o WFortg,
5 %,

Jaypee University of Informat|on Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num.$P0Y02% Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

MAMIWATOLN

SP07027




Implementation Of Network Trainer

ABHISHEK MISHRA (071248)
HIMANSHU ARORA (071276)
ANIRUDH SINGH CHAUHAN (071322)
KISHEN CHAND UPADHYAY (071440)

Under the Supervision of

|

| ;

i Brig (Retd.) S.P. Ghrera
r :

|

P —

AT

| May — 2011

|

|

’ Submitted in partial fulfillment of the Degree of
l BACHELOR OF TECHNOLOGY

I (CSE & /1IT)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT
SOLAN , HIMACHAL PRADESH, INDIA
2011

[

f

f

| 1
;




\
(

ACKNOWLEDGEMENT

No venture can be completed without the blessing of Almighty.We consider it our
bounded duty to bow to Almighty whose kind blessings always inspire us on the right path of _
life This project is our combined effort and realizes the potential of team and gives us a
chance to work in co-ordination.

Science has caused many frontiers so has human efforts towards human
research.Our revered guide Brig (Retd.) S.P. Ghrera, H.O.D., Department of Computer
Science and IT, JUIT, has indeed acted as a light house showing us the need of sustained
effort in the field of Networking to learn more and more.So we take this opportunity to thank
him, for lending us stimulating suggestions, innovative quality guidance and creative
thinking. He provides us the kind of strategies required for the completionl of a task.We are
grateful to him fof the support , he provided us in doing thinks at our pace and for being

patient for our mistakes.




R, s

SUMMARY

The project entitled as IMPLEMENTATION OF NETWORK TRAINER is a system
developed as a pedantic tool for checking the efficiency and throughput of a network .This
system is especially adopted in laboratories to make the students understand the intricacies

behind the implementation of a network system. There are various parameters that define the

successful and secured transmission of data over a network. The network trainer incorporates

them all and generates a result against these parameters.

The network trainer works on diverse transmission protocols including ALOHA, CSMA,
CSMA/CD among others, with each protocol having its unique characteristics. The systems
are connected through varied topologies like BUS, RING, STAR and TOKEN-RING. These
topologies determine how a particular set of systems would share data between them. We
have been successful in implementing the transfer of data through a few protocols for a

number of topologies and have enlisted the results accordingly.

The basic idea behind this project is to provide a good method for calculating the efficiency

of transmission of data between systems and generating results that signify whether the

transmission was successful or not.



TABLE OF CONTENTS

:.? (C1oi NI T i e s Sl e RN e o SR S v T G, 2
[ N OWLE DGENMEND S i e e e e 3
' B e e b e e g 4
I LIST OB FIGURES. cecosanimmmmmnsrestosmsiims et am 7
LIST. OF ABBREVIATIONS e isimsisinmmetiin it i i s 9
CHAPTER. Liiiiiiiiiaicivimnmis i dasmsns sosuboind s eoh s i ass o B s ew s s b s 6 s o 10
e e (s e e 10
. 1oL BOOPO G vy ivvnvivsm e emsvsiesin i sk s s SN e S A R S T e o s 10
. 1.2 Problemh STatement. .. veis s weriissioss i i meis iy s ey st S5 S b s bins 10
% 1i3 =heftwire Arehilectire L o i i b i st s i s 11
: LA Brame Pormats cnrimmenmanimenusnm b s i i s it s i s 12
| L3 Addressiield Fobmat) isain il et obe i il S bl et 13 .
‘ 1.6 Transmit/ Receive NOde o it o it el e o bt et s h e bt s 13 |
| |
P CHAPTER e it b romise s il i by oot e o 15 !
_1 EXpeienls e e b s R e e s e e o 15
, A BlE e W BT B it s e i i e SR L et et ST T I 15
| - BN D) F o e e gl e S e (G el 15
| 2l P ket A n Shyna o e e e e e 16
2l St afd Wt Pratocol oDl o sttt e e 19
2 Ldeos SlidniesWinidowiBrotbonl i -l e i lie i Lt 23
7.5 it Y1 4 Y NG T @011 1 o o e e st ————— 26
I RE Y T R R e e
; e I e R L s Wt it e L i Ae e 26
; 2.2.3 Carrier Setise Multiple Access(CSMA).........cocvivivieniniiiniveines 29
i 224 CSMA with collision detection .................c..cocoosurveninn31
| .20 TOKOT PaSSINE BUS, [, o i nnuwsnis ox iwsnivmnirossis irissmids ys s rs eeeasinss 33
P N s (M LT o A T e OO B e 34
>




CH AR TR i R R T e e e T D B v rts R Tt s s 1 27
Explanation of the Software for LAN Trainer ...........ccuvevveeeisineininnennnnnnn, 37
21 VN S N 51 LR SR St enoe vies sl toveon Yt iemeeie s GG 41
Sottwats Requirefiient Speclbiealion. . vonmsans stins v it b it one 41
CHAPTER 5. ovii va cines vyt syt oot b s o e e s st ST e et 1 s st s sbs w1 et 43
SYSICH ReQUITBINEIHRT v\ i uaviunvinite va b sies s e0a o o 158 4 s mssaieh s e 43
CHAPTER Biovcniinecvrorieninsppninsssmms v sasins sl i s el i s s ae v b e p s 44
MIGHS] WSOk oo diviamasndon cnivs sk i sesmass susd odhs EOOe b e S emnon Ae
CAnBIISION SN e e s s e e b e e L T 47
RIS SCOPR DL WO v vperiimmmvmre i e et e i s PR O TS S b P e e 48
L L L R I e L e 49
ARRENDICES 0 Sl o b ssltliaGani i s el Sianal s o e e 50




r
/ S. NO. Table Description Page No.
Figure 1 LAN-T Software Architecture 11
Figure 2 LAN Trainer Frame Format 12
Figure 3 The LIC layer provides reliable data transfer
to the Application 16
Figure 4 Space-time diagram showing the operation of
the stop-and-wait protocol 21
|
Figure § Sender FSM for stop-and-wait (simplified) 22 I
) |
4 | |
Figure 6 Receiver FSM for stop-and-wait (simplified) 22 5
Figure 7 Complete FSMs for stop-and-wait
(a) sender (b) receiver 23
Figure 8 Sliding window protocol, sender's window 1= 4,
receiver's window = 1 goback-N 25
Figure 9 Theoretical throughput of ALOHA as a function
of offered load 28
Figure 10 Space-time diagram showing collisions in CSMA 30
5 Figure 11 A ring LAN formed with unidirectional,
( point-to-point links 35
7




1 Figure 12 Transceiver operating in (a) bypass mode

(b) transmit mode 36




LIST OF ABBREVIATIONS

Career sense multiple access

Career sense multiple access

(collision detection )

File transfer protocol

Medium access control

Data link layer

Network interface unit

Network emulator unit

CSMA

CSMA/CD

FTP
MAC
DLL i

NIU

NEU




1. INTRODUCTION

As we approach the new millenium, the Internet is becoming all-pervasive, promising to
touch the lives of everyone. As such, a good understanding of computer networking is fast

becoming essential for the computer and electronics professionals of tomorrow.

NETWORK TRAINER SYSTEM enables the student to experiment with various network
topologies, access methods, and higher-layer network protocols.The student can become
familiar with the key concepts in most of today's LANs : multiple-access to a shared
medium, reliable data transfer in the face of errors, connection management, bridging and
routing, and networked applications.Performance evaluation through measurements and

simple models is stressed.

The trainer features include:

> » User configurable data rates

» Generation of bit errors and frame errors between nodes

* Variable network size

e User configurable delays between nodes

o ALOHA, CSMA, CSMA/CD, Token Bus, Token Ring, Star, Stop-and-Wait and

various window protocols for reliable data transfer

1.1 SCOPE

The LAN-T is particularly suited for:

o Students at B.Tech/B.S. & M.S. levels in engineering/technical institutes (CS & EE)
» Technical training centres in network organisations

y e R&D personnel and practicing engineers in research labs and industry

10

.5 i




1.2 PROBLEM STATEMENT

Implement a Network Trainer also called Local area network training system. It will consists
of LAN protocol simulator & analyzer software. Network Trainer system will be designed to
help students understand the basic concepts, modes of operation and protocols involved in
networking. The trainer system will be provided with software for analysis of different
network layers protocols, and measurement of error rate and throughput. Students can easily
do connections in different topologies and can learn actual data transfer either through
hardware or through simulated network concept. Facility will be provided into system
software to introduce errors into packets being sent and analyze the effect of error on

different protocols and hence find the effect on throughput graph as well.

1.3 SOFTWARE ARCHITECTURE

The software involved in the LAN-T is distributed between the NIU card and the PC. The
“software in the NIU card handles most of the protocol and driver related issues, while the
software in the PC side is available as a library of DLL to be used by the application

programs. The software architecture implemented in the LAN-T is shown in Figure 1.

Application program | Application program
in DOS in Windows

C-Library Dynamic Link

Library (DLL)

11




' Software in PC

Software in LAN-T NIU (driver)

Figure 1: LAN-T Software Architecture

Each NIU card emulates two nodes and more than one card can be used in the same
PC. Since more than one card can be used in a single PC, the card number is inferred from
the node number. For example, if we have two cards, then node-0 and node-1 represent
card-1 and node-2 and node-3 represent card 2. Thus except during the initialization phase,

the interface looks alike with Node-Id being the discriminator.

1.4 Frame Format

The format of the data frames used in the LAN-T is shown in Figure 2.

1 Byte 1Byte 0-998 Bytes 2 Bytes 2 Bytes

DA SA DATA : Checksum Delimiter
Figure 2: LAN Trainer Frame Format

DA Destination Address

SA Source Address

12




DATA Data portion can be from 0 - 998 bytes
! Checksum Checksum field is generated internally by the NIU library. The
f) Library interface will generate the checksum while transmission, and
also strip the checksum on reception. As far as the student is
concerned this field is insignificant.
Delimiter Used internally for detecting the end of frame.
1.5 Address Field Format
LAN Trainer supports unicast and multicast addresses. The most significant bit of the
address specifies whether it is an unicast or multicast address. ‘
7 0
. : |
/ MU :
M/U=1 Multicast address
M/U=0 Unicast address
The address 0xff is the broadcast address, and all the nodes will receive such frames.
b 1.6 Transmit / Receive Modes
Data transmission through the network by the application program on the PC can be
done in number of ways. The widely used modes that are available in the NIU are:
5y
13




Packet Polling The packet is received by the low-level driver and stored internally.

The user has to poll and read the data. In this mode there is a high

et

probability of packet getting missed at high data rates.
Packet Interrupt In this mode whenever the packet is received by the driver, it sends an

interrupt to the user.

e i

14




—

2. EXPERIMENTS

2.1 DATA LINK LAYER

2.2.1 DLL Basics

Physically connecting two or more computers together using media such as electrical
cable or optical fiber is only the first step in building a useful computer network. The
physical connection enables the computers to exchange electrical or optical signals
representing streams of bits or bytes. The next step is to devise mechanisms for the orderly
exchange of large units of information, packets, between specific pairs of computers in the

network. This is the task of the data link layer (DLL).

The DLL needs to be able to identify the start and end of each packet, to ensure
reliable delivery of packets even in the face of bit errors on the physical link, and to allow
several applications to share one link. Considering only two computers, these issues are

covered in this chapter.

An application such as file transfer or remote database access cannot tolerate such
packet loss. Every byte of a file must be written into the remote file in exactly the same
order as in the local file. Hence, it is necessary to have a layer of network software between
the MAC layer and the application that ensures reliable data transfer. This function is usually
provided by the Logical Link Control (LLC) and/or the Transport layers in the OSI model
(see Figure 3). In this chapter we look at various reliable data transfer mechanisms that are

used in these layers.

15




)|
/ e e Multiplexed reliable packot stream |\
nnnnnnn % . b - e . o DLL
MAG:  leiwrw oielinblopacketstmam. . I vac
PHY e JOBYICSUSAN. . ool oy
i
Node A Node B

Figure 3: The LLC layer provides reliable data transfer to the application

In a LAN with a number of computers, it is also necessary to have rules such that

only one computer transmits at a time. This medium access control (MAC) function is a sub-

—

.

layer of the data link layer. We cover various MAC protocols in the next chapter.

:7 . .
2.1.2 Packet Transmission
Problem
Transmit packets from one node to another. One node, the sender reads a message
from the keyboard and transmits it in a single packet. The other node, the receiver receives
the packet and writes the message to the display.
Concepts
® Packet communication
Program Development
Combining a number of bytes into a single packet has several advantages:
e The NIU hardware can be programmed to interrupt the host CPU only once per
D packet rather than once per byte, thus reducing the overhead per byte.

16

. ,




=
-

* Likewise, transfer between memory and NIU can be done more efficiently using
DMA rather than programmed 1/0.

¢ Error detection can be done more efficiently. For a byte, we need at least 1
parity bit to detect an error, an overhead of at least 10%. A 32—b.it cyclic redundancy code
(CRC) can much more effectively detect errors in a packet of several thousand bytes with an
overhead of as little as 0.1%

e In byte-mode, there is a gap between successive bytes due to hardware and
software overheads. Hence, the line utilization could be much less than 100%. With packet-
mode transfer, bytes in a packet are transmitted without delay, resulting in higher line
utilization.

¢ In a network with more than 2 nodes, each unit of data needs a destination address
to indicate for which node it is intended and the address of the source of the data. With

packet-mode, this is required only once per packet.

Of course, these benefits are not free: packet transmission requires more complex

hardware and software. A typical packet is shown below:

SOP A special bit pattern or code indicating start of
packet

Length Number of bytes in the packet, in case this can vary

Data The actual information

CRC Cyclic redundancy code for error detection

EOP A special bit pattern or code indicating end of packet

17




Sender()
/ {

Initiallize network card in packet mode

do
Read a message from the keyboard
Form the message into a packet

Write the packet to the NIU

} while (message is not empty)

} {

Receiver()
. |
) ¢ :

Initiallize network card in packet mode
do
Read a packet from the NIU
Depacketize the message
Write message to the display

} while (message is not empty)

Get statistics from NIU and print

18




Note that we use an empty message to cleanly terminate the program. To read a one-
line message, we can use the C library function gets() . For a multi-line message, we can use
! f] gets() repeatedly until an end-of-message indication is read. The NIU automatically

generates and checks the CRC for each packet.

2.1.3 Stop-and-Wait Protocol

Problem
Provide reliable data transfer between two nodes over an unreliable network using the

stop-and-wait protocol.

Concepts
* error correction
* timeouts |
{ * state machines )

Program Development

Let us consider an analogy. You want to send a message to a friend in a distant town.
The message is not urgent but it is important that it reaches your friend. You do not want to
spend very much so you decide to write a letter. The postal service is like the MAC layer - it
usually delivers a letter within a few days, but there are no guarantees. The letter may not
reach, it may reach after a delay of months, it may be delivered soiled or torn and hence be

unreadable.

If your letter is delivered in good condition and your friend's reply is similarly
delivered to you, the message has been reliably transferred. If something goes wrong, after
waiting for a reasonable period, you send a copy of your original letter. The waiting period
depends on the normal delivery time (transmission delay) and low long you expect your

friend to take in writing the reply (processing time) plus some margin for unexpected delays.

v

19




—r

i

Say 3 days to go, 2 days to reply, 3 days to return and 6 days margin: you would resend after

2 weeks.

This is precisely the sequence of actions in the stop-and-wait protocol. The sender
transmits a data packet D1 and waits for an ACK packet from the receiver. If it receives the
ACK, it discards the data packet and repeats the procedure with the next data packet, D2.
However, if it does not receive the ACK within a time-out period, it retransmits the data

packet (Figure 4).

A few details need to be taken care of. Suppose the receiver receives D1 and sends
the ACK which gets lost. The sender timesout and retransmits D1 which the receiver
receives. How does the receiver know that this is not the next data packet D2? For this
purpose, the sender puts a sequence number in every packet. The receiver remember the last
sequence number that it received. After receiving D1 it only accepts and passes on to the
application packet D2. The receiver still acknow]edges the duplicate D1 so that the sender
does not timeout again. Likewise, the sender may receive several ACKs for the same data
packet. So the ACK must contain the sequence number of the data packet that it is

acknowledging.

The Finite State Machine Approach

The above description of the stop-and-wait is reasonably easy to comprehend and
could be converted into a program in a straight forward manner. Most network protocols are
far more complicated. A prose description could lead to ambiguities .and errors in

implementation.

20

" - a




St

Dy

b Tirne out
E\
Sender D1 D2 D2
7 £\ \
\ \ 1 i 1 A \ \
' A Pl \ \ \ \
\ \( \ ¢ ? / \ \4 \ \ \r \
\ Y sy v \
\ \ ! \ v
Receiver X "l’*.‘“ |" Y A
O o

Figure 4: Space-time diagram showing the operation of the stop-and-wait

protocol.

Hence they require the use of system atic techniques for specification and correct
implementation. Most commonly used is the finite state machine (FSM) approach. This is
useful for a system whose behaviour is determined by events such as receipt of a packet or
user input. When an event occurs, the system performs some action that depends on the
current state and the event. The action may include moving to a new state. Thus, the
specification of the system consists merely of listing the possible states and events and the

actions to be taken for each <state, event> pair.

The FSM for the sender in the stop-and-wait protocol is shown in Figure 5. Initially,
it is in the idle state. The only event of interest here is a SendData command from the higher
layer. The sender transmits the data packet and goes to the AwaitACK state. If there are no
errors, it will receive the ACK packet from the receiver and return to the Idle state. If the
ACK does not come, there will be a Timeout event upon which the sender initiates

retransmission.

Similarly, the receiver FSM is shown in Figure 6. This is simpler since the receiver

does not wait, it merely responds to data packets from the sender.

For-clarity,-we-have-not shown-all <state, event> pairs-in-the figure. For instance, a
Timeout in the Idle state is an error. A RevACK in the Idle state must be a duplicate that is
ignored. Suppose the receiver is not running, or the network has failed, the sender will never

get an ACK. Rather than have it timeout and retransmit repeatedly, we count the number of

successive retries for a given data packet. If this exceeds some limit, say MAX RETRIES =

21

- 8

P




5, we assume there is some serious problem and return a failure code to the higher layer. The

higher layer can then take appropriate action such as informing a human operator who can set

T g

right the problem. Likewise, any network operation may fail if, for example, the NIU has not

been properly initialized.Complete FSMs are shown in Figure 7.

SendData Command

Transmit Packet Time Out
Transmit Packet

Rcy ACK
Success 5
b
Figure 5: Sender FSM for stop-and-wait (simplified).
’.
_, /
- 1
NO
Discard

Yes
Pass to AppLayer
Transmit ACK

Figure 6: Receiver FSM for stop-and-wait (simplified).

=3 3

22




—~

SendData

Tx Packet, start timer

RevPkt

Yes > Max_
Failure Retries? Time out

No
Tx Packet

RecvPkt No

Yes Discard

Success

Is ACK?

No

Discard,
T ACK

Rev PKT Is Data ? vyqq
SeqNum. OK?

Yes

Pass to AppLayer
Tx Ack

No
Discard

Figure 7: Complete FSMs for stop-and-wait (a) sender (b) receiver.

2.1.4 Sliding Window Protocol

Problem :

Provide reliable data transfer between two nodes over an unreliable network using the

sliding window protocol.

23

pra——

—




Concepts

Pipelining for higher throughput

Program Development

Let us return to the example that we considered in the previous experiment, viz.
reliably sending a letter to a friend. Suppose your friend lives in some remote corner of the
world, such as Lima, the capital of Peru. If it takes 2 weeks for a letter to reach Lima, and 2
weeks for the reply to return, the best you could hope for is 1 letter per month, hardly a lively

correspondence.

To improve the efficiency of correspondence, you might decide to write one letter a
week. You would get the reply to the first letter only after you have dispatched the fourth

letter. In fact, at any time, there will be about 4 letters in the pipeline between here and

y -

Lima. You have to preserve copies of several letters in case they need re-sending. This X

scheme can be used in the LLC layer to obtain higher efficiency than stop-and-wait.

The sender has to have several packet buffers for packets that have been transmitted

k- A

but not yet acknowledged. In order to limit the memory usage at the sender, it is customary
to set a maximum on the number of such outstanding packets, referred to as the sender's

window.

Suppose the sender's window is 4 packets. It can send packets 1..4 without waiting
for an ack. When it receives ack 1, it can discard packet 1 and slide the window forward to
<2..5> and so on (Figure 8). As in stop-and-wait, when a packet is transmitted, a
retransmission timer is started. If the timer expires without receiving the corresponding ack,

the packet is re-transmitted.

The receiver may receive packets out of order, e.g., it receives 1, 2, 3, 5 (4 is lost).
Should the receiver accept 5 or not? If it accepts 5, this must be buffered in the LLC layer
until 4 is received and only then passed to the application in the proper order. In a simple
receiver, any packet received out of order is simply discarded. The receiver has only a single
packet buffer. If there is a timeout, the sender must re-transmit the lost packet and every

succeeding packet. This is referred to as sliding-window, goback-N.

24




Goback-N uses up extra network bandwidth in retransmitting packets that have
already reached the receiver. A more efficient alternative is to have several packet buffers in
the receiver's LLC layer for saving out-of-order packets. Then, the sender need retransmit
only the lost packets (4 in the example). Thus, we have sliding window, selective-repeat. It

is often convenient to have equal windows at the sender and receiver, but in general, they
could be different depending on the available memory.

W =<25>
L Time out J
W=<14> N I
Sender | D1 D2 D3 D4 Ds DB D7 b8 D5
h ] !; (£ 1 1 L ﬂ_ #’ L 3
o R R LU
¥ ) 1 % L3 1 3.8 AF % 1Y
¥ ¥ | 5 I 1 1 i ¥ k % L]
[ L] By oF & ¥ L R || 1 %
3 £ £ 1% L] L3 L) ¢ (2 3 i1
1 L] [ ¥ ) 1 ¥ § L ) %
' o1 u 1 ® ) R A ] \
L ¥ Ll ¥ 3 % ' s I L] £
[} (R ¥ 1 T \ [
L] L1 ) " & e | * * P \ &
1 s (B ¥ 1 A ¥ s. n‘
Receiver| \ JAIFY A2 A3 \ A4 X\
[ —

Figure 8: Sliding window protocol, sender's window 1= 4,receiver's window = 1 goback-
N

2

|k s TS



2.2 MEDIUM ACCESS CONTROL

2.2.1 MAC Basics

Physically connecting two or more computers together using media such as electrical

cable or optical fibre is only the first step in building a useful computer network. The
physical connection enables the computers to exchange electrical or optical signals
representing streams of bits or bytes. The next step is to devise mechanisms for the orderly
exchange of larger units of information, packets, between specific pairs of computers in the
network. For this, we need to be able to identify the beginning and end of each packet, to
assign a unique address to each computer, and to ensure that only one computer uses the
physical medium at a time. These tasks are undertaken by the medium access control (MAC)

layer of the network, the focus of this Chapter.

We first consider how to transmit data, characters and packets, between two nodes.
Then, we look at the more complex problem of transmitting between a number of nodes. In
the latter case, we need a mechanism to ensure that only one of the many nodes transmits at a

time.

2.2.2 ALOHA

Problem .

Implement the ALOHA protocol for packet communication between a number of

nodes connected to a common bus.

Concepts

e Multiple access to a shared medium

i Addresses

26

N e T




Program Development

We have seen how two nodes can exchange packets over a point-to-point link. When
we have a number of nodes to be interconnected in a local area network, the simplest
topology is a bus.When any node transmits a packet on a bus, it can be received by every
other node, i.e., a bus is a broadcast topology. This has two implications. First, every node
must have a unique address and each packet must have the address of the destination (the
source address is usually also included). Thus, only the node for which the packet is
intended will actually process it; others will discard it. Second, since only one node can
transmit at any instant in time, a mechanism is needed to ensure that each node gets a turn to
transmit. If two or more nodes transmit at the same time, their packets will collide and be

lost.

In this experiment, we accommodate the first of the above by adding two fields to the

packet used in Experiment E??:

Dest address of the destination node, typically ranges
from 8 bits to 48 bits
Src address of the source node

Note that the destination address is placed before the source address. Since the
packet is received serially, this enables the hardware to check the address as soon as possible

and decide whether to discard or receive the packet.

The simplest mechanism by which a node can gain access to the bus is for it to make
the optimistic assumption that no other node wants to transmit. It just g‘oes ahead and
transmits as and when it wants. This may not seem a very useful strategy. However, it was
successfully used in about 1970 in one of the earliest local area networks at the University of

Hawaii, the ALOHA net.

If the number of nodes is small and each transmits infrequently, the probability that
two or more will choose to transmit at the same time is low. Thus, this strategy usually

works well under light loads. As the load increases, we expect collisions to occur more

27

N T AT




frequently. Under heavy loads almost every tramsmission will be lost due to collisions and
the throughput will drop to close to zero. Indeed, it can be shown that the maximum
throughput of the ALOHA strategy is about 18.3% and occurs when the rate at which packets
arrive is equal to the capacity of the bus. Figure 9 shows how throughput varies as offered
load increases in an ideal ALOHA network in Which each of a large number of nodes

transmits packets at the same rate.

The program is similar to the sender of Experiment E?? with two differences. First,
the program runs in a loop in which it waits for some time and then transmits a packet. At
the end of transmission, it checks the NIU status to determine whether the packet was
successfully transmitted or suffered a collision. Since we are interested in the effect of
collisions, not of bit errors, we set the bit error rate to 0. As a result, if a packet is
successfully transmitted, it will be successfully received. Hence, we can use all available

nodes for transmission and calculate throughput based on statistics from the senders.

_
40% —}-
Throu)ghput,

20% -~ 18.2%

o 100 150%
Offered Load, @

Figure 9: Theoretical throughput of ALOHA as a function of offered

load (both expressed as percentages of the network

capacity).

28

B We 3 =me oo




2.2.3 Carrier Sense Multiple Access (CSMA)

Problem
Implement the CSMA protocol for packet communication between a number of nodes

connected to a common bus.

Concepts

4 Listen-before-transmit to improve efficency

et Effect of propagation delay

Program Development

In ALOHA, a node transmits whenever it wishes without regard to the activities of
other nodes. This may cause a collision with the transmission of another node, resulting in
both packets being lost. Under heavy load, we have seen that frequent collisions can result in
throughput being severely reduced. By adding a modest amount of hardware to the NIU, it is
possible to detect the presence of a transmission on the network. We can then modify the
transmission protocol to require a node to listen to the network before transmission. Only if
the network is idle is the node permitted to transmit. This is referred to as Carrier Sense
Multiple Access (CSMA) for historical reasons: it was first used in radio networks in which a

packet is modulated onto a carrier frequency. It was the presence of this carrier that was

sensed.

It is still possible to get collisions due to the non-zero delay between sensing idle and
actually starting transmission and the propagation delay of the signal along the bus to other
stations. Refer to Figure 10 which shows activity on the network over a period of time. The
X-axis represents time, while the Y-axis represents space. Assume that a node A at one end
of the network decides to transmit a packet. At time f; , it senses the network and finds it
idle. After some hardware/software latency of d, it actually starts transmitting at time ¢, .
This signal propagates down the cable at a high but finite speed, and reaches node B at the
other end of the cable at time #; . Note that #; - #; = t*d, where ¢ is the propagation time per
metre of the electrical signal (approximately 5ms/m) and d is the distance between nodes A

and B.

29

A =T




Thus, even after A has started transmitting, B could sense the cable as being idle and
start transmission at time #; < f,. As shown in the figure, B's packet propagates towards A
and at some point both packets collide and are lost. Notice that £ could even be earlier than
fi. In fact, #3 could be anywhere in the range (#-t-d, t,+t+d) and cause a collision (see
Figure 4.3). This interval is referred to as the vulnérable period. If B started transmitting
before f1-f-d, A would find the network busy at ¢; and would not transmit, thus avoiding a

collision.

As the vulnerable period increases, the probability of a collision for each packet
increases and hence throughput decreases. The vulnerable period is proportional to the end-
to-end propagation delay = td. For a given physical medium, ¢ is a constant. Hence, the

vulnerable period depends on the length of the cable.

Node B
| \ . o
N/t 7/ B packet
] e packet
' \ IR otisin
Node A :
| ‘ D }_
t'12 .

Figure 10:  Space-time diagram showing collisions in

CSMA

30




“-

L p—

-

2.2.4 CSMA with Collision Detection

Problem

Implement the CSMA/CD protocol for packet communication between a number of

nodes connected to a common bus.

Concepts

* Listen-while-transmit to improve efficiency

Program Development

In CSMA, once a node starts transmitting, it continues until the end of its packet even
if there is a collision. Since the collision occurs during the vulnerable period, which is
usually much smaller than the packet transmission time, there is considerable unnecessary
transmission. By detecting the collision and aborting transmission immediately, the channel

is freed for other transmission attempts.

Collision detection is usually implemented in hardware. Essentially, this hardware
compares what the NIU receives with what it transmits. If the two are different, a collision
has occurred:transmission is aborted and the NIU's collision status flag set. (Optionally, the

NIU generates an interrupt to notify the host.)

After starting transmission of a packet, the program polls the status flag for one of
two events: normal end-of-transmission or collision. In the first case, the packet has been
successfully transmitted so the program can go on to the next packet. In case of a collision,
transmission is immediately aborted. Next, the node must retry the same packet after some

time.

To avoid another collision between the same set of nodes, each node waits a random
time-before retrying-using-a-back-off algorithm.—Assume-that # nodes had collided. If one
node were to retransmit immediately, another after 1 packet transmission time, a third after 2
packet times, and so on, after n packet times all nodes would have successfully transmitted

their packets without further collision.

31

- . & Dl




o

There are two difficulties in implementing this: first, a node does not know how
many other nodes were involved in the collision; second, without communicating amongst
themselves, the nodes cannot agree on an order. To overcome the second problem, the best
that we can do is to randomly select one of the » slots and transmit in that one. There is a
fairly good chance that other nodes will choose some other slot. However, it is possible to

get another collision.

For the first problem, we can start out with the optimistic assumption that only 2
nodes are involved in the collision. Ie., we set n', our estimate of n, to 2. If there are
actually more than 2 nodes involved, there is a very good chance that there will be another
collision. So, if we experience a second collision for the same packet, we suspect that n'is
too low an estimate of n, and we increase it. On every successive collision, we further
increase the estimate. Eventually, »’ will become large enough and the packet will be

successfully transmitted.

At each stage, we could increase n’ by incrementing it. This is linear incremental
back-off. This has the disadvantage that if in a large network under heavy traffic, 10s of
nodes are involved in a collision, it would take many successive collisions before n' reaches
n. To adapt faster, we could double »" on each collision, resulting in binary exponential
back-off. If, say, 100 nodes collided, it would take only 7 steps for n' to reach 128, greater

than n.

Note that during the back-off period, the node cannot transmit any other packet. In
effect, the node's transmitter is temporarily disabled, thus reducing the load on the network.
The back-off thus acts as a regulatory mechanism in case of overload. As a result, even with
high offered loads, throughput in the case of CSMA/CD does not drop to zero as in the case
of CSMA and ALOHA.

32

B Nl P o




2.2.5 Token-Passing Bus

Problem

Implement a token-passing access method for a bus LAN.

Concepts
¥ Demand assignment versus random access
* Priorities
* Token management

Program Development

The random access methods that we have seen so far have the advantages of
simplicity of implementation and robustness in the face of errors. In many situations, they
give good performance also. | However, they suffer from some disadvantages. Under -heavy
load, especially with high bit rates and large networks, the collision rate becomes high and
throughput drops. Due the the random nature of the access method, the delay in transmission
of a particular packet cannot be guaranteed. Even under light load, it is possible for a packet
to suffer many collisions and hence large delay. This is unacceptable in real-time

applications such as industrial control where delay must be bounded.

To overcome these disadvantages, we need an access method that avoids collision
and that gives each node a chance to transmit at deterministic intervals. Collisions will be
eliminated if only one node is allowed to transmit at a given point in time. A simple way of
achieving this is to have exactly one token, similar to the baton in a relay race. A node can
transmit only if it holds the token. By passing the token from node to node in a specific
order, we can ensure that all nodes get a turn at regular intervals. Given the number of
nodes, the time taken for passing the token, and the packet transmission time, we can

calculate the maximum delay.

In a random access protocol, a node can transmit a packet as soon as it becomes

active. In a token-passing protocol, on the other hand, there are two phases:

33

N—




i
il the network must be initialized -- the order in which the token is to be
passed is determined, and then the token is created by one node
)
fl 2. only after the network has been correctly initialized can the data
transfer phase begin in which nodes transmit and receive data packets.
The token itself is usually a packet with fype field containing the value
TOKEN while a data packet has type = DATA as shown below
Token Packet:
SOP | Dest | Sre | Length | Type | CRC | EOP
Data Packet: A
sop | pest | sic | Length | Type | Data ++--e” cre | EOP
g * o
\
The token is being passed from node Src to node Dest. %
|
S o = Rl O '
SOP | Dest | src | Length | Data +«e-” * CRC | EOP é
. : SUR—— ; %
2.2.6 Token Ring
Problem
Implement a token-passing access method for a ring LAN.
Concepts
* Demand assignment versus random access
2 Priorities
b Token management
.
34




Program Development

The ring topology is useful with point-to-point media such as optical fibre. Each
node is connected to the ring via a transceiver. The transmitter of one transceiver is

connected to the receiver of the neighbouring transceiver to form a uni-directional ring

(Figure 11).

Normally, a node operates in bypass mode in which a packet received on the
incoming link is repeated on the outgoing link with a delay of a few bits. At the same time,
the packet is copied into the node's NIU for processing (Figure 12(a)). While a node is
transmitting a packet, however, the incoming link is disconnected from the outgoing link
(Figure 12(b)). This has the effect of removing the packet from the ring. If this were not
done, the packet could circulate endlessly. Since the source node removes the packet from
the ring, each packet is received by every other node, i.e., we have broadcast operation as in a

r

bus.

Figure 11: A ring LAN formed with unidirectional, point-to-

point links.

35

——

NT



In i Out

b 4

(@)

Rx

W

To node

v

(b)

&

O_uI

Tx

To node

Figure 12: Transceiver operating in (a) bypass mode (b)

transmit mode.

36

AN e - oS




3. Explanation of the Software for LAN
Trainer

When an experiment is started, the main window appears.

o C‘c.rhf.a.g-wew tuo! AII
parameters can be changad
- herein thls view i

Run the
T exnerlment
Stop the running

=

:Duwnloads the .
_NIU driverto

Reset the NIU

R e

Opens the saved
configuration file
and restores all
the parameter

Saves all the
configured
parameters in a file
to reuse while
restarting the
application

The LAN Trainer Shell

All the LAN Trainer experiments have a common user-interface. This allows

configuring of the NIU plugged into the PC, which must match the settings in the Emulator

37




Unit. It also allows setting of software parameters such as experiment duration and packet

length.

The LAN Trainer Shell, called as LT_Shell (or ShellVxy for latest versions with xy

representing the version) appears with main menu in the application/experiment window as

shown in Fig A-1.

The POP-UP menus are explained below: !

File

—

e

Open Config - Opens the configuration parameters file and
substitutes the configuration parameters with the stored values. All the
parameters that are set in the configuration may be saved as a file using

“Save Config” and these are the ones stored while opening.

Save Config - Saves the configuration parameters in a file. The

saved details may be applied as and when required using “Open Config”.




Several configuration files for experiments may be saved such that they

can be applied whenever an experiment is started and only the required

parameter for that experiment can be changed.

‘ “Config View” displays the configuration dialog box where all the
parameter values are displayed.
Node Id - Specify that that particular application/experiment

window should be as node 0 or 1. This is the one that differentiates the

two applications in the same PC.

Protocol - Specify the MAC Protocol that NIU has'to emulate.

By default, it is set to Aloha

Baud Rate - Specify the data rate between 8Kbps and 1Mbps.
(Only for CSMA/CD and Ring mode, this needs to be set both in the

Application window and the NEU. For Aloha and CSMA, settings in
NEU are sufficient.)

39

e

5




No of Nodes - Specify the number of nodes in the network that are
used to do Token Ring experiment. This field may be used for other

purposes while writing codes for suggested experiments in exercise also.
Duration - Specify the duration of the experiment in seconds,

Packet Length - Specify the length of packets that are used in the

experiment. Can be set to a maximum of 1000 bytes.

Inter Packet Delay - Specify the inter packet delay (that is
equivalent to the inter packet arrival time) based on the calculation

suggested in the experiments. This has to be in milliseconds.

Number of Packets - Specify number of packets in a window for
Sliding Window experiment. This field may be used for other purposes
while writing codes for suggested experiments in exercise, say for
example, to specify number of packets to be transmitted or received in a

MAC experiment instead of following time.

40




-

4. SOFTWARE REQUIREMENTS SPECIFICATION

Ultimately the requirement phase translates the ideas whatever is in the mind of client (the
input) into a formal document (the output of the requirement phase.). In a more general way
the SRS is a document that completely describes “What” the proposed system should do

without describing “How” the software will do it.

FEASIBILITY STUDY

The feasibility study concerns with the consideration made to verify whether the system fit to

be developed in all terms. Once an idea to develop software is put forward the question that

arises first will pertain to the feasibility aspects.

There are different aspects in the feasibility study:
» Operational Feasibility.
» Technical Feasibility.

» Economical Feasibility.

OPERATIONAL FEASIBILITY:

There in no difficulty in implementing the system, if the user has the knowledge in internal
working of the system. Therefore, it is assumed that he will not face any problem in running
the system. The main problem faced during development of a new system is getting
acceptance from the users. As users are responsible for initiating the development of a new

system this is rooted out.

41

-

N




TECHNICAL FEASIBILITY:

Technical feasibility deals with the study of function, performance, and constraints like
resources availability, technology, development risk that may affect the ability to achieve an

acceptable system.

ECONOMICAL FEASIBILITY:

One of the factors, which affect the development of a new system, is the cost it would incur.
The existing resources available in the company are sufficient for implementing the proposed
and hence no extra cost has to be incurred to run the system developed. Thus, the system is

financially feasible,

42




S. SYSTEM REQUIREMENTS

PC:

Operating System:
Number of PCs:
VC++ compiler:

Pentium II or higher
One PCI slot (32-bit) required.
(For Star related experiments that may be

developed by user, 2 slots are required in one of the PCs)

Minimum RAM as recommended by OS or by VC++ if installed
Windows 98 2™ Edition, Windows 2000 Professional
2-3

Version 6.0 or above

-

N T A S

43




!
|
|
|

6. MODEL USED

To develop software a particular development strategy is used which encompasses the
process, methods and tools. The strategy is often referred to as process model of Software
Engineering Paradigm. A process model for software is chosen based in the nature of the
project and application, the methods and tools to be used and the controls and deliverables
that are required. The model which is being used in this project development is

WATERFALL MODEL.

WATERFALL MODEL

ol

The waterfall model derives its name due to the cascading effect from one phase to the other. ¢
f
In this model each phase well defined starting and ending point, with identifiable deliveries

to the next phase.

Note that this model is sometimes referred to as the linear sequential model or the software

life cycle. The model consists of six distinct stages, namely:

« REQUIREMENTS ANALYSIS

In the requirements analysis phase:
(a) The problem is specified along with the desired service objectives (goals).

(b) The constraints are identified.

44




PR R

L

i

« SPECIFICATION PHASE

In the speciftcation phase the system specification is produced from the detailed definitions
of (a) and (b) above. This document should clearly define the product function.
Note that in some text, the requirements analysis and specifications phases are combined and

represented as a single phase.

« SYSTEM AND SOFTWARE DESIGN PHASE

In the system and software design phase, the system specifications are translated into a

software representation. The software engineer at this stage is concerned with:

a. Data structure

b. Software architecture \
c. Algorithmic detail and ]
d. Interface representations ‘f

4

The hardware requirements are also determined at this stage along with a picture of the
overall system architecture. By the end of this stage the software engineer should be able to
identify the rclationship between the hardware, software and the associated interfaces. Any

faults in the specification should ideally not be passed ‘down stream’.

« IMPLEMENTATION AND TESTING PHASE

In the implementation and testing phase stage the designs are translated into the software

domain:
» Detailed documentation from the design phase can significantly reduce the coding effort,

> Testing at this stage focuses on making sure that any errors are identified and that the

software meets its required specification.

45




o INTEGRATION AND SYSTEM TESTING PHASE

In the integration and system testing phase all the program units are integrated and tested to
ensure that the complete system meets the software requirements. After this stage the
software is delivered to the customer [Deliverable — The software product is delivered to the

client for acceptance testing, ]

« MAINTENANCE PHASE

The maintenance phase the usually the longest stage of the software. In this phase the
software is updated to:

o Meet the changing customer needs

o Adapted to accommodate changes in the external environment

o Correct errors and oversights previously undetected in the testing  phases

o Enhancing the efficiency of the software L

Observe that feed back loops allow for corrections to be incorporated into the model. For i
example a problem/update in the design phase requires a ‘revisit’ to the specifications phase.
When changes are made at any phase, the relevant documentation should be updated to

reflect that change.

46




CONCLUSION

The network trainer works on diverse transmission protocols including ALOHA, CSMA,
CSMA/CD among others, with each protocol having its unique characteristics. The systems
are connected through varied topologies like BUS, RING, STAR and TOKEN-RING. These
topologies determine how a particular set of systems would share data between them. We
have been successful in implementing the transfer of data through a few protocols for a

number of topologies and have enlisted the results accordingly.

The basic idea behind this project is to provide a good method for calculating the efficiency
of transmission of data between systems and generating results that signify whether the

transmission was successful or not.

47

FT

/
"




FUTURE SCOPE |

Future enhancements recommended are :

The limit of message length to be increased.

User Interface to be improved.

e More protocols can be included.

Code can be improved to work on bigger networks.

48




9.

REFERENCES

Network Security Management for a National ISP R. Deepak,Timothy, Timothy A
Gonsalves,Hema A. Murthy, and N.Usha Rani TeneT Group, IIT Madras.

Cfengine — GNU project

http://www.gnu.org/software/cfengine/cfengine.html

Mark Burgess, Cfengine: A site configuration engine, USENIX Computing systems.
T.A. gonsalves , Ashok Jhunjhunwala , and Hema A Murthy et al., “CygNet :
Integrated Network Management for voice + Internet ,” NCC 2000.

A.G.K Vanchyn;dthan , N.Usha Rani ,C.Charitha , and T.A. Gonsalves , “distributed
NMS for affordable Communications”, NCC 2004, January 2004.

TECH TRENDS BY GOPAL GARG, CYPRESS SEMICONDUCTOR, AND R
THIRUMURTHY, MIDAS COMMUNICATION TECHNOLOGIES.

DISTRIBUT ED NMS FOR AFFORDABLE COMMUNICATIONS by A.G.K.
Vanchynathan, n.Usha Raniand C.Charitha, Timothy A. Gonsalves.

Network Security management for a national ISP R.Deepak, Timothy a. Gonsalves ,
Hema A. Murthy, and N.Usha Rani TeneT Group, IIT Madras.

http://www.uic.edu/depts/accc/network/ftp/vitp.html

10. www.elabtrainerskits.com/category/LAN-Trainer.html

11

benchmark-electronics.com/Products/lanmain.html

12. www.tetcos.com/brochure/lantrainer brochure 181106.pdf

49




APPENDIX

CODING

namespace project _ppt

{

public partial class Form1 : Form

{
public Form1()

{

InitializeComponent();

private void Form1 Load(object sender, EventArgs e)

{

private void configViewToolStripMenultem Click(object sender, EventArgs e)

{

Form?2 obj=new Form?2();

obj.Show();

private void exitToolStripMenultem_Click(object sender, EventArgs e)

{
this.Close();

50




private void viewToolStripMenultem_Click(object sender, EventArgs e)

{

Form3 f1 = new Form3();

f1.Show();

private void toolStripButtonl Click(object sender, EventArgs )

{

private void runToolStripMenultem_Click(object sender, EventArgs €)

4

private void startToolStripMenultem_Click(object sender, EventArgs ¢)

{

51




using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

namespace project_ppt

public partial class Form2 : Form

{public int pl,ipd,nop,nod;
public Form2() '1\
{ /

InitializeComponent();

private void Form2 Load(object sender, EventArgs )

{

private void buttonl_Click(object sender, EventArgs ¢)

{

pl=Convert.Tolnt32(textBox5.Text);

nod=Convert.Tolnt32(textBox1.Text);

52




int g=1;
int c=8;
if(comboBox2.SelectedIndex == 0)
ipd=(nod*pl)/(g*c);
textBox6.Text = ipd. ToString();

private void comboBox2_SelectedIndexChanged(object sender,EventArgs ¢)

{

private void button2_Click(object sender, EventArgs e)

{
this.Hide();

53




