s T—

o

Qo l"iow"bqp

s
£
£
%

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. SPo%p 2 2. Call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Leari:ing Resource Centre-JUIT

g

il

22

[l

" S e

LT

T R —— "

|
5
|
|

Integration Of Web Services

GURDEEP KANSAL (071265)
RAMAN KUMAR (071313)

Under the Supervision of

] ' Mr. Yashwant Singh Mr. Suman Saha
Senior Lecturer _ Senior Lecturer
JUIT Waknaghat . JUIT Waknaghat

ANFC
4 O litrg o
)

ap
Jut

May — 2011

Submitted in partial fulfillment of the Degree of
BACHELOR OF TECHNOLOGY (CSE)

T —

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
| WAKNAGHAT
SOLAN , HIMACHAL PRADESH, INDIA

Y

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT
SOLAN , HIMACHAL PRADESH

CERTIFICATE

This is to certify that the work titled “INTEGRATION OF
WEB SERVICES” submitted by “GURDEEP KANSAL (roll
no 071265) and RAMAN KUMAR (Roll no 071313)” in the
partial fulfillment for the award of degree of B. Tech (CSE) by
Jaypee University of Information Technology, Waknaghat has
been carried out under my supervision. This work has not been
submitted partially or wholly to any other University or Institute

for the award of this or any other degree or diploma.

Signature of Supervisor

Name of Supervisor Mr. Yashwant Sihgh
Designation Senior Lecturer
Date

ACKNOWLEDGEMENT

No venture can be completed without the blessing of
Almighty. We consider it our bounded duty to bow to Almighty
whose kind blessings always inspire us on the right path of life
This project is our combined effort and realizes the potential of
team and gives us a chance to work in co-ordination.

Science has caused many frontiers so has human efforts
towards human research. Our revered guide Mr. Yashwant Singh,
Senior Lecturer, Department of Computer Science and IT, JUIT,
has indeed acted as a light house showing us the need of sustained
effort in the field of Java and .NET to learn more and more. So we
take this opportunity to thank him, for lending us stimulating
suggestions, innovative quality guidance and creative thinking. He
provides us the kind of strategies required for the completion of a

task. We arc grateful to him for the support, he provided us in

doing thinks at our pace and for being patient for our mistakes.

ABSTRACT

The project entitled as INTEGRATION OF WEB SERVICES is
a method developed to integrate two web services. Today, the
ability to seamlessly exchange information between

Internal business units, customers, and partners is vital for success,
yet most organizations employ a variety of disparate applications
that store and exchange data in dissimilar ways and therefore
cannot "talk" to one another productively. Web services have
evolved as a practical, cost-effective solution for uniting
information distributed between critical applications over operating
system, platform, and language barriers that were previously

impassable.

Web Services offer a platform neutral approach for integrating
applications, so that it can be used to integrate diverse systems, in a
way supported by standards rather than proprietary systems. The
ability of an enterprise to have access to real-time information
spanning across multiple departments, applications, platforms and
systems is one of the most important driving factors behind the
adoption of Web Services. Companies should first start using Web
Services for their internal integration projects for business
processes that are non-transactional in nature, before they venture

using Web Services in B2B integration projects.

The basic idea behind this project is to design a website that has

two web services integrated and designed in it and to use tools like
NET, SOAP and WDDI to implement it.

TABLE OF CONTENTS
CERTIFICATE.......oiiiii e 2
ACNOWLEDGEMENT.........cco.ooiiiiiiiiiiee e 3
ABSTRACT ..o e 4
CHAPTER 1. e 7

Introduction...............coooiii i 7
LT XML e 11
L2 HTTP ..o 13
L3 SOAP.......o 15
14 WSDL......ocoiiiiiii e 20
LS UDDL.....oiiiiiic e 26
CHAPTER 2. e, 29
The Web Services Architecture 29
2.1 Architecture.cocooviiivvviie e, 29
2.2 Web services benefits.............ccooovvvvenniiineii 30
2.3 Web services development challenges................... 31
2.4 “Trip Planner” Web services development.............. 34
CHAPTER 3
Web Services Frameworksoo..ooiooviin 35
BANET....co e 36
32JAVA 42
CHAPTER 4
Software Requirement Specification.......................... 47
4.1 Data Flow Diagram..............coccoveeeieei o, 50
4.2 Sequence Diagram...............cccooovuiiiieiei 51

CHAPTER 5
System Requirements.............oooeeviiiiniin.. 52
CHAPTER 6
Project Web Site using Dot NET.............ooeeve 35
Snapshots and Working.................................. 58
CHAPTER 7
ConcluSIoN.vvviiiii 63
Scope of further improvement........................... 63
Main achievement of the system....................... 64
References........ocoooei i, 65

|
|
|

1. Introduction

Because of the level of the application’s integration, the Web
services have grown in popularity and are beginning to improve
the business processes. In fact, the Web services are being called
the next evolution of the Web.

Web services provide a promising framework for development,
integration, and interoperability of distributed software
applications. Wide-scale adoption of the web services Technology
in critical business applications will depend on the feasibility of
building highly dependable services. Web services technology
enables interaction of software components across organizational
boundaries. In such distributed environment, it is critical to
eliminate errors at the design stage, before the services are
deployed. Web services provide a promising framework for
development, integration, -and interoperability of distributed
software applications. Wide-scale adoption of the web services
technology in critical business applications will depend on the
feasibility of building highly dependable services.

The remainder of the report is structured as follows: section 2
provides information about web services architecture in
conjunction with the Web services technology and the core Web
services specifications; section 3 describes a case study on web
services and associated key technologies. The application shows
how to integrate Web Services on different platforms and how they
allow the interoperability between applications running on these
platforms, using the specific web services protocol stack presented

in section 2. Section 4 concludes the report and presents future

proposed developments,

The meaning is pretty much implicit because everybody knows
what a service is, and has a more or less clear definition in mind of
the Web. Maybe, that’s why a lot of people talk about them
without really understanding what is behind. A common example
of a Web service is that of a stock quote service; there is a request
for the current price of a specified stock to which the Web service |
responds with the price. Basically, the service receives a request,
processes it, and returns a response. You could say that a simple
Java servlet behaves exactly the same, but the difference is behind
the scene and that’s what makes the big asset Web services have 1

over all other servlet-like components.

The client’s basic needs over time don’t really change, but the)
essential tools that are required in order to fulfill these needs are
constantly evolving. Not long ago in nodes, which were present in
distributed systems, existed the need to control the applications in
a distributed manner. Basically if an application that was running
in a node happened to go down, that application was suppose to be
restarted at another node. The creation of these types of distributed
applications was nearly impossible. These days, it’s routine and
infact there are many choices. The essential problem is not if it is
possible for the components of distributed applications to
communicate between them, but to choose the best technology in
order to hold them together.

For example the .NET Framework, introduces good support for the
two ways to architect a distributed application. Remoting is the
architectural descendant of DCOM, allowing an object on one
computer to make proxy-based calls to the methods of an object on
another computer. Web services use a completely different
technique, based on open XML and SOAP protocols, WSDI, and

UDDI, which are used to invoke methods on a remote machine.

8
|
,t

XML is used to tag the data, SOAP is used to transfer the data,
WSDL is used for describiﬁg the services available and UDDI is
used for listing available services.

"Web services are dynamic programs that enable data and
applications to interact with each other on the Web through ad hoc
connections—without any human intervention what so ever", said
Sidharth, technical product manager for identity management at
Sun. A Web service is normally intended to be a distributed
application component. Its clients are other applications, not
human beings. A Web Service is any piece of code that can
communicate with other pieces of code via common Internet
technology. A Web Service is a "virtual component” that hides
"middleware idiosyncrasies™ like the underlying component model,
invocation protocol as far as possible.

The main advantages of Web services are flexibility and
versatility: they support a lot of architecture and are independent of
platforms and designs. Web services are built on several
technologies that work in conjunction with emerging standards to
ensure security and manageability, and to ensure that Web services
can be combined to work independent of a vendor. Also Web
services win on ease of development and interoperability.

Web services distributed computing model allows application-to-
application communication. For example, one . purchase-and-
ordering application could communicate to an inventory
application that specifies the items that need to be reordered or a
Web service from a credit bureau which requests the credit history
from the loan services, for prospective borrowers. In both cases,
the data interaction rmust be protected to preserve its
confidentiality. Web Services are considered to be the future of the

Internet. They are independent of the platform and also of the

technology, but in reality they are XML/SML collections of

standards which allow the interaction between systems (programs).
Heather Kreger, one of the IBM’s lead architects for SOA
Standards which developed the standards for Web services,
thought that Web Services dre like an interface which describes a
collection of operations, network accessible throughout the XML
standard messages. Web Services have the main role to access
different services and different data from different machines, and
so they offer to the clients a single public interface. First
advantage, the format of the messages exchanged between a client
and a Web service is specified by a standard called SOAP. This
means that Web services are not platform dependant. You could
have, for example, a Web service written in c# and deployed on the
NET Framework, communicating with a Java client running on a
Linux; all this can happen because they both speak the same
language: SOAP. Then, every Web service is deployed with a
WSDL file that acts like an instruction manual; in case someone
wants to use a particular Web Service, he simply has to look at that
WSDL file to learn how to communicate with the corresponding
service and use it. Finally, you can find a specific Web service
using UDDI; that’s the yellow pages of Web services where you
can search by different criteria to find the appropriate service and
its access points (URL).

All this is simply an exchange of XML documents over HTTP.
Now that we have the big picture, let’s take a closer look at those

different components..

10

1.1 XML

XML is the acronym for Hypertext Transfer Protocol. HTTP is a
W3C standard defined as an application-level protocol for
distributed, collaborative, hypermedia information systems that can
be built independently of the data being transferred. HTTP has
been in use by the World-Wide Web global information initiative
since 1990. Thus, we can say that HTTP is the most popular
transfer protocol and it’s supported on almost all platforms. By
implementing this standard, combined with XML, Web services
remove almost all frontiers between platforms,

More information about HT'TP can be found on the W3C website .

It is important to understand that XML is not a replacement for
HTML. In most web applications, XML is used to transport data,
while HTML. is used to format and display the data.

The following example is a note to Tove, from Jani, stored as

XML:

<note>

<to>Tove</to>

<from>Jani</from>
<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>
</note>

The tags in the example above (like <to> and <from>) are not
defined in any XML standard. These tags are "invented" by the
author of the XML document.

That is because the XML language has no predefined tags.

11

The tags used in HTML are predefined. HTML documents can
only use tags defined in the HTML standard (like <p>, <hl>, etc.).

XML allows the author to define his/her own tags and his/her own

document structure.,

XML Does Not DO Anything

Maybe it is a little hard to understand, but XML does not DO
anything. XML was created to structure, store, and transport
information. XML’s performance impact doesn’t merely affect the
network; larger messages mean more CPU time to parse and un-
parse messages, increased storage requirements (here the tag-to- J
text ratio is very important) and increased memory usage
(especially if DOM-based parsing is used).

Similarly, a Web Services interface should emerge from business)
requirements, not from a decision to take an existing interface and

“expose it” as a Web Service. The key to accomplishing the above

is through the use of patterns and guidelines, which will help
manage the complexity and decrease the risk of adoption of XML
and Web Services. Several industry patterns, such as Multichannel
Interface, Spoke and Hub, Canonical Data, etc., are depicted
above.

Focus on identifying patterns in the design and application
strategy. The note above is quite self descriptive. It has sender and

receiver information, it also has a heading and a message body.

But still, this XML document does not DO anything. It is just
information wrapped in tags. Someone must write a piece of

software to send, receive or display it.

12

—

1.2 HTTP

HTTP is the acronym for Hypertext Transfer Protocol. HTTP is a
W3C standard defined as an application-level protocol for distributed,
collaborative, hypermedia information systems that can be built
independently of the data being transferred. HTTP has been in use by
the World-Wide Web global information initiative since 1990. Thus,
we can say that HTTP is the most popular transfer protocol and it’s
supported on almost all platforms. By implementing this standard,
combined with XML, Web services remove almost all frontiers

between platforms.

HTTP defines how messages are formatted and transmitted, and !
what actions Web servers and browsers should take in response to J;
various commands. For example, when you enter a URL in your

browser, this actually sends an HTTP command to the Web server :

directing it to fetch and transmit the requested Web page.

The other main standard that controls how the World Wide Web
works is HTML, which covers how Web pages are formatted and
displayed.

HTTP is called a stateless protocol because each command is
executed independently, without any knowledge of the commands
that came before it. This is the main reason that it is difficult to
implement Web sites that react intelligently to user input, This
shortcoming of HTTP is being addressed in a number of new
technologies, including ActiveX, Java, JavaScript and cookies.
HTTP functions as a request-response protocol in the client-server
computing model. In HTTP, a web browser, for example, acts as a
client, while an application running on a computer hosting a web

site functions as a server. The client submits an HTTP request

13

message to the server. The server, which stores content, or
provides resources, such as HTML files, or performs other
functions on behalf of the client, returns a response message to the
client. A response contains completion status information about the
request and may contain any content requested by the client in its
message body.

A client is often referred to as a user agent (UA). As well as web
browsers, web crawlers are another common user agent. These
include the indexing software used by search providers. Voice
browsers are another less common but important class of user
agent.

The HTTP protocol is designed to permit intermediate network
elements to improve or enable communications between clients
and servers. High-traffic websites often benefit from web cache
servers that deliver content on behalf of the original, so-called
origin server to improve response time. HTTP proxy servers at
network boundaries facilitate communication when clients without
a globally routable address are located in private networks by
relaying the requests and responses between clients and servers,
HTTP is an Application Layer protocol designed within the
framework of the Internet Protocol Suite. The protocol definitions
presume a reliable Transport Layer protocol for host-to-host data
transfer. The Transmission Control Protocol (TCP) is the dominant
protocol in use for this purpose. However, HTTP has found
application even with unreliable protocols, such as the User
Datagram Protocol (UDP) in methods such as the Simple Service
Discovery Protocol (SSDP).

HTTP Resources are identified and located on the network by
Uniform Resource Identifiers (URIs)—or, more specifically,
Uniform Resource Locators (URLs)—using the http or https URI
schemes. URIs and the Hypertext Markup Language (HTML),

14

form a system of inter-linked resources, called hypertext
documents, on the Internet, that led to the establishment of the
World Wide Web in 1990 by English physicist Tim Berners-Lee.
The original version of HTTP (HTTP/1.0) was revised in
HTTP/1.1. HTTP/1.0 uses a separate connection to the same server
for every request-response transaction, while HTTP/1.1 can reuse a
connection multiple times, to download, for instance, images for a
just delivered page. Hence HTTP/1.1 communications experience
less latency as the establishment of TCP connections presents
considerable overhead.

An HTTP session is a sequence of network request-response
transactions. An HTTP client initiates a request. It establishes a
Transmission Control Protocol (TCP) connection to a particular
port on a host (typically port 80; see List of TCP and UDP port
numbers). An HTTP server listening on that port waits for a
client's request message. Upon receiving the request, the server
sends back a status line, such as "HTTP/1.1 200 OK", and a
message of its own, the body of which is perhaps the requested

resource, an error message, or some other information.

1.3 SOAP

SOAP is the acronym for Simple Object Access Protocol. The
role of SOAP is to encode the data in XLLM format and to make the
message exchange possible between the applications in XML
format. It uses the model request answer, where the request is
placed by the SOAP client, and the answer is given by the service
provider, named SOAP server. Everything is shown in the below

situated Figure.

15

- s>

Request

-
SOAP XML S0AP
Client Muessages Server
{requestar) {provider)

Response

SOAP’s basic request-response model

The protocol is used both to send and to receive messages from the
Web Service.

s

One advantage is to encapsulate the functionality of the RPC
(Remote Procedure Call) using the extensibility and the
functionality of the XML. SOAP defines a format for both \

pree

messages, and a model for their processing by the receiver. In

addition, SOAP — may also define a framework for protocol links,

so that the SOAP messages can be transferred using the protocol
stack from the transport level,

A SOAP message consists of a SOAP envelope, the root of the
message, which in turn contains an optional header, and,
necessarily, a body, independent of each other.

SOAP message passes on its way from sender to receiver through
many SOAP nodes, which can change the message. All the SOAP
nodes form SOAP message path.

The Header contains geﬁeral information about security —
authentication and session, and about the message processing by

the intermediary nodes. The data regarding the authentication

16

usually is encrypted using WS-Security standard. The tag - "body"
never misses from a SOAP message. Most of the times it is the last
child of the "Envelope" node and it contains the information that is
going to be transferred between applications (Web service input or

output). It is shown an example of a SOAP message.

"

<?xm] version="1.0" encoding="utf-8"7s
<sogap:Envelope xmins:xsi="http://vaw.v3. org/2001/xMLSCchema-instance”
xmins:xsd="http://wwav.w3.org/2001/XMLsChema”
xmins:soap="http:// www. w3, org/2003/05/50ap-envelope>
<sgap:Body>
<GetMaterialsResponse xmins="http://tempuri,.org/ >
{GetMateria?sResu3t>mexm14{GetmaterialsResu?t>
</GetMaterialsresponses
</soap:Body>
</soap:Envelope>

SOAP Message

In the above example, in the SOAP envelope the XML namespace
and the type of the used message encoding are not specified. The

Header node is missing in this example, and the body node

contains the result of a "GetMaterials” method, which is a
serialized Data Table type object in XML format,

SOAP was originally an acronym for Simple Object Access
Protocol, But since SOAP Version 1.2 (SOAP 1.2 Part 0, 2003;
SOAP 1.2 Part 1, 2003) it is technically no longer an acronym.

<?xml version="1.0" encoding="utf-8"7>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/" |
xmlns:tns="http://alex/MSEWS" 5

17

xmlns:types="http://alex’/MSEWS/encoded Types"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0org/2001/XMLSchema">

<soap:Body
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encodi
ng/">

<tns:GetAvailableSEWS />

</soap:Body>

</soap:Envelope>

SOAP request to the MSEWS, invoking the GetAvailableSEWS
function,

SOAP is an XML-based protocol from the W3C for exchanging
data over HTTP.

It provides a simple, standards-based method for sending XML)
messages between applications. Web services use SOAP to send

messages between a service and its client(s). Because HTTP is

)

supported by all Web servers and browsers, SOAP messages can
be sent between applications regardless of their platform or l
programming language. This quality gives Web services their
characteristic interoperability.

SOAP messages are XML documents that contain some or all of
the following elements:

Envelope — specifies that the XML document is a SOAP meséage;
encloses the message itself.

Header (optional) — contains information relevant to the message,
e.g., the date the message was sent, authentication data, etc.

Body — includes the message payload.

Fault (optional) — carries information about a client or server error

within a SOAP message.

Data is sent between the client(s) and the Web service using

request and response SOAP messages, the format for which is

18

specified in the WSDL definition. Because the client and server
adhere to the WSDL contract when creating SOAP messages, the

messages are guaranteed to be compatible.

<?xml version="1.0" encoding="utf-8"7>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://alex/ MSEWS"

xmins:types="http://alex/ MSEW§"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<soap:Body
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encodi
ng/">

<types: GetAvailableSSEWSResponse>
<GetAvailableSSEWSResult
xsiztype=""xsd:string">&It;7xml version="1.0"
encoding="utf-16" standalone="yes"?>

<available SEWS>

<, SEWS> ﬂ

<name>altavista.java</mame>
<binding& gt;http://localhost:8080/SEW Saltavista/SEWS?

WSDL</bindingé&egt; *‘
</SEWS> f
</available SEW S> </GetAvailableSEWSResult> ’[]
</types:GetAvailableSEWSResponse>
</soap:Body> - : }

</soap:Envelope>

SOAP response from the MSEWS

19

'

1.4 WSDL

Web Service Description Language (WSDL) defines an XML
grammar for describing network services as a set of endpoints that
accept messages containing either document-oriented
(style="document™) or procedure-oriented (style="rpc”)
information. The endpoint is defined by a network protocol and a
message format, however, the extensible characteristic of WSDL
allow the messages and endpoints being described regardless of
what message formats or network protocols are being used to
communicate. In other words, a WSDL file is an XML document
that describes a set of SOAP messages and how the messages are
exchanged. Some very good tools for WSDL file processing can be
found on Internet [10]; going from verification of WSDL files to

automatic generation of proxy classes or SOAP request/response

R N L

messages out of them.

To illustrate all this, please refer to LISTING 2-3 the WSDL
document of the altavista Search Engine Web Service (SEWS)
described in details in the next chapter. You can distinguish five
distinct parts of a WSDL file on that example: <types>,
<message>, <portType>, <binding> and <service> that are linked

together.

<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns:soap="http.//schemas.xmisoap.org/wsdl/soap/"
xmins.: tms="http://alex/SEWS"
xmlns:s="http:/fwww.w3.org/2001/XMLSchema"
xmins:http="http.//schemas.xmisoap.org/wsdl/http/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmins:mime="http://schemas.xmlsoap.org/wsdi/mime/"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

20

targetNamespace="http.//alex/SEWS"
xmins="htip.//schemas.xmlsoap.org/wsdl/">

<types />

<message name="SearchForSoapin">

<part name="String 1" type="s:string" />

<part name="int 2" type="5s:int" />

</message>

<message name="SearchForSoapQOut">

<part name="SearchForResult" type="s.:string" />
</message>

<portType name="SEWSSoapPort">

<operation name="SearchFor">

<input message="tns:SearchForSoapln" />
<oufput message="tns:SearchForSoapOut" />
</operation>

</portType>

<binding name="SEWSSoapPort" type="tns:SEWSSoapPort">
<soap:binding transport="http://schemas.xmlsoap.org/soap/htip"

style="rpe" />

<operation name="SearchFor">

<soap.operation soapAction="http://alex/SEWS/SearchFor"
style="rpc" />

<input>

<soap:body use="encoded" namespace="http://alex/SEWS"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</input>

<output>

<soap:body use="encoded" namespace="hiip.//alex/SEWS"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</output>

</operation>

</binding>

<service name="SEWS'">

<port name="SEWSSoapPort" binding="tns:SEWSSoapPort">
<soap:address
location=""http://localhost/SEWSaltavista/SEWS.asmx"" />

</port>

</service>

</definitions>

WSDL document of the altavista SEWS

21

.

-

The description level, located above the packing level, is
represented by the WSDL protocol, being based on the XML
standard. WSDL is a language written in XML, used as a model
for describing Web services. WSDL reached version 2.0, but in
version 1.1 the D stood for Definition. Version

1.2 of WSDL was renamed WSDL 2.0 because of the major

differences between the two versions.

New features in WSDL 2.0

Nowadays, W3C recommends using WSDL 2.0 [11], but the
problem is that it is not fully supported in all developing
environments. The main differences between the two versions are:
+ in WSDL 2.0 there’s binding to all the HTTP request methods,
whereas in WSDL 1.1 only the GET and POST methods;

* in WSDL 2.0 further semantics were added to the description
language;

* WSDL 2.0 offers better support for RESTful web services;

» renaming of PortTypes (WSDL 1.1} into Interfaces (WSDL 2.0);
« renaming of Ports (WSDL 1.1) into Endpoints (WSDL 2.0);

« WSDL 2.0 can be implemented in a much simpler way.

WSDL is used in combination with SOAP and the XML schema
representing the web service description. The main purpose of
WSDL is that it leverages the connection between a client program

and a web service, by determining the server available operations.

22

o

A AP e "

WSDL Components

Port/Endpoint — defines the address or connection to a web service;
usually, it is represented by a simple URL.

Service — consists of a set of ports/endpoints, meaning the system
functions exposed to the web based protocols.

Binding — defines a concrete message format and transmission
protoco! which may be used to define a port/endpoint.
PortType/Interface — defines a web service, all the operations that
can be performed, and the messages used to perform the operation.
Operation — is an interaction with the service (a method) formed by
a set of messages exchanged between the service and the other
programs involved in the interaction.

Type — describes the data type definitions that are relevant for the
exchanged messages. The endpoint is defined by a network
protocol and a message format, however, the extensible
characteristic of WSDL allow the messages and endpoints being
described regardless of what message formats or network protocols
are being used to communicate.

Components 1-3 represent the concrete section of a WSDL, and

components 4-6 represent the abstract section.

The next figure shows an example of a WSDL message

— <definitions name="ServiceSAP" targetNamespace="http://192.168.1.12/ServiceSAP/ServiceSAP asmx?WSDL">
—<wsdl:message name="GetMaterialsSoapIn">
<wsdl:part name="parameters" element="tns:GetMaterials"/>
</wsdl:message>
—<wsdl:message name="GetMaterialsSoapOut">
<wsdl:part name="parameters" element="tns:GetMaterialsResponse"/>
</wsdl:message>
—<wsdl:portType name="ServiceSAPSoap">
—<wsdl:operation name="GetMaterials">
<wsdl:input message="tns:GetMaterialsSoapln"/>
<wsdl:output message="tns:GetMaterialsSoapOut"/>
</wsdl:operation>
<twsdl:portType>
— <wsdl:binding name="ServiceSAPSoap" type="tns:ServiceSAPSoap">
<soap:binding transport="http-//schemas xmlsoap.org/soap/http"/>
— <wsdl:operation name="GetMaterials">
<soap:operation soapAction="http7//tempuri.org/GetMaterials" style="document"/>
—<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
= <wsdl:ontput>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
—<wsdl:service name="ServiceSAP">
— <wsdl:port name="ServiceSAPSoap" binding="tns:ServiceSAPSoap">
<soap:address location="http//192.168.1.12/ServiceSAP/ServiceSAP .asmx"/>
</wsdl:port>
</wsdl:service>

LY

Pave.

2 sl

WSDL is maintained by the W3C, WSDL is an XML-based format
for describing Web services. Clients wishing to access a Web
service can read and interpret its WSDL file to learn about the
location of the service and its available operations. In this way, the
WSDL definition acts as the initial Web service interface,
providing clients with all the information they need to interact with
the service in a standards-based way. Through the WSDL, a Web
services client learns where a service can be accessed, what

operations the service performs, the communication protocols the

24

service supports, and the correct format for sending messages to
the service.
A WSDL file is an XML document that describes a Web service

using six main elements:

Port type — groups and describes the operations performed by the
service through the defined interface.

Port — specifies an address for a binding, ie., defines a
communication port.

Message — describes the names and format of the messages
supported by the service,

Types — defines the data types (as defined in an XML Schema)
used by the service for sending messages between the client and
server.

Binding — defines the communication protocols supported by the
operations provided by the service.

Service — specifies the address (URL) for accessing the service.
The WSDL document that describes a Web service acts as a
contract between Web service client and server. By adhering to
this contact the service provider and consumer are able to
exchange data in a standard way, regardless of the underlying

platforms and applications on which they are operating.

WSDL builds on XML Schema by making it possible to fully
describe Web services in terms of messages, operations, interfaces
(portTypes), bindings, and service endpoints. WSDL definitions
make it possible to generate code that implements the given
interface, on either the client or the server, making Web services

accessible to the masses.

25

1.5 UDDI

Universal Discovery Description and Integration (UDDI) is the
yellow pages of Web services. A UDDI directory entry is an XML
file that describes a business and the services it offers. Both can be
categorized and have keys so one can find a provider or a service
by different ways. Web services are also defined through a
document called a Type Model (tModel) that describes their
interface. A tModel is simply a WSDL file without the <service>
tag; it contains information to generate the different proxy classes
or SOAP messages to communicate with the Web service but it
does not specify the access point of the service.

Some public UDDI Business Registry Nodes, where you can
publish your own Web services or search for existing ones, are
available on the Internet. If you do not want to distribute openly
your services, you can install your own UDDI server,
Independently of the choice, there are two ways of accessing a
UDDI registry. The first one is through a web browser interface
that provides form-based access to register or search for a Web
service. The second one is programmatically using standardized
API’s; the main advantage of that solution is that it can be used
dynamically at runtime, UDDI is a standard sponsored by OASIS
(Organization for the Advancement of Structured Information
Standards). Often described as the yellow pages of

Web services, UDDI is a specification for creating an XML-based
registry that lists information about businesses and the Web
services they offer. UDDI provides businesses a uniform way of
listing their services and discovering services offered by other
organizations. Though implementations vary, UDDI often
describes services using WSDL and communicates via SOAP

messaging.

26

£

Registering a Web service in a UDDI registry is an optional step,
and UDDI registries can be public or private (i.e. isolated behind a
corporate firewall).

To search for a Web service, a developer can query a UDDI
registry to obtain the WSDL for the service he/she wishes to
utilize. Developers can also design their Web services clients to
receive automatic updates aBout any changes to a service from the
UDDI registry.

UDDI stores information about web services, it consists of web
services interfaces written in WSDL. UDDI can be interrogated via
SOAP messages and provides access to WSDL documents
describing certain protocol bindings and message formats to
interact with the web services. UDDI terminology contains also the
following:

* Nodes — servers which support UDDI specifications nodes belong
to a registry;

* Registries — collections of one or more UDDI nodes.

Benefits of UDDI

All businesses can benefit of UDDI because it solves the following
problems:

+ Discovering the right business from millions of online
businesses;

* Once the preferred business is discovered, UDDI enables how to
enable commerce;

» New customers can be reached and access to current customers
can be increased;

*» Market reach and offerings can be expanded;

* Barriers are removed to allow rapid participation in the global

Internet economy;

27

a

s ol - . ey

« Services and business processes are programmatically described

in a single, open, and secure environment.

-<discovery>
<contractRef ref="http/192.168.1.12/ServiceSAP/ServiceSAP asmxTwsdl' docRef="hitp:/192. 168 1.1/ServiceSAP/ServiceSAP asmx’>
<soap address="http/192. 168 1 12 ServiceSAP/ServiceSAP asmx’ binding="q] ServiceSAPSoap'>
<soap address="http/192. 168 1 12/ServiceSAP/ServiceSAP asmx’ binding="q? ServiceSAPSoap12">
<discovery>

it is shown an example of a UDDI message

Although the basic specifications of Web Services: XML, SOAP,
WSDL and UDDI provide an acceptable level of interoperability
and integrity a significant effort has made to increase the

applications area of Web Services, and to address to higher various

3

issues from the real world. Thus new specifications emerged for P

Web Services’ reliability, security, metadata management,

transactions and orchestration, all of which have extended the Web

s

Services’ architecture. Among the new specifications it is worth to
be mentioned:

¢ Metadata Management: WS-Addressing, WS-Policy, WS-
MetadataExchange;

* Reliable Messaging: WS-Reliability, WS-ReliableMessaging,
WS-Eventing, WS-Notifications;

e Security: WS-Authorization, WS-SecurityPolicy, WS-Trust,
WSSecureConversation, WS-Federation, WS-Privacy, XML
Encryption, XML Signature;

* Transactions: WS-Transactions family(WS-AtomicTransaction,
WSBusinessActivity, WS-Coordination), WS-Composite
Application Framework(WS-CAF); |
* Orchestration

* Choreography

28

2.1 The Web Services Architecture

The figure below describes the architecture of the Web Services.
The architecture of the Web Services resembling with the TCP/IP
reference model is presented in five levels: Network, Transport,
Packing, Description and Discovery. Each level is represented by
different basic protocols. The network level concurs with the
network level from the TCP/IP reference model, offering basic
communication, addressing and rooting. Above the network level
there is the transport level that offers the opportunity of direct
communication between the existing applications from the
network. The most important protocols are TCP/IP, UDP, FTP,
HTTP, SMTP, Jabber. {

The web services can be implemented above any of the other
protocols. The Packing level, which is above the Transport level,
"packs” the data in the XML format ~ a format known by all the

other parties involved in communication. XML and SOAP -

29

Simple Object Access Protocol, are basic protocols of the Packing

Level and are produced by the W3C standard.

2.2 Web Services Benefits

Web services provide several technological and business benefits,
a few of which include:

- Application and data integration

- Versatility

- Code reuse

- Cost savings

The inherent interoperability that comes with using vendor,
platform, and language independent XML technologies and the
ubiquitous HTTP as a transport mean that any application can
communicate with any other application using Web services. The

client only requires the WSDL definition to effectively exchange

2

data with the service — and neither part needs to know how the
other is implemented or in what format its underlying data is

stored. These benefits allow organizations to integrate disparate

applications and data formats with relative case.

Web services are also versatile by design. They can be accessed by |
humans via a Web-based client interface, or they can be accessed
by other applications and other Web services. A client can even
combine data from multiple Web services to, for instance, present

a user with an application to update sales, shipping, and ERP

systems from one unified interface — even if the systems
themselves are incompatible. Because the systems exchange
information via Web services, a change to the sales database, for

example, will not affect the service itself.

30

Code re-use is another positive side-effect of Web services'
interoperability and flexibility. One service might be utilized by
several clients, all of which employ the operations provided to
fulfil different business objectives. Instead of having to create a
custom service for each unique requirement, portions of a service

are simply re-used as necessary.

All these benefits add up to significant cost savings. Easy
interoperability means the need to create highly customized
applications for integrating data, which can be expensive, is
removed. Existing investments in systems development and
infrastructure can be utilized easily and combined to add additional

value. Since Web services are based on open standards their cost is

: 3

low and the associated learning curve is smaller than that of many

proprietary solutions. E
Finally, Web services take advantage of ubiquitous protocols and
the Web infrastructure that already exists in every organization, so f

they require little if any additional technology investment.

2.3 Web services development challenges

With the numerous advantages of Web services come a few
challenges. Most significantly, though Web services themselves
are designed to be simple, actually developing and implementing
them can be complex. WSDL syntax becomes complicated
quickly, especially when building a service with multiple
operations in a text-based editor. A snippet of WSDL code is
shown in Figure below.

Even looking at the completed code, it's difficult to follow the

chain of connections from a service name, to the binding, to the

31

port type, and so on, never mind writing the code correctly by

hand.

<message name="messageName"/>

<message name="GetAgencyNamelNput'=

i <partname="parameter" type="xs:string"i>

=fmessage=

<message name="GetAgentNameResponse">

i <part name="parameter" type="xs:slring"/>

<fmessage=

=poriType name="SOAPport'=

=operation name="GetAgencyName"=

i <input message="y.GetAgencyNamelNput'/>

i =output message="y.GetAgentNameResponse"/>

<foperation=

<iporType=

=hinding name="AgencyQuerySOAP" type="y:SOAPport'=>

=goap:hinding style="rpc" transport="hitp:fischemas xmlsoap.orgfsoapihttp”i=

=operation name="GetAgencyName"=

=goap.operation/=

=input=

[<soap:bodyuse="literal'/=

<finput= -
=output>

i =<soap:body use="literal'f=

=foutput=

=foperation=

=fhinding=

<service name="AgencyQuery'=

=port name="QueryPort’ hinding="y:AgencyQuerySOAP"=
i =soap:address location="hitpfiwww xmlspy.com"/=
=fport=

<fsenice=

ra—

There are tools that will auto-generate WSDL code based on an
existing application that a developer wants to expose as a Web
service. However, best practices dictate that designing the WSDL
be the first step in architecting Web services. The contract-first
approach to Web services development has many advantages.
Designing the interface first results in better overall planning prior
io implementing the service and helps ensure the service will be
effective in multiple client scenarios. In addition, WSDL uses

language-independent XML Schema for type definitions, allowing

32

Web service designers to specify strongly-typed requirements for
communicating with the Web service. Using XML Schema, a Web
services developer can specify that an email address must follow a
certain pattern (username@domainname.xxx), that a product
quantity must be a positive whole integer, that a first name and last
name are required input values, and so on. This same level of data
typing is not provided when a WSDL is auto-generated from an
existing Java or C# application.

In addition, because WSDL is standards-based, designing
the WSDL first, then building the Web service based on this
definition prevents developers from including language-specific
types and constructs in their Web service.

This ensures that any Web services client can interact with the
service without interoperability issues. Though the WSDL
contract-first approach may seem more rigorous at first, the
resulting benefits make the service more effective by ensuring
interoperability — which, after all, is the rationale behind using
Web services in the first place. Lack of tool support is often cited
as the biggest obstacle to the contract-first approach to Web
services design.

Another challenge arises after the WSDL is defined, when the
developer must actually write the Java or C# code to connect the
required data sources and implement the service on a server. Given
that even the simplest of Web services may require thousands of
lines of code, this process is often time consuming

and error prone. In addition, given that Web services require the
expertise of XML developers who may not necessarily also be Java
or C# experts, this step can be especially challenging.

Recognizing these barriers to Web services development, We have
created a suite of tools for designing and building Web services in

a graphical manner.

33

Al Al e — 3

This approach allows developers to build well designed, standards-

conformant, interoperable Web services — without manual coding.

2.4 “Trip Planner” Web
services development

This unique graphical approach simplifies WSDL development by
enabling an easy-to-understand visual process.

Instead of working solely with a text view, developers can build
their WSDL files graphically, with full validation and editing help,
and the corresponding WSDL code is generated behind the scenes
where it can be referenced and edited at any time. This eliminates
much of the complexity otherwise associated with the design-
before-implementation development approach.

Once a WSDL file is created, the Web services developer must still
write the extensive Java or C# code to programmatically connect
the operations defined in the WSDL with the data they will return.
Altova MapForce automates this step with its graphical WSDL
mapping interface and code generation capabilities. MapForce
displays WSDL operations as visual mapping items that can be
dragged and dropped to connect with their corresponding data
sources. You can also filter and process data before returning it as
a Web services response message. Once a WSDL mapping design
is complete, MapForce auto-generates the Java or C# code required
to implement the service server-side.

Completing the Web sérﬁces design loop are the SOAP features in
XMLSpy.

XMLSpy includes a SOAP client that automatically creates SOAP

messages based on criteria defined in a WSDL document. Then it

34

AR T i)

actually sends the message to the Web service and displays the
response. This feature is very useful for testing your own Web
services implementations, and it's invaluable for interpreting
WSDL documents when you need to create a client based on
someone else's WSDL definition.

XMLSpy also includes a SOAP debugger, which acts as a Web
services proxy between the client and server, allowing you to
intercept and examine the actual messages sent between a client
and server. The SOAP debugger allows you to set functional or
conditional breakpoints on request and response messages to
quickly track down and debug any problems with aWeb service

client or server implementation.

3. Web Services Frameworks

One of the mains goals of this thesis is to show that “Web services’
is not just another buzzwofd spinning around the Internet. The
objective is to demonstrate, that beyond theories and concepts, it is
possible to build Web services and real applications that integrate
them. My intention is to exploit most of the features offered by
Web services through the implementation of a Trip Planner Web
Service on two different platforms: Java and .NET.

If someone is still skeptic as far as the real added value of the Web
services, he may change his opinion, after reading this document,
and understand the reasons why companies like Microsoft re-built

their entire strategy around Web service.

35

2

AR e =

3.1 .NET

Also known as Microsoft® NET, is defined as set of sofiware
technologies designed to connect your world of information,
people, systems, and devices. It enables a high level of sofiware
integration through the use of Web services.

The future of Web services, dot-NET and J2EE may be unclear,
but the subject has already generated intense debate and
controversy. Issues range from privacy concerns to debates on
standards for conducting international business over the Internet.
Business considerations aside, Microsoft dot-NET contains some

cool networking technology that is worthy of a closer look.

LS W= & e =

Smart
‘ Clients
XML Web
Services
" Developer
Tools
Servers

Web services are the core of .NET; it’s the glue that holds and

connects everything together (see FIGURE).

36

To be able to build, deploy and run Web services, Microsoft® has
put in place the NET Framework. The same environment is also
used for building other Web-based and smart client applications. It
includes the common language runtime, class libraries and a
multiple-language support that enables developers to use the
appropriate language for a specific component with the capacity to
combine them within a single application.

The Microsofi® .NET Framework Software Development Kit
(SDK) including the .NET Framework, as well as everything you
need to write, build, test, and deploy Microsoft® NET—connected
applications and technologies, can be downloaded at
http:/msdn.microsoft.com/netframework/downloads/.

Microsoft® Internet Information Services (IIS) is required to be
able to run your Web services. Besides, Visual Studio .NET can
optionally be installed for rapidly building and integrating Web

services,

A Web Service Example

In the following example we will use ASP.NET to create a simple
Web Service that converts the temperature from Fahrenheit to

Celsius, and vice versa:

<%@WebService Language="VBScript"

Class="TempConvert” %>

Imports System
Imports System. Web.Services

Public Class TempConvert : Inherits WebService

37

PR

il * = -

ik

<WebMethod()> Public Function FahrenheitToCelsius
(ByVal Fahrenheit As String) As String
dim fahr
Jahr=trim(replace(Fahrenheit,",","."))
if fahr="" or IsNumeric(fahr)=false then return "Error"
return ((((fahr) - 32) /9) * 5)

end function

<WebMethod()> Public Function CelsiusToFahrenheit
(ByVal Celsius As String) As String
dim cel
cel=trimfreplace(Celsius,",","."})
if cel="" or IsNumeric(cel)=false then return "Error"
return ((((cel) * 9)/5) + 32)

end function

end class

A WY o WA]

This document is saved as an .asmx file. This is the ASP.NET file
extension for XML Web Services.

Example Explained
Note: To run this example, you will need a NET server.
The first line in the example states that this is a Web Service,

written in VBScript, and has the class name "TempConvert":

<%(@) WebService Language="VBScript"

Class="TempConvert" %>

38

The next lines import the namespace "System. Web.Services” from

the NET framework:

Imports System
Imports System. Web.Services

The next line defines that the "TempConvert" class is a

WebService class type:

Public Class TempConvert ! Inherits WebService

The next steps are basic VB programming. This application has
two functions. One to convert from Fahrenheit to Celsius, and one

to convert from Celsius to Fahrenheit.

The only difference from a normal application is that this function
is defined as a "WebMethod()".
We could use "WebMethod(})" to convert the functions in your

application into web services:

<WebMethod()> Public Function FahrenheitToCelsius
(ByVal Fahrenheit As String) As String
dim fahr
Jahr=trim(replace(Fahrenheit,",","."))
if fahr=""or IsNumeric(fahr)=false then return "Error"
return ((((fahr) - 32)/ 9} * 3)

end function

<WebMethod()> Public Function CelsiusToFahrenheit
(ByVal Celsius As String) As String

39

¥

- -

Aol e

dim cel

cel=trim(replace(Celsius,",","."))

if cel="" or IsNumeric(cel)=false then return "Error"
return ({((cel) *9)/5) + 32)

end function

Then, end the class:

end class

Publish the .asmx file on a server with .NET support, and you will
have your first working Web Service.

Look at our example Web Service
ASP.NET Automates the Process

With ASP.NET, you do not have to write your own WSDL and
SOAP documents.

If you look closer at our example Web Service, you will see that
ASP.NET has automatically created a WSDL and SOAP request.
However, just as we use frameworks such as ASP and ASP.NET to
build Web applications, we would much rather use a framework
for building Web Services.

The reasoning is quite logical. We don't need to reinvent the
plumbing—that is, at a high level, the capability to serialize our
data as XML, transport the data using HTTP, and de-serialize the
XML back to meaningful data. Instead, we want a framework that
makes building Web Services easy, allowing us to focus on the
application logic not the plumbing. ASP.NET provides this

framework for us.

From a developer's point of view, if you have ever written

application logic, you have the required skills to author ASP.NET

40

Web Services. More importantly, if you're at all familiar with ASP
or ASP.NET application services, (application state memory, and
0 on) you can also leverage these skills when you build ASP.NET

Web Services.
a Simple Example

Public Class MyMath
Public Function Add(a As Integer, b As Integer) As Integer
Returna+b
End Function

End Class

We could use this class and its method as follows:

Dim mymath As new MyMath
Dim result As Integer
resull = mymath.Add(10, 20)

To expose the above class, MyMath, as an ASP.NET Web Service
we need to move the application logic into a *.asmx file. Just as we

use the extension *.aspx for ASP.NET Pages, we use *.asmx to tell
ASP.NET that the file is an ASP.NET Web Service.

After we created the *.asmx source file and add our application

logic, we need to make a few more small changes:

<%(@ WebService Language="VB" Class="MyMuath" %>
Public Class MyMath
Public Function <WebMethod()>Add(a As Integer, b As
Integer) As Integer
Returna+b
End Function
End Class

41

3

N

Changes to our source

The changes we've made to the *.asmx file include adding
a WebService directive that names both the Language as well as
the Class we're exposing as a Web Service.
The WebServicedirective is required, as we must tell ASP.NET
the class that contains the application logic. Next, we've added
a <WebMethod()> attribute to our Add() function declaration. An
attribute is a declarative code element that lets us change the
behavior of our application logic without necessarily writing more
code. In the case of the <WebMethod()> attribute, this tells
ASP.NET that the method with this attribute is to be treated as
'Web callable'. Web callable in the sense that ASP.NET does the
necessary work for this method to support SOAP.

3.2 JAVA

Sun couldn’t let all the Java developers without a solution to build,
deploy and run Web service so they released the Java Web Service
Developer Pack (WSDP). Based on the Java 2 SDK, this toolset
adds new API including XML Messaging (JAXM), XML
Processing (JAXP), XML Registries (JAXR), XML-based RPC
(JAX-RPC) and the SOAP. with Attachments (SAAJ). It comes
also with the Apache Tomcat container and the famous Ant Build
Tool; therefore, all you need to build your first Web service is your
favorite text editor.

The main advantage Java WSDP has over the .NET Framework is
that it is supported not only on the Windows® platforms but also
on Solaris™ 2.9 and RedHat Linux® 7.2.

42

More information about the Java WSDP can be found on the Java
website.

Other tools exist on the market for the development of Web
services using Java; the latest version of JBuilder includes the
Borland Web Services Kit supporting the JAX-RPC standards and
the Apache Axis project. JBuilder is, like Visual Studio .NET, a
development tool but with the benefit of being cross-platform
(available on Windows®, Solaris™, Linux® and Max® OS X).
JBuilder can be downloaded.

Another example is GLUE, a Web Services platform that allows
you to publish any Java object as a Web service without
modification. With GLUE, any Web service can also be accessed
as if it were a local Java object (no stub generators or command

line tools are necessary).

To use standard Java for creating a webservice the following steps

are done

create a standard java class

use annotations to describe the class as a webservice

run a command line tool to create the WSDL

you run the class for example via a main program

EXAMPLE-

The server Java project

Create a Java project "de.vogella.webservice.java6.first.provider".

Create a package with the same name and then the following class.

43

package
de.vogella.webservice,javaé.first.provider;

import javax.jws.WebService;
import javax.jws.soap.SCAPBinding;
import javax.jws.scap.SOAPBinding.Style;

import javax.xml.ws.Endpoint;

@WebService
public class WiseQuoteServer
@SOAPBinding(style = Style.RPC)
public String getQuote (String category) |
if (category.equals({"fun"}) f{

return "5 is a sufficient
approximation of infinity.";

}
if {(category.equals("work")) {

return "Remember to enjoy l1life,
even during difficult situatons.”;

} else
return "Becoming a master is
relatively easily. Do something well and then

continue to do it for the next 20 years”;

}

public static void main(String[] args) f{

WiseQuoteServer server = new

' Endpoint endpoint = Endpoint.publish({ |

"http://localhost: 9191 /wisequotes”, !
~ server);

If you start your main program the service should be up and
running. Using the console switch to an empty directory and call

the wsimport command line tool which is part of the JDK.

Using the Webservice

Create a new Java project
"de.vogella.webservice. java6.first.consumer" create a package with j
the same name, copy the created java classes to your new project /
package and adjust the path name.

Create a new Java class TestWS, java with the following coding.
The coding demonstrates how to get the connection directly and
how to get the connection with specifying the URL. Specifying the
URL is useful in case you what to use a TCP-monitor to trace the
TCP data. In this case you would direct the client to the TCP
monitor which would re-direct the TCP data to the server and vice
versa.

. package de.vogella. webservice java6 first.consumer,

import java.net. MalformedURLException;

import jova.net. URL;
import javax.xml.namespace. OName,

public class TestWS {

public static void main(String[Jargs) {

45

WiseQuoteServerService — service = new

WiseQuoteServerService();

WiseQuoteServer servicePort =
service.getWiseQuoteServerPort();

// Calling the webservice
System.out.println(service Port. getQuote("fun"));

System.out., printin(service Port.getQuote("work"));

// Alternatively if you want to specific the URL
directly

ry {

URL url = new
URL("http://localhost: 9191/ wisequotes? wsdl");

WiseQuoteServerService
serviceWithUrl = new WiseQuoteServerService(

url,

new OName(
"hitp.://provider.first java6.webservice.vogella.de/",
"WiseQuoteServerService"));
WiseQuoteServer servicePortWithUrl
= serviceWithUrl

.getWiseQuoteServerPort();

System.out.printIn(service PortWithUrl.getQuote("fun")),;

46

System.out.printin(service PortWithUrl. getQuote("work")

} catch (MalformedURLExceptione) {

e.printStackTrace();

Consuming Web services in Java requires just two steps now. The
first step is to create proxy classes. The second step is to go ahead

and vse them.

4. SOFTWARE REQUIREMENTS
SPECIFICATION

Ultimately the requirement phase translates the ideas whatever is
in the mind of client (the input) into a formal document (the output
of the requirement phase.). In a more general way the SRS is a
document that completely describes “What” the proposed system

should do without describing “How” the software will do it.

PURPOSE : The purpose of the project is to develop a
system which is user friendly, easy to use , maintain and

satisfies all the requirements of the user.

47

ERFORMANCE REQUIREMENT

1) The operation time should be small and the throughput should

be high.

2) It should produce timely and accurate result.

SOFTWARE QUALITY ATTRIBUTES

1) Maintainability ~ Since it is directly associated
with the database, so there is very little
maintainability problem with this tool.

ii) Portability — Since there is very limited usage of
separate forms, this tool is very much portable. This
tool uses several canvases on the same form.

iii) Flexibility — This tool is very much flexible for
future enhancements

FEASIBILITY STUDY

The feasibility study concerns with the consideration made to

verify whether the system fit to be developed in all terms. Once an

idea to develop software is put forward the question that arises first

will pertain to the feasibility aspects.

There are different aspects in the feasibility study:

» Operational Feasibility.

» Technical Feasibility.

» Economical Feasibility.

48

OPERATIONAL FEASIBILITY:

There in no difficulty in implementing the system, if the user has
the knowledge in internal working of the system. Therefore, it is
assumed that he will not face any problem in running the system,
The main problem faced during development of a new system is
getting acceptance from the users. As users are responsible for

initiating the development of a new system this is rooted out.

TECHNICAL FEASIBILITY:

Technical feasibility deals with the study of function, performance,
and constraints like resources availability, technology,
development risk that may affect the ability to achieve an

acceptable system,

ECONOMICAL FEASIBILITY:

One of the factors, which affect the development of a new system,
is the cost it would incur, The existing resources available in the
company are sufficient for implementing the proposed and hence
no extra cost has to be incurred to run the system developed. Thus,

the system is financially feasible.

49

DATA FLOW DIAGRAM

Web services

OurWeb Site
containing API,
and other

services, ON
SERVER =

1‘ Site on Client’s
Machine

50

UENCE DIAGRAM

SE

cancelation

book ticket

search

:

e~

6+ select fight()

+ select flight booking option()
4 enter fight detais()

—
=
=
= 2
[=
=
= £
£ =
] =
- o
5
o -
=
=

51

S. SYSTEM REQUIREMENTS

Operating System: Windows XP, Vista, Windows 7,

Number of PCs: 2-3
Asp.net: Microsoft Visual Studio 2008
Server: Sql server 2005
Hardware: Laptop/PC with 1 GB RAM, 2 GB free

memory for Visual Studio Installation

+ REQUIREMENTS ANALYSIS

In the requirements analysis phase:
(a) The problem is specified along with the desired service
objectives (goals).

{b) The constraints are identified.

+ SPECIFICATION PHASE

In the specification phase the system specification is produced
from the detailed definitions of (a) and (b) above. This document
should clearly define the product function.

Note that in some text, the requirements analysis and specifications

phases are combined and represented as a single phase.

52

e e T %

» SYSTEM AND SOFTWARE DESIGN PHASE

In the system and software design phase, the system specifications
are translated into a software representation. The software engineer

at this stage is concerned with:

a. Data base

b. Software architecture

e

Algorithmic detail and

j =7

. Interface representations

The hardware requirements are also determined at this stage along
with a picture of the overall 'system architecture. By the end of this
stage the software engineer should be able to identify the
relationship between the hardware, software and the associated
interfaces. Any faults in the specification should ideally not be

passed ‘down stream’.

« IMPLEMENTATION AND TESTING PHASE

In the implementation and testing phase stage the designs are

translated into the software domain:

» Detailed documentation from the design phase can
significantly reduce the coding effort.

» Testing at this stage focuses on making sure that any errors are

identified and that the software meets its required specification.

53

|
|
|
i

+ INTEGRATION AND SYSTEM TESTING
PHASE

In the integration and system testing phase all the program units
are integrated and tested to ensure that the complete system meets
the software requirements. After this stage the sofiware is
delivered to the customer [Deliverable — The sofiware product is

delivered to the client for acceptance testing.]

« MAINTENANCE PHASE

The maintenance phase the usually the longest stage of the
software. In this phase the software is updated to:
o Meet the changing customer needs
o Adapted to accommodate changes in the external
environment
o Correct errors and oversights previously undetected
in the testing phases

o Enhancing the efficiency of the software

Observe that feed back loops allow for corrections to be
incorporated into the model. For example a problem/update in the
design phase requires a ‘revisit’ to the specifications phase. When
changes are made at any phase, the relevant documentation should

be updated to reflect that change.

54

6. PROJECT WEBSITE USING .NET

Flight Web. Site
Info. of Airline

] :r-—--t':'\%
Chents Web Service)
Integration %

Info. e Site

of Hotel

ASP .Net pages are often called web forms because they almost
always contain a server side forms element. Controls can be
dragged onto the design surface from the toolbox, or created
programmatically in code. We kick off with a investigation of the
steps involved in working with HTML Controls, as we process a
simple form in .NET. We are then introduced to Web Forms and
learn how they can be used with HTML Controls and Web
Controls to create dynamic Web pages. We’ll then move on to
explore the processes behind handling page navigation, understand
postback, and look at formatting controls with CSS. Finally, armed
with this knowledge, we launch into the development of a

navigation menu and Web form for our own intranet application.

35

Building a client

Fanenla

Windmare Caniira

A project for creating an application with a Windows user interface

Emnhs Draiart

Project Types: N
4 Visual Basic Projects = &7 e -
@ Visual C# P B
& 5::):; ;:# P:;‘::;s Class Library ~ Windows Control
@ Visual C++ Projects gepleation Library
(@ Setup and Deployment Projects 4 4

(0 Other Projects % '@
2 Visual Studio Solutions ASP.NET Web ASP.NET Web Web Control

Application Service Library

v

Name: I WebServiceClient
Location: | D:\Code -] Browse...
Project will be created at D:\Code\WebServiceClient.

YMore | oK Cancel | Help

e ASPX pages handled by a handler that facilitate the page

lifecycle and events (such as Page_Load, PreRender, and control

events).

e Uses ViewState to encoded state-specific information otherwise

lost in the stateless nature of HTTP.

e Extensive controls library to abstract functionality. Buttons,

textboxes, etc.

e Extensible.Web Forms have a .aspx file extension

56

Referencing the component

Solution Explorer - WebS... 1 X
@ Solution "WebServiceClient' (1 pro,
= @ WebServiceClient |

Add B_eferencé...

S0l | 3l

\--Add Web Reference... |

We go to project references, right-click, Add webreference, then
we type URL for web service, e.g.

i i I
web service class
server name name

37

PROJECT WEBSITE

File Edt View Webste Buld Debug Tools Test Window Help
e Bl 8]0 0 D Debig x NET gl

3|/ Start Page! 1 Explorer -
gl b 3 Solution ‘ripplanner 1 project) g
£) & @ Healtripplanoer\
| o 3 dmin
& (3 adduseraspe

£ dtyspe

| & Foomyem
[Btipplaner The current news channel might not be a valld RSS feed, or your internet E b B blasmam
(G webstel connection might be unavaable. To change the news chanel, on the Tooks | | ™
| menu, click Options, then expand Environment and click Startup. 14 s i
| 1 4 2 Mightupdate.aspr
‘ . 5 :J i
{ ! %) holideypackage.asprcs
! & 3 holidayupdate.aspr
i & hotelaspr
Open: Project @ hotelupdateaspe
Create: Project.. - (] MasterPage maste E
| W) stateaspx
Il o - 3 userupdateaspx
| | |4
|| whatsnesinVisualCo1 ! 3 AppData
i o @

Create Your First Apgicatin
HowDal..l :
Lean Visual (2 |
|
{

Download Additional Content |
| MSON Forums

Jf | Visual C# Developer Center
| Extend Visual Studio

Thank you for using Visual Studio |

| %) sboutus.zsprcs
Il @ contactusaspn -

58

Administrator Interface

) IndeX
€3 C OIucalmst-l929T,ttfippianner/admfnfcounlma;px 2 *I; q

The admin manages the whole database. Admin adds all the

information that can be accessed by users later on. Admin adds and

modifies the following things to the SQL database.

Add State ' Update Hotel
} Add City Modify User
| Add User Delete User
Add Hotel Update holiday package
59

Add Flight Update Flight
Add Holiday package

[Index
[@ O localhost43297/tripp!anner/admin/adduser.aspx

This is how an Administrator adds a new user directly from his

side. A customer needs a unique user id, password, country name,
city name, phone number. Userld is the primary key in the
database. The Countries, cities, States that are already added by the
administrator are shown while registering a user. The Sql database
stores all the values in a table named Customer with user id as its

primary key.

60

o

CUSTOMER INTERFACE

WP A

& & O © localhost49297/tripplanner/customer/viewllights.aspx

["; o ight Name : Air india e Narea 116g

Departure Date : 4/29/2011 Departure Date : 4/1/2011 i K
:00:00 AM 12:00:00 AM mﬂn\?gm&ﬁynu

Returning Date :4/30/2011 Returning Date :4/2/2011 e Blagk
12:00:00 12:00:00 AM Mumﬁn_ Dg%ﬁmu

Departure Location: et

Chandigarh
Arrival Location: i
No. of seats 1100

Customer can see various Flight timings, Holiday Packages,

various types of Hotels in various locations. He/She can Book
flights, book hotels, holiday packages and already booked things
by Him/Her.

While booking an order the cost is automatically calculated and is
shown in the circled area on the web page. The customer can
either pay for the booking right away by clicking the “Payment”
option from his credit card or He/ She can save the booking order

to complete the booking process in case of insufficient funds in the

credit card account.

61

€ C Olocalhost43297 tripplanner/customer/flight aspx il Q[¢ X$

1
|
1
|
To Ciy
Retun Oote
L e i
[Calculate Cost | [5000 |
(Save] Fayoer
|
i

CONCLUSION

Web service integration is usually straightforward. If you are
designing a Web service, you should design it so that the
maximum breadth of clients can access it. If you are designing a
client, you should examine tﬁe documentation for a Web service to
determine how HTTP SOAP requests should be structured, and
what you will receive in response. In either case, problems are
more easily solved by thinking about interoperability from the
beginning, rather than trying to add code later to accommodate

specific cases.

The basic idea behind this project is to create a user friendly
environment so that if user is planning some trip, he will get all
that is flight booking, hotel booking etc. at a same place. He has no

need to visit websites for flights , hotels individually.

SCOPE FOR FURTHER IMPROVEMENT

Every project whether large or small has some limitations no
matter however diligently developed. In some cases limitations is
small while in other cases they may be broad also. The new system
has got some limitations. Major areas where modifications can be

done are as follows:

e Our system is not online so further it can be improved.

63

e The security is limited so some additional arrangement

could be made to provide more security to the system.

e There is no provision of complain handling so further it

can be added.

MAIN ACHIEVEMENT OF THE SYSTEM

With the help of this project user can book tickets of different
flights, user can book hotels room, search for hotels by entering the
specific locations. So user has no need to visit individual sites of
different flights. He can get all at a single place. This makes our
project more user friendly.

After entering into the project, user is left with several options via
The user can search flights.

The user can view the existing lists of hotels .

The user can of course see rates for hotels and fare for flights as
well as other modes of transportation.

The user can also do several administrative works like managing
rates, addition or modification of hotels and flights & customer
entries.

User can do payment of hotels and flights by using credit cards or
debit cards.

It is a computerized system, which can be used very easily. User

does not has any need for any programming language.

04

REFERENCES

1 .Web Services-Markus Mitterer | Mathias Willburger

2. Web Services. Concepts, Architecture and Applications
G. Alonso F. Casati, H. Kuno, V. Machiraju Springer Verlag2004

3. Understanding Web Services

hitp://www . webopedia.com/DidYouKnow/ Computer_
Science/2005/web_services.asp]

4, Tidwell, D. and Snell, J. Programming Web Services with soap.

5. Microsoft VisualStudio.NET http://msdn.microsoft.com/vstudio/

6. The NET Framework class library:

http://msdn. microsoft.comy/ library/default.asp?url=/library/en-
us/cpref/html/frirfSystemXml.asp

7. Amazon, *Web Services,”
hitp./fwww.amazon.co jp/, 2006.

8. OASIS, “Advancing Web Services Discovery Standard,”
http:/iwww, uddi.org/, 2004.

9. The Java™ Web Services Tutorial
Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle,
Santa Clara, California 95054, U.S.A.

63

10. GEOSPATIAL WEB SERVICE INTEGRATION AND
MASHUPS FOR WATER RESOURCE APPLICATIONS
C. Granella, *, L. Diaza, M. Goulda

aCenterfor Interactive Visualization, Department of Information
Systems, UniversitatJaumel, E-12071 Castellon,

Spain -(carlos.granell, laura.diaz, gould)@uji.es

11. Planning Based Integration of Web Services
Alfredo Milani, Fabio Rossi, Simonetta Pallottelli
Department of Mathematics & Computer Science
University of Perugia

Via Vanvitelli, 1-06100 Perugia, Italy
milani@dipmat.unipg.it

66

