices on disk. Consider the following scenario for a full text, Internet search engine.

* Anestimated 2,000,000,000 different web pages exist as of the year 2000

» Suppose there are 250 words on each webpage (based on the assumption they are similar to
the pages of a novel.

» It takes 8 bits (or 1 byte) to store a single character. Some encodings use 2 bytes per
character.

» The average number of characters in any given word on a page may be estimated at 5.

» The average personal computer comes with 100 to 250 gigabytes of usable space.

Given this scenario, an uncompressed index (assuming a non-conflated, simple, index) for 2
billion web pages would need to store 500 billion word entries. At 1 byte per character, or 5
bytes per word, this would require 2500 gigabytes of storage space alone, more than the average
free disk space of 25 personal computers. This space requirement may be even larger for a fault-
tolerant distributed storage architecture,

Depending on the compression technique chosen, the index can be reduced to a fraction of this
size. The tradeofT is the time and processing power required to perform compression and
decompression.

Notably, large scale search engine designs incorporate the cost of storage as well as the costs of
electricity to power the storage. Thus compression is a measure of cost.




29

Document Parsing

Document parsing breaks apart the components (words) of a document or other form of media
for insertion into the forward and inverted indices. The words found are called tokens, and so, in
the context of search engine indexing and natural language processing, parsing is more
commonly referred to as tokenization. It is also sometimes called word boundary disambiguation
, tagging, text segmentation, content analysis, text analysis, text mining ,

concordance generation, speech segmentation, lexing, or lexical analysis, The terms ‘indexing’.
'parsing', and "tokenization' are used interchangeably in corporate slang.

Tokenization presents many challenges in extracting the necessary
information from documents for indexing to support quality searching. Tokenization for indexing
involves multiple technologies, the implementation of which are commonly kept as corporate
secrets.

Challenges in Natural Language Processing

Word Boundary Ambiguity: Native English speakers may at first consider tokenization to be a
straightforward task, but this is not the case with designing a multilingual indexer, In digital
form, the texts of other languages such as Chinese, Japanese or Arabic represent a greater
challenge, as words are not clearly delineated by whitespace. The goal during tokenization is to
identify words for which users will search. Language-specific logic is employed to properly
identify the boundaries of words, which is often the rationale for designing a parser for each
language supported (or for groups of languages with similar boundary markers and syntax).

Language Ambiguity: To assist with properly ranking matching documents. many search
engines collect additional information about each word, such as its language or lexical

category (part of speech). These techniques are language-dependent, as the syntax varies among

languages. Documents do not always clearly identify the language of the document or represent

A _afd AN AN o




30

it accurately. In tokenizing the document, some search engines attempt to automatically identify
the language of the document.

Diverse File Formats: In order to correctly identify which bytes of a document represent
characters, the file format must be correctly handled. Search engines which support multiple file
formats must be able to correctly open and access the document and be able to tokenize the
characters of the document.

Faulty Storage: The quality of the natural language data may not always be perfect. An
unspecified number of documents, particular on the Internet, do not closely obey proper file
protocol. Binary characters may be mistakenly encoded into various parts of a document,
Without recognition of these characters and appropriate handling, the index quality or indexer
performance could degrade.

Tokenization

Unlike literate humans, computers do not understand the structure of a natural language
document and cannot automatically recognize words and sentences. To a computer, a document
is only a sequence of bytes. Computers do not ‘know' that a space character separates words in a
document, Instead, humans must program the computer to identify what constitutes an individual
or distinet word, referred to as a token. Such a program is commonly called

a tokenizer or parser or lexer. Many search engines, as well as other natural language processing
software, incorporate specialized programs for parsing, such as YACC or Lex.

During tokenization, the parser identiftes sequences of characters which
represent words and other elements, such as punctuation, which are represented by numeric
codes, some of which are non-printing control characters, The parser can also identify
entities such as email addresses, phone numbers, and URLs, When identifying each token,
several characteristics may be stored, such as the token’s case (upper, lower, mixed, proper),
language or encoding, lexical category (part of speech, like 'noun’ or 'verb'), position, sentence
number, sentence position, length, and line number.

ik

PR P




31

Language Recognition

 Ifthe search engine supports multiple languages, a common initial step during
tokenization is to identify each document's language; many of the subsequent steps are
language dependent (such as stemming and part of speech tagging).

* Language recognition is the process by which a computer program attempts to
automatically identify, or categorize, the language of a document, Other names for
language recognition include language classification, language analysis, language
identification, and language tagging.

¢ Automated language recognition is the subject of ongoing research in natural language
processing. Finding which language the words belongs to may involve the use of
a language recognition chart.

Assumptions

— query will happen frequently
» e.g.. Find all documents that contain term t
— delete will be rare
* e.g. Delete document 52
—update will be rare
* e.g.. Correct the spelling of term t in document 52
— add will not happen too often
* e.g.. Add new documents

C By e, - S e




32

Building an Inverted Index

* Associates a posting list with each term.
¢ For each document d in the collection
— For each term t in document d
* Find term t in the term dictionary
*[f term t exists, add a node to its posting list
*Otherwise,
—Add term t to the term dictionary
— Add a node to the posting list
*  After all documents have been processed, write the inverted index to disk.
* Inverted because it lists for a term, all documents that contain the term.

Need of Inverted Index

* The point of using an index is to increase the speed and efficiency of searches of the
document collection. Without some sort of index, a user’s query must sequentially scan
the complete document collection, finding those documents containing the search terms.

*  Consider the “Find” operation in Windows; a user search is initiated and a search starts
through each file on the hard disk. When a directory is encountered, the search continues
through each directory.

* With only a few thousand files on a typical laptop, a typical “find” operation takes a
minute or longer.

* Currently, a web search covers at least one billion documents.

* Hence, a sequential scan is simply not feasible.

*  Within the search engine domain, data are searched far more frequently than they are
updated.

* Aninverted index is able to do many accesses in O(1) time at a price of significantly
longer time to do an update, in the worst case O(n).

*  Where other data structures will take a minimum of O(logn) time to do any
operation(best was B-trees (balanced trees), developed for efficient database access).

* For many systems, the inverted index can be compressed to around ten percent of the
original document collection.

e O




Index Construction

Figure 10: Indexing Architecture

DOCUMENT

TextFile ?
f DOCUMENT

D objects
TREC
Parser
/ . S-i_i_np_leStrean1

Tokenizer

33




ALGORITHM

34

prklic olas

nrivate
private
private
private

Indexbull

confiy

P W T



35

package ir;

import java.util.*;
import
import
import
import

public class AVa. LHSerializaliis
private HashMap {
orivate Lrray kg structurs fo abous sach
[ = = ¥ - =3

——

e T

ES_ "

Py B

puklic togel
1f Sl

null;




36

public void add(Do:

S ymer =

g

RS T




37

publin:ﬂ P t£)
thi
public long ()
return
public short TF ()
return = T
public class Seriaglizakle ({
private stati = 2R
shiott ©£;
pubhlic T v
public &
if {
+ i .

public void =t (short walus} {
tf = value;

public S
return tf;

s

—

=




38

return indsx;

SOURCE CODE

// TO READ DOCUMENT //

public class Data
{

Integer counter;
String docs="->"}

public Data(Integer counter, String docs) {
this.counter = counter;
this.docs =this.docs+" | "+docs;

}

public void setCounter(Integer counter) {




39

this.counter = counter;

}

public void setDocs(String docs) {
this.docs = docs;

}

public Integer getCounter() {
return counter;

}

public String getDocs() {
return docs;
H
}

//MAIN FUNCTION AND TREE MAP//

==

import java.util, *; y
import java.io.*;

/
public class Main f:
{
public static void main(String[ ] args)
{

final TreeMap<String, Data> frequencyData = new TreeMap<String, Data>( );
Java.awt.EventQueue.invokeLater(new Runnable() {
public void run() {
new NewlJFrame(frequencyData).setVisible(true);
}

3
readWordFile(frequencyData);
printAllCounts(frequencyData);

public static Integer getCount(String word, TreeMap<String, Data> frequencyData)

{
if (frequencyData.containsKey(word))
{
return frequencyData.get(word).getCounter();
}




40

else

{

return 0;

;
}

public static void printAllCounts(TreeMap<String, Data> frequencyData)
{

System.out.println("*****************************"‘******************************")

3

System.out.printIn(" Word Document Names Occurrences");

for(String word : frequencyData.keySet( ))

{
System.out.printIn(" "+ word +" " + frequencyData.get(word).getDocs()+"
" +requencyData.get(word).getCounter()+ " b E
}

Systel-n'Out_println(“************************************************************")

E

}

-~ e W

public static void readWordFile(TreeMap<String, Data> frequencyData)
{

Scanner wordFile;

String word;

Integer count;

Data d;
for (int x=0; x<Docs.length; x++)
{
try
{
wordFile = new Scanner(new FileReader(Docs[x]));
}
catch (FileNotFoundException ¢)
{
System.err.println(e);
return;
}




while (wordFile.hasNext( ))
{

word = wordFile.next( );
word = word.toLowerCase();
count = getCount(word, frequencyData) + 1;

if(x>=0)
{
try {

if(frequencyData.get(word).getDocs()==null)
{

frequencyData.put{word, new Data(count,Docs[x]));

}

else

{
frequencyData.put(word, new Data(count,Docs[x]+"
"+irequencyData.get(word).getDocs()));

}
}
catch(NullPointerException e)
{
frequencyData.put(word, new Data(count,Docs[x]));
}
}
}
}
}

static String Docs [] = {"docl.txt", "doc2.txt","doc3.txt", "doc4.txt"};
}

41

o




Leemrawicen

Files

o
)
Q

4?2

//OUTPUT//

H > -> | docd.txt -» | docd.oxt - | =¥ = 2
slzn 5
i

e

| docl.txt -> | docl.tut - | docl.oat => | deel.txt ]

oo

= | docd.uxt => | docd.txt <> | doed.txt * | doed.ex 5

| doed.txt 1

docd.txy => | docZ.tut i
Y 3
- 3
=> | docd.oxt 1
cloze =2 | deel.tat 1

nvertededsx fun) ] )




[/JFRAME//

Sggkm;aptimization

Enter Document names ;

Document 1
Document 2

Document 3.;

Qas EnGilNe
india
Sef 'f(: fi ;

jas the first president of india?Z = what 3 user really wanls is the answer ~dr. ra
fiendra prasadZ, but not to read through lots of documents that contain the word
s CfirstC, Cpresidentz and =zzzindia=>== efc. = hence in arder to correctly
;’angnﬁjer a question, usually one needs to understand what the question asks for|

‘ question classification, i.e., putling the questions into several semantic categor

an not only impose some constraints on the possible answers but also s

| est diffarent pre ing strategies. Z forinstance, ifthe system understands
{thatthe question who was the first president of zindia
|gon name, the search space of possible answers will be significantly reduced

? asks foraper, |

A

i

1|

import java.awt.Font;

import java.awt.Graphics;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.util.Scanner;

import java.util. TreeMap;

43




44

public class NewJFrame extends javax.swing.JFrame {

TreeMap<String, Data> frequencyData = new TreeMap<String, Data>( );

/** Creates new form NewJFrame */
public NewlJFrame() {
initComponents();

}
NewlJFrame(TreeMap<String, Data> frequencyData) {

this.frequencyData=frequencyData;
initComponents();

}

/** This method is called from within the constructor to

* initialize the form.

* WARNING: Do NOT modify this code. The content of this method is

* always regenerated by the Form Editor.

*/

@SuppressWarnings("unchecked")

// <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-
BEGIN:initComponents

private void initComponents() {

jLabell = new javax.swing.JLabel();
JjLabel2 = new javax.swing.JLabel();
JLabel3 = new javax.swing.JLabel();
JTextField1 = new javax.swing.JTextField();
JLabel4 = new javax.swing.JLabel();
JTextField2 = new javax.swing.JTextField();
JLabel5 = new javax.swing.JLabel();
JTextField3 = new javax.swing.JTextField();
JLabel6 = new javax.swing.JLabel();
JTextField4 = new javax.swing.JTextField();
JSeparator] = new javax.swing.JSeparator();
JButtont =mew javax.swing.JButton();
JjPanell = new javax.swing.JPanel();
JScrollPanel = new javax.swing.JScrollPane();
JTextAreal = new javax.swing.JTextArea();




45

setDefaultCloseOperation(javax.swing. WindowConstants. EXIT ON_CLOSE);
setResizable(false);

jLabell.setFont(new java.awt.Font("Tahoma", 3, 36));
jLabell .setForeground(new java.awt.Color(51, 0, 0));
jLabell setText("Search Optimization");

jLabel2.setText("Enter Document names :");
jLabel3.setText("Document 1 :");
JLabel4.setText("Document 2 :");

jTextField2.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
jTextField2ActionPerformed(evt);

}
1

JLabel5.setText("Document 3 :");
jLabel6.setFont(new java.awt.Font("Tahoma", 3, 18));

jLabel6.setForeground(new java.awt.Color(51, 0, 0));
jLabel6.setText(" QaS EnGiNe");

T T

jTextField4.setBackground(new java.awt.Color(204, 204, 204));
jTextField4.add ActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
JjTextField4ActionPerformed(evt);

}
K

jButtonl .setText("SeArCh");
jButtonl.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event. ActionEvent evt) {
jButtonl ActionPerformed(evt);

}
M

jTextAreal.setColumns(20);

jTextAreal setEditable(false);
jTextAreal.setLineWrap(true);

jTextAreal .setRows(5);
jScrollPanel.setViewportView(jTextAreal);




javax.swing.GroupLayout jPanellLayout = new javax.swing.GroupLayout(jPanel1);

jPanell.setLayout(jPanel 1 Layout);

JPanell Layout.setHorizontal Group(
jPanell Layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)
.addGroup(jPanel 1 Layout.createSequential Group()

.addContainerGap()

addComponent(jScrollPanel, javax.swing.GroupLayout. DEFAULT SIZE, 447,
Short MAX_VALUE)

.addContainerGap())

);

JjPanellLayout.setVertical Group(
JPanellLayout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)
.addComponent(jScrollPanel, javax.swing.GroupLayout. Alignment. TRAILING,

Javax.swing.GroupLayout. DEFAULT_SIZE, 145, Short MAX VALUE)

);

Javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

getContentPane().setLayout(layout);

layout.setHorizontal Group(
layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(layout.createSequential Group()
.addGap(43, 43, 43)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(layout.createSequentialGroup()
.addComponent(jLabel4)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)

.addComponent(jTextField2, javax.swing.GroupLayout. DEFAULT SIZE,

360, Short. MAX VALUE))
.addGroup(layout.createSequential Group()
.addComponent(jLabel3)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)

.addComponent(jTextField1, javax.swing.GroupLayout. DEFAULT SIZE,

360, Shortt MAX_VALUE))
.addComponent(jLabel2)
addGroup(layout.createSequentialGroup()
.addComponent(jLabel5)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)

46



47

.addComponent(jTextField3, javax.swing.GroupLayout. DEFAULT SIZE,
360, Short. MAX VALUE))))
.addGroup(layout.createSequentialGroup()
.addContainerGap()
.addComponent(jTextField4, javax.swing.GroupLayout. DEFAULT SIZE, 467,
Short MAX_ VALUE)))
.addContainerGap())
.addComponent(jSeparatorl, javax.swing.GroupLayout.Alignment. TRAILING,
javax.swing.GroupLayout. DEFAULT SIZE, 487, Short. MAX_VALUE)
.addGroup(layout.createSequential Group()
.addGap(96, 96, 96)
.addComponent(jButton [, javax.swing.GroupLayout. PREFERRED SIZE. 212,
Javax.swing.GroupLayout. PREFERRED_ SIZE)
.addContainerGap(179, Short MAX VALUE))
.addGroup(layout.createSequentialGroup()
.addGap(94, 94, 94)
.addComponent(jlLabel6, javax.swing.GroupLayout. PREFERRED SIZE, 186,
Javax.swing.GroupLayout. PREFERRED_SIZE)
.addContainerGap(207, Short. MAX VALUE))
.addGroup(layout.createSequential Group()

.addGap(23, 23, 23)
.addComponent(jLabell, javax.swing.GroupLayout. PREFERRED SIZE, 378, ; J
javax.swing.GroupLayout. PREFERRED_SIZE) §
' .addContainerGap(86, Short MAX VALUE)) ¢

.addGroup(javax.swing.GroupLayout.Alignment. TRAILING,
layout.createSequential Group()
.addContainerGap()
.addComponent(jPanell, javax.swing.GroupLayout. DEFAULT SIZE,
javax.swing.GroupLayout. DEFAULT SIZE, Short MAX VALUE)
.addContainerGap())
);
layout.setVerticalGroup(
layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(layout.createSequential Group()
.addComponent(jLabell, javax.swing.GroupLayout. PREFERRED_ SIZE, 58,
javax.swing.GroupLayout.PREFERRED_SIZE)
.addGap(11, 11, 11)
.addComponent(jLabel2)
.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout. Alignment. BASELINE)
.addComponent(jLabel3)
.addComponent(jTextField1, javax.swing.GroupLayout. PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE, javax.swing.GroupLayout.PREFERRED_SIZLE))
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)



48

-addGroup(layout.createParallelGroup(javax.swing.GroupLayout. Alignment. BASELINE)
.addComponent(jTextField2, javax.swing.GroupLayout. PREFERRED SIZE,
javax.swing.GroupLayout. DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED SIZE)
.addComponent(jLabel4))
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. UNRELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout. Alignment. BASELINE)
.addComponent(jLabel5)
.addComponent(jTextField3, javax.swing.GroupLayout PREFERRED SIZE,

javax.swing.GroupLayout. DEFAULT_SIZE, javax.swing.GroupLayout. PREFERRED_SIZFE))

addGap(9, 9, 9)

. .addComponent(jSeparator], javax.swing.GroupLayout. PREFERRED SIZE, 10,

Javax.swing.GroupLayout. PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement. RELATED)

.addComponent(jLabel6, javax.swing.GroupLayout PREFERRED _SIZE, 31,
javax.swing.GroupLayout. PREFERRED SIZE)

addGap(11, 11, 1)

.addComponent(jTextField4, javax.swing.GroupLayout. PREFERRED SIZE, 28,
Jjavax.swing.GroupLayout. PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement, UNRELATED)

.addComponent(jButton1)

.addGap(28, 28, 28)

.addComponent(jPanell, javax.swing.GroupLayout. PREFERRED_SIZE,
Javax.swing.GroupLayout. DEFAULT_SIZE, javax.swing.GrouplLayout.PREFERRED_SIZE)

.addContainerGap(javax.swing.GroupLayout. DEFAULT SIZE,
Short. MAX_VALUE))

)9

pack();
i <feditor-fold>//GEN-END:initComponents

private void jTextFicld2 ActionPerformed(java.awt.event. ActionEvent evt) {//GEN-
FIRST:event_jTextField2ActionPerformed
// TODO add your handling code here:
HIGEN-LAST:event_jTextField2ActionPerformed

private void jTextField4ActionPerformed(java.awt.event, ActionEvent evt) {//GEN-
FIRST:event_jTextFielddActionPerformed
// TODO add your handling code here:
HIGEN-LAST:event_jTextlield4ActionPerformed

private void jButton]ActionPerformed(java.awt.event. ActionEvent evt) {//GEN-
FIRST:event_jButton1ActionPerformed
Scanner wordFile;




String text=null;
Integer count;
Data d;
Graphics g;
Font f,f _ini;
f ini=jTextAreal .getFont();

for(String word : frequencyData.keySet( })

{
if(jTextField4.getText().compareTo(word)==0)

{
String docs=frequencyData.get{(word).getDocs(}.replace("-> | ", " ");
docs=docs.substring(1);
String sunny[]=docs.split(" ");
System.out.printin{docs);

System.out.printin(sunny.toString(});
for(int i=0;i<sunny.length;i++)
{
/fSystem.out.println(sunny[i]);
try
{

wordFile = new Scanner(new FileReader(sunny[i]));

jTextAreal.append(™n"+sunny[i].toUpperCase()+"\n"+"-==--mmmmeceoennn ')

}
catch (FileNotFoundException ¢)

{
System.err.println{e);
return;

}

while (wordFile.hasNext( ))
{
word = wordFile.next( );
word = word.toLoweérCase();
if(jTextField4.getText().compareTo(word)==0)
{
//iTextAreal.setFont(f ini);
jTextAreal.append(text),
//f = new Font ("Monospaced”, Font BOLD | Font.ITALIC, 14);
text="";
//iTextAreal.setFont(f);
jTextAreal.append("\t <<<<"+word+">>>>\t");

49



50

}

else

{
text=text+" "+word,
}

}
!/l jTextAreal.setFont(f _ini),

JTextAreal.append(text);
/*f'= new Font ("Monospaced", Font. BOLD | Font.ITALIC, 14);
JjTextAreal.setFont(f),
jTextAreal.setText(text);*/

//jTextAreal .setText(" "+ word + " "+ frequencyData.get(word).getDocs()+"
" +frequencyData.get(word).getCounter()+ " ",
}
/System.out.println(" "+ word+" "+ frequencyData.get(word).getDocs()+"
" +frequencyData.get(word).getCounter()+ " "
}
]

HIGEN-LAST:event_jButtonlActionPerformed
public static void main(String args[]) {
Jjava.awt.EventQueue.invokeLater(new Runnable() {
public void run() {
new NewlJFrame().setVisible(true);
}
s
}

// Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JButton jButtonl;

private javax.swing.JLabel jLabell;

private javax.swing.JLabel jLabel2;

private javax.swing.JLabel jLabel3;

private javax.swing.JLabel jLabel4;

private javax.swing.JLabel jLabel5;

private javax.swing.JLabel jLabel6;

private javax.swing.JPanel jPanell;

private javax.swing.JScrollPane jScrollPanel;

private javax.swing.)Separator jSeparator|;

private javax.swing.JTextArea jTextAreal,;

private javax.swing.JTextField jTextField1;

private javax.swing.JTextField jTextField2;

private javax.swing.JTextField jTextField3;

private javax.swing.JTextField jTextField4;

/1 End of variables declaration//GEN-END:variables }




51

CHAPTER 5—SVM

Introduction

Support vector machines (SVMs) are a set of related supervised learning methods that

analyze data and recognize patterns, used for classification and regression analysis.

The original SVM algorithm was invented by Vladimir Vapnik and the current standard

incarnation (soft margin) was proposed by Corinna Cortes and Vladimir Vapnik.

The standard SVM takes a set of input data, and predicts, for each given input, which of

two possible classes the input is a member of, which makes the SVM a non-

probabilistic binary linear classifier. *
SVM training algorithm builds a model that predicts whether a new example falls into !
one category or the other. An SVM model is a representation of the examples as points in
space, mapped so that the examples of the separate categories are divided by a clear gap
that is as wide as possible. New examples are then mapped into that same space and
predicted to belong to a category based on which side of the gap they fall on.

A support vector machine constructs a hyperplane or set of hyperplanes in a high or
infinite dimensional space, which can be used for classification, regression or other tasks.
In SVM literature, a predictor variable is called an attribute, and a transformed attribute
that is used to define the hyperplane is called a feature. The task of choosing the most
suitable representation is known as feature selection. A set of features that describes one
case is called a vector. So the goal of SVM modeling is to find the optimal hyperplane
that separates clusters of vector in such a way that cases with one category of the targel
variable are on one side of the plane and cases with the other category are on the other
size of the plane. The vectors near the hyperplane are the support vectors.




52

The figure represents the overview of SVM process:-

The SVM algorithm

Foalutes Bpoce

o R BN
: .
20 el T ol
A \
POV >
N No
".ﬁ-,“ LA

Margin maximization

Assume, there is a new company j, which has to be classified as solvent or insolvent according to
the SVM score. In the case of a linear SVM the score looks like a DA or Logit score, which is a
linear combination of relevant financial ratios x; = (X1, X2, ...Xja), Where X; is a vector with d
financial ratios and x;y is the value of the financial ratio number k for company j, k=1,...,d. So 7]
, the score of company j, can be expressed as

Z; = WiXj1 + WaXj2 o 3 5 WaXjq +b

Ina compact form:
z; = XjIW +b

where-w-is-a-vector-which-contains the weights of the d financial ratios and b is a
constant. The comparison of the score with a benchmark value (which is equal to zero for a
balanced sample) delivers the “fore-cast” of the class — solvent or insolvent — for company j.

In order to be able to use this decision rule for the classification of company j, the SVM
has to learn the values of the score parameters w and b on a training sample. Assume this
consists of a set of n companies i = 1, 2, ..., n. From a geometric point of view, calculating the




53

value of the parameters w and b means looking for a hyperplane that best separates solvent from
insolvent companies according to some criterion.

The criterion used by SVM’s is based on margin
maximization between the two data classes of solvent and insolvent companies. The margin is
the distance between the hyperplanes bounding each class, where in the hypothetical perfectly
separable case no observation may lie. By maximizing the margin, we search for the
classification function that can most safely separate the classes of solvent and insolvent
companies.

The graph below represents a binary space with two input variables.
Here crosses represent the solvent companies of the training sample and circles the insolvent
ones. The threshold separating solvent and insolvent companies is the line in the middle between
the two margin boundaries, which are canonically represented as x'w + b =1 and x'w + b =-1.
Then the margin is 2 / ||w||, where ||w]| is the norm of the vector w.

Tar s :
X W'fb“o margin

Geometrical Representation of the SVM Margin
Key ideas of SVM

SVM offer the following advantages over conventional statistical learning algorithms:

I. High generalization performance even with feature vectors of high dimension.
2. The ability to manage kernel functions that input data to higher dimensional space
without increasing computational complexity.




54

Need for SVM

e From the view point of machine learning, answer selection id defined as task of
training and classifying candidate answer into correct and incorrect answers for a
given question.

* Toapply SVM, we have to prepare a set of training examples that contain feature
vectors.

e For each question, the QA system analyzes the question, retrieve the document
released to the question, and lists the candidate answers.

e The system parameters that were computed in the process are recorded and used
to create the feature vectors for each answer candidate.

*  We use a function to rank the answer candidate, where the function represents the
distance of the candidate answer from the optimal hyper plane.

All classification techniques have advantages and disadvantages, which are more or less

important according to the data which are being analysed, and thus have a relative relevance.
SVMs can be a useful tool for insolvency analysis, in the case of non-regularity in the data, for
example when the data are not regularly distributed or have an unknown distribution. It can help
evaluate information, i.e. financial ratios which should be transformed prior to entering the score
of classical classification techniques.

Advantages of the SVM technique

By introducing the kernel, SVMs gain flexibility in the choice of the form of the
threshold separating solvent from insolvent companies, which needs not be linear and
even needs not have the same functional form for all data, since its function is non-
parametric and operates locally. As a consequence they can work with financial ratios,
which show a non-monotone relation to the score and to the probability of default, or
which are non-linearly dependent, and this without needing any specific work on each
non-monotone variable.

Since the kernel implicitly contains a non-linear transformation, no assumptions about the
functional form of the transformation, which makes data linearly separable, is necessary.
The transformation occurs implicitly on a robust theoretical basis and human expertise
judgement beforehand is not needed.

SVMs provide a good out-of-sample generalization, if the parameters C and r (in the case
of a Gaussian kernel) are appropriately chosen. This means that, by choosing an
appropriate generalization grade, SVMs can be robust, even when the training sample has
some bias.




55

* SVMsdeliver a unique solution, since the optimality problem is convex. This is an
advantage compared to Neural Networks, which have multiple solutions associated with
local minima and for this reason may not be robust over different samples.

e With the choice of an appropriate kernel, such as the Gaussian kernel, one can put more
stress on the similarity between companies, because the more similar the financial
structure of two companies is, the higher is the value of the kernel. Thus when classifying
a new company, the values of its financial ratios are.compared with the ones of the
support vectors of the training sample which are‘more similar to this new company. This
company is then classified according to with‘v\f{lii'ch group it has the greatest similarity

Disadvantages of the SVM teclmi(jue

* The biggest limitation of the support vector approach lies in choice of the kernel.

® Another limitation is speed and size, both in training and testing.

* Discrete data presents another problem.

* Although SVM’s have good generalization performance, they can be abysmally slow in
test phase.

® The most serious problem with SVM’s is the high algorithmic complexity and extensive
memory requirements of the required quadratic programming in large-scale tasks.

Conclusion

SVM’s can produce accurate and robust classification results on a sound theoretical basis,
even when input data are non-monotone and non-linearly separable. So they can help to
evaluate more relevant information in a convenient way. Since they linearize data on an
implicit basis by means of kernel transformation, the accuracy of results does not rely on the
quality of human expertise judgement for the optimal choice of the linearization function of
non-linear input data. SVM’s operate locally, so they are able to reflect in their score the
features of single companies, comparing their input variables with the ones of companies in
the training sample showing similar constellations of financial ratios. Although SVM’s do
not deliver a parametric score function, its local linear approximation can offer an important
support for recognizing the mechanisms linking different financial ratios with the final score
of a company. For these reasons SVM’s are regarded as a useful tool for effectively
complementing the information gained from classical linear classification techniques.




