Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. SPOYFOSY. Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre

My

Il

-JUIT

Image compression using second generation lifting
scheme

Aman Verma (071137)
Puneet Taneja (071349)

Under the supervision of
Mrs. Meenakshi S. Arya

faren wren wfaam

May- 2011

Submitted in partial fulfillment
Of the requirements for the degree of
BACHELOR OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT
SOLAN, HIMACHAL PRADESH

TALBLE OF CONTENTS
Chapter No. Topics Page No.
Certificate from the Supervisor A%
Acknowledgement VI
Summary (Not more than 250 words) VII
List of Figures ' VIII
Chapter-1 Image -An introduction
1.1 What is an Image? page 1
1.2 Compression overlook p.age' 1.
1.3 What is compression? page 2
1.4 Lossy page 3
1.5 Lossless page 4
1.6 Types Of encoding page 4
1.6.1 Huffiman | page 4
1.6.2 Arithmetic page 6
1.6.3 Limpel -Ziv -Welch page 7
1.6.4 JPEG page 10
1.6.5 JPEG 2000 page 11
Chapter-2 Literature Review
[1] Wavele?‘;ﬁs for computer graphics page 14

[2] Construction Of Second
Generation Wavelets page 14

[3] Image Compression by
Linear Splines over Adaptive
Triangulations S page 14

[4] Lifting Filter Using Second
Generation Wavelets : page 15

' [5] A New Robust Data Compressor page 15
Chapter- 3 Wavelet
Overview page 16
3.1 Wavelets in one dimension page 16
3.1.1 One-dimensional Haar

wavelet transform page 16

3.2 Image Approximation , page 18

3.3 Wavelets Transform page 19
3.4 Second Generation Wavelets page 20

3.5 Lifting Scheme page 21

3.5.1 Basic Lifting Scheme Wavelets page 21

3.5.2 Predict Wavelets page 22

3.5.3 The update step page 22

Chapter-4 Implementation and coding

4.1 The concept of the algorithm
4.1.1 Module 1 page 24
4.1.2 Module 2 page 25

4.2 The Terminology of The Algorithm Explained

4.2.1 Module 1 page 26
4.2.2 Module 2 _ page 28

4.1 Normal application
4.1.1 Main program: page 30
4.1.2 Results and comparisons page 30

4.2 Modified application

4.2.1 Main program: page 31
4.2.2 Functions used page 31
4.2.3 Results and comparisons page 34

4.3 Modified application-2
4.3.1 Main program: page 35

1t o e, 00 A TSR S M‘T

i

4.3.2 Functions used
4.3.3 Results and comparisons

4.4 Modified application-3

4.4.1 Main program:

4.4.2 Functions used

4.4.3 Results and comparisons
4.5 Conclusion

Bio data

References

page 35
page 39

page 40
page 41
page 44
page 45

page 46

page 47

+ i SRR T T e T WT
i

CERTIFICATE

This is to certify that the work titled Image Compression Using Second Generation
Lifting Scheme submitted by Aman verma (071137) and Puneet Taneja (071349) in
partial fulfillment for the award of degree of B. Tech, of Jaypee University of
Information Technology, Waknaghat has been carried out under my supervision. This
work has not been submitted partially or wholly to any other University or Institute for

the award of this or any other degree or diploma.

Signature of Supervisor

Name of Supervisor Mrs. Meenakshi Arya

Designation Lecturer

e
Date OQ' 7 0 5' C;lol ‘

..........................

ACKNOWLEDGMENT

We would like to thank our project guide Mrs. Meenakshi S. Arya who showed
us the way to get the job done, not providing the exact way to do it, but the concept
behind the complexities so that we can make best of our knowledge and build up higher
skills to meet the IT industry needs. However, at some places, where we could not find
the solution or were unable to adopt the better solution our self she taught us the work
done in efficient and best manner and given up explored details about the problem and
the solution.

Her technical help and goal oriented approach has been unique and a
stepping stone towards the successful understanding of our project.

Signature of the Students ‘:Qéx__m___f @M;vb

Name of Students Aman verma (071137) Puneet Taneja (071349)

Date . 0‘; - 2 O]\ 13 0520”

Vi

SUMMARY

The approach to our project is simple and straightforward. We did a thorough
survey of the existing techniques in the field of image compression and tried to find out
the scope for improvement in the same. The existing techniques have been implemented
and their results analyzed. The shortcomings in the existing techniques have been
removed by developing a new algorithm which is found to give better results, thus
providing novelty.

The platform that we have chosen to do this is MATLAB as it provides us with
the basic functions to operate on the image by converting it into matrices. We have
implemented trivial compression techniques, done meticulous study of the latest
technology available, tried different approach towards the problem and finally have
come up with approach that are proven to be much better than what was being achieved.

The present algorithm derived it’s inspiration from JPEG 2000 which is
implemented using the wavelet transform. We have modified the currently existing
compression functions and merged them in a way to obtain results which are superior to
the ones already existing. We tested our results with different mathematical functions !
that gave us different result and better compression. '

%\ /@,‘gﬁ

\)
Signature of Students Signaturd of Supervisor
Names 2.2 .05 2ol Name 305 20 11

Date Avem Nww&,?‘*“ﬁ"_ 'IC‘W;[“ Date Mét’_z\ﬁ;(sﬁ 3 A?/{_L

NP Yo &.A:wj

Vil
List of figures
Figure no. Figure name Page no.
Figure 1.1 General Compression System Model 1
Figure 1.2 Block Representation of Compression Techniques 2
Figure 1.3 Lossy Compression 3
Figure 1.4 A Bottom-Up Approach 5
Figure 1.5 JPEG 2000 12 |
Figure 1.6 Wavelet Transforms Using Lifting Scheme 12 |
Figure 3.1 Filter Analysis 17 j
Figure 3.2 A 3 Level Filter Bank 18
Figure 3.3 Wavelet Transform 19
Figure 3.4 Second Generation Wavelets 20
Figure 3.5 Lifting Scheme Inverse Transform 21
Figure 3.6 Lifting scheme forward transform 23

i

l

[

I
S

Chapter 1

Image An introduction

1.1 What is an Image?

' An image is a rectangular grid of pixels. It has a definite height and a definite width
; counted in pixels. Each pixel is square and has a fixed size on a given display. Each pixel
i has a color. The color is a 32-bit integer. The first eight bits determine the redness of the
f pixel, the next eight bits the greenness, the next eight bits the blueness, and the remaining

eight bits the fransparency of the pixel.

[Green

1

]

v

ii Transparency

Table 1.1 —Pixel representation of an image
Each of these values can be interpreted as an unsigned byte between 0 and 255. Within the
color higher numbers are brighter. Thus a red of 0 is no red at all while a red of 255 is a very
bright red. Different colors are made by mixing different levels of the three primary colors.
For example, medium gray is 127 red, 127 green and 127 blue.

1.2 Compression overlook

Source) Chaniie! Channel Channet Source
Encader $ Encader Decoder Decoder $
HERY

oy

ENCODER DECODER

Figure 1.1 - General compression system model

1
t
b
f
!
—

1.3 What is compression?

Image compression is the application of data compression. The objective is to reduce
redundancy of the image data in order to be able to store or transmit data in an efficient
form. Image compression addresses the problem of reducing the amount of data required to
represent a digital image. The underlying basis of the reduction process is the removal of
redundant data. From a mathematical viewpoint, this amounts to transforming a 2-D pixel
array into a statistically uncorrelated data set.

The transformation is applied prior to storage or transmission of the image. At some
later time, the compressed image is decompressed to reconstruct the original image or an
approximation of it. Interest in image compression dates back more than 35 years. The
initial focus of research efforts in this field was on the development of analog methods for
reducing video transmission bandwidth, a process called bandwidth compression. The
advent of the digital computer and subsequent development of advanced integrated circuits,
however, caused interest to shift from analog to digital compression approaches. The field
has undergone significant growth through the practical application of the theoretic work that
began in the 1940s, when C. E. Shannon and others first formulated the probabilistic view of
information and its representation, transmission, and compression.

Data Compression
Methods

[I—

: }

I thod
Lossless Methods Lossy Methods

¥ ¥

Huffman Lempef Ziv JPEG MPEG

Arithmetic

Figure 1.2 — Graphical representation of compression methods

Compression techniques fall into two broad categories: information preserving and
lossy. Methods in the first category, which are particularly useful in image archiving (as in
the storage of legal or medical records). These methods allow an image to be compressed
and decompressed without losing information. Lossy image compression is useful in
applications such as broadcast television, videoconferencing, and facsimile transmission, in
which a certain amount of error is an acceptable trade-off for increased compression
performance.

1.4 Lossy

In information technology, "lossy" compression is a data encoding method which
compresses data by discarding (losing) some of it. The procedure aims to minimize the
amount of data that need to be held, handled, and/or transmitted by a computer. The
different versions of the photo of the dog at the right demonstrate how much data can be
dispensed with, and how the pictures become progressively coarser as the data that made up
the original one is discarded (lost). Typically, a substantial amount of data can be discarded
before the result is sufficiently degraded to be noticed by the user.

Quality level: 90 Quality leelz 50 Quality level: 1
File size: 10,582 bytes File size: 5,154 bytes File size: 923 bytes

Figure 1.3- Representation of lossy compression techniques

Lossy compression is most commonly used to compress multimedia data (audio,
video, still images), especially in applications such as streaming media and internet
telephony. By contrast, lossless compression is required for text and data files, such as bank
records, text articles, etc. In many cases it is advantageous to make a master lossless file
which can then be used to produce compressed files for different purposes; for example a
multi-megabyte file can be used at full size to produce a full-page advertisement in a glossy
magazine, and a 10 kilobyte lossy copy made for a small image on a web page.

Lossy compression formats suffer from generation loss: repeatedly compressing and
decompressing the file will cause it to progressively lose quality. This is in contrast with
lossless data compression, where data will not be lost via the use of such a procedure.

Information-theoretical foundations for lossy data compression are provided by rate-
distortion theory. Much like the use of probability in optimal coding theory, rate-distortion
theory heavily draws on Bayesian estimation and decision theory in order to model
perceptual distortion and even aesthetic judgment.

1.5 Lossless

Lossless compression is a form of compression in which data files are split up into
different chunks and reorganized to optimize them. This sort of compression very rarely
saves much space, but it is ideal for transporting enormous files by breaking them into
easier-to-handle pieces. Lossless compression is used when every bit of data is needed in the
end product, often when transmitting a file to a designer. In the case of images, a lossless
compression allows the designer to be sure that any data they may want to alter will be
there, letting them create a final product before compressing the file further using a lossy
compression. This is also true of sound files, where a sound mixer may need additional
information, such as separate channels, that an end user will not require.

1.6 Types Of encoding
1.6.1 Huffman

Huffman coding is an entropy encoding algorithm used for lossless data
compression. The term refers to the use of a variable-length code table for encoding
a source symbol (such as a character in a file) where the variable-length code table
has been derived in a particular way based on the estimated probability of
occurrence for each possible value of the source symbol. It was developed by David
A. Huffman while he was a Ph.D. student at MIT, and published in the 1952 paper
"A Method for the Construction of Minimum-Redundancy Codes".

Huffman coding uses a specific method for choosing the representation for
each symbol, resulting in a prefix code (sometimes called "prefix-free codes", that is,
the bit string representing some particular symbol is never a prefix of the bit string
representing any other symbol) that expresses the most common source symbols
using shorter strings of bits than are used for less common source symbols. Huffiman
coding is such a widespread method for creating prefix codes that the term "Huffman
code" is widely used-as a synonym for "prefix code" even when such a code is not
produced by Huffman's algorithm.

I
4
! .
S

Encoding for Huffman Algorithm:
» A bottom-up approach

1. Initialization: Put all nodes in an OPEN list, keep it sorted at all times (e.g.,
ABCDE).

2. Repeat until the OPEN list has only one node left:

* From OPEN pick two nodes having the lowest frequencies/probabilities, create a
parent node of them. .

» Assign the sum of the children's frequencies/probabilities to the parent node and
insert it into OPEN,

* Assign code 0, 1 to the two branches of the tree, and delete the children from OPEN.

P4(39)

B(7) cle) D) E(5)
Symbol Count log(1/py) Code Subtotal
(# of

bits)

A 15 138 | o | 15

B 7 2.48 100 | 21

C 6 2.70 101 18

D | 6 2.70 110 18

E | 5 2.96 111 15

TOTAL (No. of bits): 87

Figure 1.4- Huffman encoding

Decoding:

* Decoding for the above two algorithms is trivial as long as the coding table (the
statistics) is sent before the data. (There is a bit overhead for sending this, negligible if
the data file is big.)

* Unique Prefix Property: no code is a prefix to any other code (all symbols are at
the leaf nodes) --> great for decoder, unambiguous.

+ If prior statistics are available and accurate, then Huffman coding is very good.

In the above example:

Entropy = (15x 1.38 + 7x 248 +6x2.7+6x 2.7+ 5x2.96) / 39)
=8526/39=2.19

Number of bits needed for Human Coding is: 87 /39 = 2.23

Although Huffman's original algorithm is optimal for a symbol-by-symbol coding
(i.e. a stream of unrelated symbols) with a known input probability distribution, it is
not optimal when the symbol-by-symbol restriction is dropped, or when the
probability mass functions are unknown, not identically distributed, or not
independent (e.g., "cat" is more common than "cta"). Other methods such as
arithmetic coding and LZW coding often have better compression capability.

1.6.2 Arithmetic

Arithmetic coding is a form of variable-length entropy encoding used in lossless data
compression. Normally, a string of characters such as the words "hello there" is
represented using a fixed number of bits per character, as in the ASCII code. When 2
string is converted to arithmetic encoding, frequently used characters will be stored
with fewer bits and not-so-frequently occurring characters will be stored with more
bits, resulting in fewer bits used in total. Arithmetic coding differs from other forms of
entropy encoding such as Huffiman coding in that rather than separating the input into
component symbols and replacing each with a code, arithmetic coding encodes the
entire message into a single number, a fraction # where (0.0 <n < 1.0).

Encoding and decoding

In general, each step of the encoding process, except for the very last, is the same; the
encoder has basically just three pieces of data to consider:

o The next symbol that needs to be encoded

« The current interval (at the very start of the encoding process, the interval is set to
[0,1), but that will change)

» The probabilities the model assigns to each of the various symbols that are possible at
this stage (as mentioned earlier, higher-order or adaptive models mean that these
probabilities are not necessarily the same in each step.)

The encoder divides the current interval into sub-intervals, each representing a fraction
of the current interval proportional to the probability of that symbol in the current
context. Whichever interval corresponds to the actual symbol that is next to be encoded
becomes the interval used in the next step.

1.6.3 Limpel -Ziv -Welch

Suppose we want to encode the Webster's English dictionary which contains about
159,000 entries. Why not just transmit each word as an 18 bit number?

Problems: (a) Too many bits, (b) everyone needs a dictionary, (c) only works for
English text.

¢ Solution: Find a way to build the dictionary adaptively.
= Original methods due to Ziv and Lempel in 1977 and 1978. Terry Welch improved the
scheme in 1984 (called LZW compression). It is used in e.g., UNIX compress, GIF, V.42 bis.

LZW Compression Algorithm:

w = NIL;
while (read a character k)
{
if wk exists in the dictionary
w=wk;
else
add wk to the dictionary;
output the code for w;
w=k;

}

» Original LZW used dictionary with 4K entries, first 256 (0-255) are ASCII codes.
Example: Input string is "AWEDAWEAWEEAWEBAWET",

w k Output Index Symbol
Y.
NIL ” A
L~ w " 256 | W]
E W E w 257 WE

E D E 258 ED
D A D 259 | DA
A w

AW E 256 260 ~WE

A E | 261 EA

A w

AW E 4’

AWE E | 260 || 262 . "WEE
E A H .'
EA w | 261 | 263 | EAW

i I

WE | B 257 264 WEB |
B A B 265 BA
A w

AW \ E

AWE T 260 266 ~WET

i T || EOF T

Table 1.2- LZW Encoding table.

* A 19-symbol input has been reduced to 7-symbol plus 5-code output. Each
code/symbol will need more than 8 bits, say 9 bits. Usually, compression doesn't start
until a large number of bytes (e.g., > 100) are read in.

Decoding

The decoding algorithm works by reading a value from the encoded input and
outputting the corresponding string from the initialized dictionary. At the same time
it obtains the next value from the input, and adds to the dictionary the concatenation
of the string just output and the first character of the string obtained by decoding the
next input value. The decoder then proceeds to the next input value (which was
already read in as the "next value" in the previous pass) and repeats the process until
there is no more input, at which point the final input value is decoded without any
more additions to the dictionary.

read a character k;

output k;
w=k;
while (read a character k) /* k could be a character or a code. */
{
entry = dictionary entry for k;
output entry; .
add w + entry[0] to dictionary; i
w = entry;
t
Example (continued): Input string is "“WED<256>E<260><261><257>B<260>T".
i
l W Output Index Symbol j
A A
A W W 256 W
W E E 257 WE
E D D 258 ED
D <256> W 259 D~
<256> E E 260 “WE
E <260> “WE 261 || EA
<260>] <261> EX 262 ~WEE
<261> <257>| WE | 263 EW
<257> B | B 264 WEB
B <260> WE 265 | B
<260>| T T 266 AWET

Table 1.3- LZW decoding table

9

e Problem: What if we run out of dictionary space?

* Solution I: Keep track of unused entries and use LRU (Least
Recently Used)

= Solution 2: Monitor compression performance and flush dictionary
when performance is poor.

o Implementation Note: LZW can be made really fast; it grabs a fixed number of bits
from input stream, so bit parsing is very easy. Table lookup is automatic.

Summary

Huffiman maps fixed length symbols to variable length codes. Optimal only when
symbol probabilities are powers of 2.

Lempel-Ziv-Welch is a dictionary-based compression method. It maps a variable
number of symbols to a fixed length code.

Adaptive algorithms do not need a priori estimation of probabilities, they are more
useful in real applications.

1.6.4 JPEG

One of the most popular and comprehensive continuous tone, still frame compression
standards is the JPEG () standard. In the JPEG baseline coding system, which is
based on the discrete cosine transform and is the adequate for most compression
application, the input and the output images are limited to 8 bits while the quantized
DCT coefficient values are restricted to 11 bits. The compression itself is performed
in four sequential steps ; 8x8 sub image extraction , DCT computation, quantization,
and variable length code assignment.

The first step in the JPEG compression is to sub divides the input image into
non overlapping pixel block of size 8x8. They are then subsequently processed left to
right top to bottom. As each 8x8 block or sub image is processed, its 64 pixels are
level shift by subtracting 2"(m-1), where 2*m is the number of gray level in the
image and its 2d discrete cosine transform is computed .

Discrete cosine transform

The 8x8 sub-image shown in 8-bit grayscaleEach 8x8 block of each component (Y,
Cb, Cr) is converted to a frequency-domain representation, using a normalized, two-
dimensional type-II discrete cosine transform (DCT).

10

As an example, one such 8x8 8-bit subimage might be:

52 85 61 66 70 6i 64 73
63 59 55 90 109 85 69 72
62 59 68 113 144 104 66 73
63 58 71 122 154 106 70 69
67 61 68 104 126 88 68 70
79 65 60 70 77 68 58 75
8 71 64 59 b5 61 65 83
87 79 69 68 65 76 78 94

Quantization matrix used in JPEG
The resulting coefficient are then simultaneously normalized and quantized in

accordance with
£ T(“i v)
T{u,v) = round[m]
{u, v) Za.v) i
Where T(u,v) for u,v=0,1...... ,7 are the resulting normalized and quantized cocfficients,

T(u,v) is the DCT of 8x8 block of image f(x,y), and Z(u,v) is a transform normalization.
By scaling Z(u,v), a varity of compression rates and reconstructed image qualities can
be achieved,

A Ay

1.6.5 JPEG 2000

JPEG 2000 is a new image coding system that uses state-of-the-art compression
techniques based on wavelet technology. Its architecture should lend itself to a wide
range of uses from portable digital cameras through to advanced pre-press, medical
imaging and other key sectors.

COLOR

'
MAGE _ ICOHP &
' TILE

' ; UAH Je——y] ENTROPY BITSTR

TR'“"SHi I CODING ASSEMBLY m
FINAL
BITSTR

Ll

Figure 2.5 - Flow chart of JPEG 2000

11

Wavelet transform

JPEG 2000 uses two different wavelet transforms:

o irreversible: the CDF 9/7 wavelet transform. It is said to be “irreversible" because it
introduces quantization noise that depends on.the precision of the decoder..

+ reversible: a rounded version of the bi orthogonal CDF 5/3 wavelet transform, It uses
only integer coefficients, so the output does not require rounding (quantization) and so
it does not introduce any quantization noise. It is used in lossless coding.

The wavelet transforms are implemented by the lifting scheme or by convolution.

il 2

Figure 2.6- Wavelet transform

12

Quantization

After the wavelet transform, the coefficients are scalar-quantized to reduce the amount
of bits to represent them, at the expense of a loss of quality. The output is a set of
integer numbers which have to be encoded bit-by-bit. The parameter that can be
changed to set the final quality is the quantization step: the greater the step, the greater
is the compression and the loss of quality.

Coding

The result of the previous process is a collection of sub-bands which represent several
approximation scales. A sub-band is a set of coefficients—real numbers which represent
aspects of the image associated with a certain frequency range as well as a spatial area
of the image.

Precincts are split further into code blocks. Code blocks are located in a single sub-
band and have equal sizes—except those located at the edges of the image. The
encoder has to encode the bits of all quantized coefficients of a code block, starting
with the most significant bits and progressing to less significant bits by a process
called the EBCOT scheme. EBCOT here stands for Embedded Block Coding with
Optimal Truncation. In this encoding process, each bit plane of the code block gets
encoded in three so-called coding passes, first encoding bits (and signs) of
insignificant coefficients with significant neighbors (i.e., with 1-bits in higher bit
planes), then refinement bits of significant coefficients and finally coefficients without
significant neighbors. The three passes are called Significance Propagation,
Magnitude Refinement and Cleanup pass, respectively,

The result is a bit-stream that is split into packets where a packet groups selected
passes of all code blocks from a precinct into one indivisible unit. Packets are the key
to quality scalability (i.e., packets containing less significant bits can be discarded to
achieve lower bit rates and higher distortion).Packets from all sub-bands are then
collected in so-called layers.

13

g e ey PR

Chapter 2

Literature review

Wavelets are a mathematical tool for hierarchically decomposing functions. They allow a
function to be described in terms of a coarse overall shape, plus details that range from
broad to narrow. Regardless of whether the function of interest is an image, a curve, or a
surface, wavelets offer an elegant technique for representing the levels of detail present.
This primer is intended to provide people working in computer graphics with some intuition
for what wavelets are, as well as to present the mathematical foundations necessary for
studying and using them. In Part 1, we discuss the simple case of Haar wavelets in one and
two dimensions, and show how they can be used for image compression.

The mathematical theory of multiresolution analysis, then develop spline wavelets
and describe their use in multiresolution curve and surface editing. Although wavelets have
their roots in approximation theory and signal processing, they have recently been applied to
many problems in computer graphics. These graphics applications include image editing,
image compression, and image querying, automatic level-of-detail control for editing and
rendering curves and surfaces surface reconstruction from contours; and fast methods for
solving simulation problems in animation and global illumination [1]

It is presented in this paper, a simple construction of second generation wavelets, wavelets
that are not necessarily translates and dilates of one fixed function. Such wavelets can be
adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the
lifting scheme leads to a faster, in-place calculation of the wavelet transform. Several
examples are included. [2]

This proposes a new method for image compression. The method is based on the
approximation of an image, regarded as a function, by a linear spline over an adapted
triangulation, D(Y),which is the Delaunay triangulation of a small set Y of significant pixels.
The linear spline minimizes the distance to the image, measured by the mean square error,
among all linear splines over D(Y). The significant pixels in Y are selected by an adaptive
thinning algorithm, which recursively removes less significant pixels in a greedy way, using
a sophisticated criterion for measuring the significance of a pixel. The proposed compression
method combines the approximation scheme with a customized scattered data coding
scheme.

We compare our compression method with JPEG2000 on two geometric images and on three
popular test cases of real images.[2]

14

e — W e — -

In this paper the mathematical methods applied in the most receni image formats are
presented. First of all, the application of the wavelet transform in JPEG2000 is gone through.
JPEG2000 is a standard established by the same group which created the widely used JPEG
standard, and it was established to solve some of the shortcomings of JPEG. Also presented
are other recently established image formats having wavelet transforms as part of the codec.

Other components in modern image compression systems are also gone through,
together with the mathematical and statistical methods used. [4]

This paper Proposes a realistic representation of a terrain Light Detection and Ranging data
(LiDAR) requires trillion numbers of points. These points connected in triangles that
represent the surface of the terrain ultimately increase the data size. For online GIS
interactive programs it has become highly essential to reduce the number of triangles in
order to save more storing space. In this paper, it is extended to the LiDAR data
compression, A newly developed data compression approach to approximate the LiDAR
surface with a series of non-overlapping triangles has been presented. Generally a
Triangulated Irregular Networks (TIN) are the most common form of digital surface model
that consists of elevation values with x, y coordinates that make up triangles. Compression
of TIN is needed for efficient management of large data and good surface visualization. This
approach_covers following steps: First, by using a Delaunay triangulation, an efficient
algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of
data.

A new interpolation wavelet filter for TIN has been applied in two steps, namely
splitting and elevation. In the splitting step, a triangle has been divided into several sub-
triangles and the elevation step has been used to ‘modify’ the point values (point coordinates
for geometry) after the splitting. Then, this data set is compressed at the desired locations by
using second generation wavelets. The quality of geographical surface representation after
using proposed technique is compared with the original LIDAR data. The results show that
this method can be used for significant reduction of data set. [13]

15

e e Tt e

e g

Chapter 3
Wavelets (New approach)

Wavelets are a mathematical tool for hierarchically decomposing functions. They

allow a function to be described in terms of a coarse overall shape, plus details that range
from broad to narrow. Regardless of whether the function of interest is an image, a curve, or
a surface, wavelets offer an elegant technique for representing the levels of detail present.
This primer is intended to provide people working in computer graphics with some intuition
for what wavelets are, as well as to present the mathematical foundations necessary for
studying and using them.
Although wavelets have their roots in approximation theory and signal
| processing, they have recently been applied to many problems in computer graphics. These
’ graphics applications include image editing, image compression , and image querying;
: automatic level-of-detail control for editing and rendering curves and surfaces surface
i reconstruction from contours and fast methods for solving simulation problems in animation
and global illumination. For a discussion of wavelets that goes beyond the scope of this
| primer, we refer readers to our forthcoming monograph.

3.1 Wavelets in one dimension

The Haar basis is the simplest wavelet basis. We will first discuss how a one-
dimensional function can be decomposed using Haar wavelets, and then describe the actual
basis functions. Finally, we show how sing the Haar wavelet decomposition leads to a “
straightforward technique for compressing a one-dimensional function. »

- —

3.1.1 One-dimensional Haar wavelet transform

To get a sense for how wavelets work, let’s start with a simple example. Suppose we
are given a one-dimensional “image” with a resolution of four pixels, having values .We can
represent this image in the Haar basis by computing a wavelet transform. To do this, we
first average the pixels together, pairwise, to get the new lower resolution image with pixel
values .Clearly, some information has been lost in this averaging process. To recover the
original four pixel values from the two averaged values,we need to store some detail
coefficients, which capture the missing information Finally, we will define the wavelet
transform (also called the wavelet decomposition) of the original four-pixel image to be the
single coefficient representing the overall average of the original image, followed by the
detail coefficients in order of increasing resolution. Thus, for the one-dimensional Haar
basis, the wavelet transform of our original four-pixel image. The way we computed the
wavelet transform, by recursively averaging and differencing coefficients, is called afilter
bank—a process we will generalize to other types of wavelets in Part 2. Note that no
information has been gained or lost by this process.

16

One level of the transform

The DWT of a signal x is calculated by passing it through a series of filters. First the
samples are passed through a low pass filter with impulse response g resulting in a
convolution of the two:

o

yln] = (zxg)ln] = 3 zlklgln - &].

k=—o0

The signal is also decomposed simultaneously using a high-pass filter 4. The
outputs giving the detail coefficients (from the high-pass filter} and approximation
coefficients (from the low-pass). It is important that the two filters are related to each other
and they are known as a quadrature mirror filter.

However, since half the frequencies of the signal have now been removed, half the
samples can be discarded according to Nyquist’s rule. The filter outputs are then sub
sampled by 2 (Mallat's and the common notation is the opposite, g- high pass and h- low
pass); : '

Yiowln] =) lklg[2n — k|
km—nc

yhigh[n] = Z x[k]h[zn - k]
k= —o0

This decomposition has halved the time resolution since only half of each filter
output characterises the signal. However, each output has half the frequency band of the
input so the frequency resolution has been doubled.

—b@———b@w’ Approximation coefficients

hfn]) Detail coefficients

x[n]

b 4

Figure 3.1 Block diagram of filter analysis

17

N i

P——

With the sub sampling operator !
(v | K)ln] = ylkn)

The above summation can be written more concisely.

Yiow = (T * g) | 2
Yhigh = (-’E * h) l 2

However computing a complete convolution x * g with subsequent down sampling would
waste computation time.

The Lifting scheme is an optimization where these two computations are interleaved.

Cascading and Filter banks

This decomposition is repeated to further increase the frequency resolution and the
approximation coefficients decomposed with high and low pass filters and then down-
sampled. This is represented as a binary tree with nodes representing a sub-space with a
different time-frequency localization. The tree is known as a filter bank. ‘i|

l
- @ Level 3 !!
oefficients
@—"
@il [D—» Leva2
x[njw“—m* Ix;;:lgfliclients

Figure 3.2 A 3 level filter bank

3.2 Image Approximation

This section provides a detailed description of our image approximation scheme. We
introduce the adaptive thinning algorithm for the selection of a set of significant pixels Y .
This includes a discussion of its significance measure and of linear splines over Delaunay
’ triangulations. Moreover, we describe the final step of the image approximation scheme,
where we construct the best approximation to the image, minimizing the mean square
error among all linear splines over the Delaunay triangulation of Y . Finally, we show how
to control the mean square error of the image approximation.

18

3.3 Wavelets Transform

There are many advantages of Wavelet Transforms over the Fourier Transforms
because of which Wavelets are currently most widely used. Some of the major differences
are discussed below:

a. The most interesting dissimilarity between these two kinds of transforms is that
individual wavelet functions are lecalized in space. Fourier sine and cosine functions
are not.

b. This localization feature, along with wavelets' localization of frequency, makes ;
many functions and operators using wavelets "sparse” when transformed into the
wavelet domain. This sparseness, in turn, results in a number of useful applications
such as data compression, detecting features in images, and removing noise from
time series.

¢. The output signal in a Wavelet Transform is a signal in both time and frequency
domain whereas a Fourier Transform converts the time-domain to frequency
domain.

d. One way to see the time-frequency resolution differences between the Fourier
transform and the wavelet transform is to look at the basis function coverage of the
time-frequency plane. One way to see the time-frequency resolution differences
between the Fourier transform and the wavelet transform is to look at the basis
function coverage of the time-frequency plane.

T

- A

A~ A A

FT Fisquiscy feequuscy

L X
Sia
3

1. Windowis simply asquare wave. 1. Windows vary.

Thesguarewave windowtruncatesthe 2. Inordertoisolatesignal discontinuities,

sineorcosinefunctiontofitawindowofas one would like to havesomevery short !

particularwidth : basisfunctions. Atthesametime,inorder
to obtaindetailedfrequency analysis, one
would like to have some very long basis
functions

I

19

Figure 3.3 Wavelet Transform

Wavelet transforms do not have a single set of basis functions like the Fourier
transform, which utilizes just the sine and cosine functions. Instead, wavelet transforms
have an infinite set of possible basis functions. Thus wavelet analysis provides immediate
access to information that can be obscured by other time-frequency methods such as Fourier
analysis.

3.4 SECOND GENERATION WAVELETS

The Second Generation Wavelets are easier to understand and implement than the
First Generation Wavelets. The first generation wavelets could be easily used for periodic
and infinite domain signals. But there was no clear cut way of using it for bounded domain
signals. Furthermore, even 1-D signals are often not sampled regularly. In higher dimension,
domains are often have boundaries, and often the metric is not flat, i.e., we need to analyze
functions on manifolds or surfaces. Thus the Second Generation Wavelets came into picture.
The Second Generation Wavelets have all the useful properties like time-frequency
localization and fast implementation of the First Generation Wavelets in addition to being
able to represent the signals which are bounded. This has been achieved by removing the
translation and dilation of the mother wavelet. Instead we use a Lifting Scheme. Hence we
do not use any Fourier Analysis.

There are two advantages of second generation wavelets. The first advantage is that
fast computation and multi resolution capabilities of the first generation wavelets, are
retained in the second generation wavelets. The second advantage is that the forward and
inverse wavelet transform are invertible to each other as can be seen from the figure below:

even

- @ —F coarse
signa!ﬁ split | I predict ' | updalts |

—+)} detail

eveaen

caare /\‘j
l update I | predict | | mgrge '—9 sgnal

detail 3 (—I\

N

odd

Figure 3.4 Second Generation Wavelets

20

3.5 Lifting Scheme

The lifting scheme is a technique for both designing wavelets and performing the
discrete wavelet transform. Actually it is worthwhile to merge these steps and design the
wavelet filters while performing the wavelet transform. This is then called the second
generation wavelet transform. '

The discrete wavelet transform applies several filters separately to the same signal. In
contrast to that, for the lifting scheme the signal is divided like a zipper. Then a series of
convolution-accumulate operations across the divided signals is applied.

even values
1)
4 ; ¥
Update Predict Merge—®
| rl‘\ |
+
odd values et

Figure 3.5 Lifting Scheme Inverse Transform

3.5.1 Basic Lifting Scheme Wavelets

Wavelet algorithms are recursive. The output of one step of the algorithm becomes the
input for the next step. The initial input data set consists of 2" elements. Each successive step
operates on 2" elements, werei=1 ... n-1.

On this web page step;r follows step;. If element i in step j is being updated, the
notation is step;;. The forward lifting scheme wavelet transform divides the data set being
processed into an even half and an odd half. In the notation below even,; is the index of the i
element in the even half and odd; is the i element in the odd half (I'm pretending that the
even and odd halves are both indexed from 0). Viewed as a continuous array (which is what is
done in the software) the even element would be a[i] and the odd element would be a[i+(n/2)].

Another way to refer to the recursive steps is by their power of two. This notation is
used in Ripples in Mathematics. Here step;.; follows step;, since each wavelet step operates on
a decreasing power of two. This is a nice notation, since the references to the recursive step in
a summation also correspond to the power of two being calculated.

21

3.5.2 Predict Wavelets

The prediction step predicts that the odd element will be equal to the even element.
The difference between the predicted value (the even element) and the actual value of the
odd element replaces the odd element. For the forward transform iteration j and element i,
the new odd element, j+7,i would be

oddi+1i = odd;; - even;
In the lifting scheme version of the Haar transform the update step replaces an even

element with the average of the even/odd pair (e.g., the even element s; and its odd
SUCCessor, it):

ove _even,, + odd;,
: i o] 2

The original value of the odd;; element has been replaced by the difference between
this element and its even predecessor. Simple algebra lets us recover the original value:

odd;; = evenj; + odd ; "\W
) Substituting this into the average, we get
/
. - i:
_even,, +even;, +odd,,, f
eN. = even.. + odd,,,,

3.5.3 The Update Step

The update step replaces the even clements with an average. These results in a
smoother input for the next step of the next step of the wavelet transform. The odd elements
also represent an approximation of the original data set, which allows filters to be
constructed. A simple lifting cheme forward transform is diagrammed.

22

-

evenvalues @ -
4 T
—*! Split Predict Update
+)
oddvelues '

Figure 3.6 Lifting Scheme Forward Transform

The update phase follows the predict phase. The original value of the odd elements has been
overwritten by the difference between the odd element and its even "predictor”. So in

calculating an average the update phase must operate on the differences that are stored in the
odd elements:

evenj; = even; + U(oddjsa,i)

23

L.

1.

Chapter 4

Implementation and coding

4.1 The concept of the algorithm

In our algorithm we have implemented compression by using wavelets decomposition
4.1.1 Module 1

The first step of our algorithm takes in the input in three forms

The original black and white image.

Or

The decomposed image’s approximation part
This decomposition is performed by lifting wavelet transform by the function
Iwt2. We take the approximation part as the input.

Or

The decomposed image’s detail parts
This decomposition is performed by lifting wavelet transform by the function
Iwr2. We take detail parts as the inputs.

After passing any of these as an input to our function ddencmp_mod(), the function thus
generated a threshold which is passed on to the next step. The threshold is calculated as such

The image provided as the input is decomposed using the function wavedec2. —a 2™
level decomposition function
The a normalize value is calculated ,

a. Itis first initialized as max value of the absolute of the decomposed image.
Then the normalized value is then multiplied with a constant of our choice.
The threshold thus found is then directed into a matrix of 3x1 with addition of
variables.

. This matrix is then fed as an input to the next module.

24

_

T

4.1.2 Module 2

The first step of our second module are the inputs to our second function
Wdencmp_mod_mod()

o N

the threshold provided by the first module,
the wavelet name we wish to decompose it by,

the image again
the level by which we want to decompose is
Whether the hard of the soft threshold has to be taken

Afier passing all these as in inputs to the second module the calculation happens as such

The image is again decomposed using the same wavedec2 function

A coefficient is calculated for all the three different details of the image provided
The coefficient thus provided and the threshold passed into the module provides the
tools by which the image is reconstructed by using the function waverec?.

The last phase of the module two is the calculation of both normal recovery of the
image and the compression ratio.

These are then passed as outputs of the algorithm

These two parameters lets us compare the original image to the reconstructed one, so that
we could decipher the improvement thus occurred.

Note :

If we have used the lifting wavelet decomposition function to provide inputs in the

module 1 then we have to reconstruct the image back by using ilwz2 function ,

25

4.2 The Terminology of The Algorithm Explained

4.2.1 Module 1

Ddencmp_mod()

[THR,SORH,KEEPAPP] = ddencmp_mod(IN1,IN2,X) returns default values
for compression, using wavelets or wavelet packets, of an input vector or
matrix X, which can be a one- or two-dimensional signal, THR is the
threshold, SORH is for soft or hard thresholding, KEEPAPP allows you to
keep approximation coefficients.

wavedec2()

wavedec? is a two-dimensional wavelet analysis function,

[C,S] = wavedec2(X,N, 'wname') returns the wavelet decomposition of the
matrix X at level N, using the wavelet named in string ‘wname’ (sce wiilters
for more information).

Outputs are the decomposition vector C and the correspending bookkeeping
matrix S.

N must be a strictly positive integer (see wmaxlev for more information).
Instead of giving the wavelet name, you can give the filters. For [CS]=
wavedec2(X,N,Lo_D,Hi_D), Lo_D is the decomposition low-pass filter and
Hi_D is the decomposition high-pass filter.

Vector C is organized as
C=[AMN)|HN) | VIN) I DNN) | ...
H(N-1) | V(N-1} | D(N-1) | ... [H(1) | V(1) | D(1)].
where A, H, V, D, are row vectors such that
A = approximation coefficients

H = horizontal detail coefficients

V = vertical detail coefficients
D = diagonal detail coefficients

Each vector is the vector column-wise storage of a matrix.

26

=

e
“n oy

A,

Matrix S is such that

¢ 5(1,:) = size of approximation coefficients(N).
e 5(i,’) = size of detail coefficients(N-i+2) for i =2, ...N+1 and
S(N+2,:) = size(X).

C [3n+t1 sections)

I A, | cH, | CVa | Dy |GHn,Ai1ICani1|CDn..&1I ICH1 I oV Ic[i1 l
}
32 32
J2 32
512 | 512 _I X]
S (n+2-by-2)

we2(0) : N

lwt2 performs a 2-D lifting wavelet decomposition with respect to a
particular lifted wavelet that you specify.

[CA,CH,CV,CD] = Iwt2(X,) computes the approximation coefficients
matrix CA and detail coefficients matrices CH, CV, and CD, obtained by a
lifting wavelet decomposition, of the matrix X. ¥ is a lifted wavelet name

X _InPlace = Iwt2(X,LS) computes the approximation and detail coefficients.
These coefficients are stored in place:

CA =X_InPlace(1:2:end,1:2:end)
CH =X _InPlace(2:2:end,1:2:end)
CV =X InPlace(1:2:end,2:2:end)
CD =X InPlace(2:2:end,2:2:end)

Iwt2(X,W,LEVEL) computes the lifting wavelet decomposition at level
o LEVEL.

X_InPlace = Iwt2(X,W,LEVEL,'typeDEC',typeDEC) or [CA,CH,CV,CD] =
’ LWT2(X, W, LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' or 'wp'

27

computes the wavelet or the wavelet packet decomposition using lifting, at
level LEVEL.,

4.2.2 Module 2

Wdencmp_mod modf)

waverecZ()

[XC,CXC,LXC,PERFO,PERFL2] =
wdencmp_mod('gbl’,X,'wname',N,THR,SORH, KEEPAPP) returns a de-noised
or compressed version XC of input signal X (one- or two-dimensional)

obtained by wavelet coefficients thresholding using global positive threshold
THR.

Additional output arguments [CXC,LXC] are the wavelet decomposition
structure of XC (sec wavedec or wavedec2 for more information). PERFQ and
PERFL2 are L2-norm recovery and compression score in percentage.

PERFL2 = 100 * (vector-norm of CXC / vector-norm of C)2 if [C,L] denotes
the wavelet decomposition structure of X.

Wavelet decomposition is performed at level N and 'wname' is a string
containing wavelet name .SORH ('s' or 'h') is for soft or hard thresholding .If
KEEPAPP = 1, approximation coefficients cannot be thresholded, otherwise it
is possible.

¢ X = waverec2(C,S, wname") performs a multilevel wavelet reconstruction of
the matrix X based on the wavelet decomposition structure [C,S]. For detailed
storage information, see wavedec2. 'wname'is a string containing the name of
the wavelet..

¢ Instead of specifying the wavelet name, you can specify the filters.

» X =waverec2(C,S,Lo_R,Hi R), Lo R is the reconstruction low-
pass filter
= Hi_R is the reconstruction high-pass filter.

28

Hwe2

e waverec?2 is the inverse function of wavedec2 in the sense that the abstract
statement waverec2(wavedec2(X,N, wname"), 'wname") returns X,

* X = waverec2(C,S, 'wnqme’) is equivalent to X = appcoef2(C,S, wname',0).

ilwt2 performs a 2-D lifting wavelet reconstruction with respect to a
particular lified wavelet that you specify.

X =ilwt2(AD_In_Place,W) computes the reconstructed matrix X using the
approximation and detail coefficients matrix AD_In Place, obtained by a
lifting wavelet decomposition. W is a lifted wavelet name (see liftwave).

X = ilwt2(CA,CH,CV,CD,W) computes the reconstructed matrix X using the
approximation coefficients vector CA and detail coefficients vectors CH,
CV, and CD obtained by a lifting wavelet decomposition.

X =ilwt2(AD_In_Place,W,LEVEL) or X =
ILWT2(CA,CH,CV,CD,W,LEVEL) computes the lifting wavelet
reconstruction, at level LEVEL.

X =ilwt2(AD_In_Place,W,LEVEL,'typeDEC',typeDEC) or X =
ilwt2(CA,CH,CV,CD,W,LEVEL,'typeDEC!,typeDEC) with typeDEC = 'w'
or 'wp' computes the wavelet or the wavelet packet decomposition using
lifting, at level LEVEL.

29

-
4.3 Normal application
4.3.1 Main program:- ‘
: |
cleose all;
clear all;
summ=0;
[X,map] = imread{'lenaSlZcolor.tiff'};
= rgbZgray (X);
Il=double (I); ’
figure (1);
imshow (I);
[thr, sorh, keepappl=ddencmp ("cmp ', 'wv', I1);
thr_h = [17 18); % Horizontal thresholds.
thr d = [19 20); % Diagonal thresholds.
thr v = [21 22]; % Vertical thresholds.
thr = (thr_h ; thr_d ; thr_v]
[xd, cxd, 1xd, perf0,perfl2]} = wdencmp('lvd',I1l,'db3',2,thr,sorh}):;
figure (3):
xd=uint8 (xd);
imshow {xd) ;
perf0 .
perfl2 W
j |

4.3.2 Results and comparisons:-

W vy T

Original Result :

Normal recovery= 90.6412
Compression score = 99,8999

30

4.4 Modified application

4.4.1 Main program:-

close all;

clear all;

summ=0;

[X,map] = imread('lenabl2color.tiff');

I= rgbZgray(X);

Il=double (I);

figure (1):

imshow (I);

[thr, sorh, keepapp}=ddencmp _mod ('cmp', 'wv',I1);

[xd, cxd, 1xd, perf0,perfl2] = wdencmp_mod ("1vd',I1, 'db3"', 2, thr, sorh) ;

figure (3);
xd=uint8 (xd) ;
imshow (xd) ;
perfl

perfl2

-

4.4.2 Functions used:-

ddencmp_mod ()*

T e iy

function [thr,sorh, keepapp,crit] = ddencmp mod (dorc, worwp, x}
% Check arguments.
nbIn = nargin;
if nbIn<3
error ('Not enough input arguments.');
elseif isequal (worwp, 'wv')
if (nargout>3)
error ('Too many output arguments.');
end
elseif isequal (worwp, 'wp')
if (nargout>4)
error{'Toc many output arguments.');
end
else
error (*Invalid argument value');
end

% Set problem dimension,
if min(size(x))~=1, dim = 2; else , dim = 1; end

l % Set keepapp default value.
keepapp = 1:

31

% Set sorh default value.
if isequal(dorc, 'den') & isequal (worwp,'wv') , sorh = 's'; else ,sorh =
'h'; end

% Set threshold default wvalue.
n = prod(size(x)):

% nominal threshold.
switch dorc

case 'cmp' , thr = 1:
end

% rescaled threshold.
if dim ==
[c,1] = wavedec(x,1,'dbl");
c = c{l(l)+1:end};
else
[c,1] = wavedec2(x,1l, 'dbl');
c = ciprod(l(l,:)}+1l:end);
end

neormaliz = var{abs{c))+6;

% if normaliz=0 in compression, kill the lowest coefs.
if dorc == 'cmp' & normaliz ==

normaliz = Q,05*max (abs(c)); .
] end \

if dorc == "cmp' /s
thr = thr*normaliz; ﬁ
if worwp == 'wp', crit = 'threshold'; end ‘

end

thr_h = [thr*normaliz thr*normaliz+2]; % Horizontal thresholds.
thr_d [thr*normaliz+l thr*normaliz+3); % Diagonal thresholds.
thr_v [thr*normaliz+3 thr*normaliz+1); % Vertical thresholds.

Il

thr = [thr_h ; thr d ; thr v] ;
sorh

keepapp
% crit

wdencmp mod()*

function [x¢,cxc,lxzc,perfl,perfl2] = wdencmp({o,varargin}
% Check arguments and set problem dimension.
klo=10;
- dim = 1; % initialize dimensicn to 1D.
nbIn = nargin;
nbQut = nargout;
switch o
case 'gbl' , minIn = 7; maxIn = 8;
} case '"lvd' , minIn = 6; maxIn = 7;
otherwise , error('Invalid argument value.')
32

end
if nbIn < minIn
error ('Not enough input arguments.'):
elseilf nbIn > maxIn !
error {'Too many input arguments.'); i
end
okOut = [0:1 3:5];
if ~any (¢kOut==nbOut)
error ('Invalid number of output arguments.'};
end
if nbIn == minIn
®x = varargin{l}; indarg = 2;
if min(size(x))~=1, dim = 2;
end
else
¢ = varargin{l}; 1 = varargin{2}; indarg = 3;
if min{size{(l))~=1, dim = 2;

end
end
% Get Inputs
W = varargin{indarg):
n = varargin{indarg+l};
thr = varargin{indarg+2};

sorh = varargin{indarg+3};

if {(o=='gbl' & nbIn==7) | {o=='1vd' & nbln==6) ;

\

] if dim == 1, [c¢,1] = wavedec(x,n,w): :
else, [c,1] = wavedecZ(x,n,w); i

% Wavelet coefficients thresholding.
if o=="gbl’
if keepapp
% keep approximation.
oxXc = .;)
if dim == 1, inddet = 1(1l)+1:length{c});
else, inddet = prod(l{(l,:})+l1l:length(c); end
% threshold detail coefficients.
cxc (inddet) = wthresh(c{inddet), sorh,thr);
else
% threshold all coefficients.
c¢xc = wthresh (¢, sorh, thr);

end
else
if dim == 1, cxc = wthecoef('t’,c,1,1:n,thr,sorh);
else
cxc = wtheceef2{'h',c,1,1:n,thr(l,:),sorh);
cxc = wtheoef2('d',cxe,1,1:n,thr(2,:),sorh);
cxe = wtheoef2 ('v',cxc,1,l:n,thr(3,:),s0rh);
end
end

33

lxe = 1;

% Wavelet reconstruction of xd.

if dim == 1,xc = waverec (cxc,lxc,w);
else

XCc = waverec?Z (cxc, lxc,w);
end

if nbOut<4 , return; end

j % Compute compression score.
perf0 = 100* (length (find(cxec==0)) /length(cxc));
if nbOut<5 , return; end

| % Compute L"2 recovery score.
‘ nc = norm(c);

| if nc<eps
| perfl2 = 100;
| else i
perfl2
end
% size(xc)
% CR= size(c)/size (cxc)

100* ((norm (cxc) /nc) ~2);

| 4.4.3 Results and comparisons:- .

Original Result

| Normal recovery=_93.6047
. Compression score = 99.5704

34

4.5 Modified application 2

4.5.1 Main program:-

close all;

clear all;

summ=0;

[X,map] = imread('lena5l2color.tiff');
I= rgb2gray(X);

Il=double (I);

figure (1):

imshow (I);
[cA,cH,cV,ecD]=1wt2(I1, 'db3");

figure (2);

cA=uint8 (ch) ;

imshow (cA)

[thr, sorh, keepapp]l=ddencmp _mod ('cmp', 'wv',cA);

[xd, cxd, 1xd, perf0,perfl2] = wdencmp mod{('lvd',cA, 'db3',2, thr,sorh);

figure (3);
xd=uint8 (xd) ; .
xd=double (xd) ; \
imshow (xd) ;

perf0
perfl2 s

size (xd)

size (cA)

p=ilwt2 (xd,cH,cV,cD, 'db3');
figure (4);

p=uint8 (p);

imshow (p) ;

4.5.2 Functions used:-

ddencmp_mod ()*

function [thr,sorh, keepapp,crit] = ddencmp mod (dorc, worwp, X)
% Check arguments.
nbIn = nargin;
if nbIn<3

error ("Not enough inpul arguments.');
elseif isequal (worwp, 'wv')

if (nargout>3)

error ('Too many output arguments.');

end
elseif isequal (worwp, 'wp')

if (nargout>4)

35

error {'Too many ocutput arguments.');
end
else
error ('Invalid argument value');
end

% Set problem dimension. '
if min{size(x)})~=1, dim = 2; else , dim = 1; end

% Set keepapp default value.

keepapp = 1;

% Set sorh default value.

if isequal (dorc, 'den') & isequal (worwp, 'wv') , sorh = 's'; else ,sorh =
'h'; end

% Set threshold default value.
n = prod(size(x)):

% nominal threshold.
switch dorc

case 'emp' , thr = 1;
end

% rescaled threshold. |
if dim == i
[c,1] = wavedec(x,1, 'dbl");
c = c{l(i)+l:end);
else
[c,1] = wavedec2(x,1,'dbl");
c = c{prod(l{l,:})}+1l:end);
end

T

nermaliz = var(abs{c))+6;

]

% if normaliz=0 in compression, kill the lowest ccefs.

if dorc == 'cmp' & normaliz ==

nermaliz = 0.,.05*max (abs{c));
end
if dorc == 'cmp'

thr = thr*normaliz;

if worwp == 'wp', crit = 'threshold'; end
end
thr h = [thr*normaliz thr*normaliz+2]; % Herizontal thresholds.
thr_d = [thr*normaliz+l thr*normaliz+3]; % Diagonal thresholds.
thr v = [thr*normaliz+3 thr*normaliz+l]; % Vertical thresholds.
thr = [thr h ; thr d ; thr v] ;
sorh B B B
keepapp
% crit

36

wdencmp_mod()*

function [xc,cxc,lxe,perfl,perfl?} = wdencmp(o,varargin)
% Check arguments and set problem dimension.
klo=1C;
dim = 1; % initialize dimensicn to 1D.
nbIn = nargin;
npbOut = nargout;
switch o
case 'gbl' , minIn = 7; maxIn = 8;

case 'lvd' , minIn = 6; maxIn = 7:
otherwise , error('Invalid argument value.')
end
if nbIn < minIn
error ("Not enough input arguments.'});
elseif nbIn > maxIn
error ('Toco many input arguments.');
end
okOut = [0:1 3:5];
if ~any(okOut==nbOut)
error ('Invalid number of output arguments.');

end
if nbIn == minIn
X = varargin{l); indarg = 2;
if min(size(x))~=1, dim = 2;
end \
else ‘
¢ = varargin{l}; 1 = varargin{2}; indarg = 3; }
if min{size(1))~=1, dim = 2;)
end ‘
end
% Get Inputs
W = varargin{indarg}:
n = varargin{indarg+l};
thr = varargin{indarg+2};
sorh = varargin{indarg+3};
if (o=='gbl' & nbIn==7) | (o=='lvd' & nbIn==6)
if dim == 1, [c,1] = wavedec(x,n,w);
else, [c,1] = wavedec2 (x,n,w);
end

end

% Wavelet coefficients thresholding.
if o=="gbhi’
- if keepapp
% keep approximation,
CXC = ¢}
if dim == 1, inddet = 1(1)+1l:length{c);
else, inddet = prod(l(l,:))+l:length{c); end
% threshold detail coefficients.
cxc (inddet}) = wthresh (¢ (inddet),sorh,thr);

37

else
% threshold all coefficients.
cxc = wthresh(c,sorh,thr);
end
else

if dim == 1, cxc = wthecoef('t',c,1,1:n,thr,sorh);
else

cxc = wthecoef2{('h',¢,1,1:n,thr(l,:),sorh);
cxc = wtheoef2('d',cxc,1,1:n,thr(2,:}),s0rh};
cxe = wthecoef2('v',cxc,1,1:n,thx (3, :},s0rh);
end
end
1xc = 1;

% Wavelet reconstruction of xd.

if dim == 1,xc = waverec{cxc,lxc,w);
else

XCc = waverec? (cxc, lxc,w);
end

if nbOut<4 , return; end

% Compute compression score.
perf0 = 100* (length(find(cxe==0)) /length{cxc));
if nbOut<5 , return; end

% Compute L"2 recovery score.
nc = norm{c);

if nc<eps
perfl2

else
perfl2

end

% size(xc)

% CR= size(c)/size(cxc)

100;

100* { (norm{cxc)/nc)*2);

Il

38

4.5.3 Results and comparisons:-

Original Result

Normal recovery= 93.4616 \‘
Compression score =99.2711 .

39

4.6 Modified application 3

4.6.1 Main program:-

close all;

clear all;

summ=0;

[X,map] = imread('lena5l2color.tiff'};
= rgbZgray(X);

Il=double (I}):

figure (1);

imshow (I} ;
[cA,cH,cV,cD])=1wt2 (I1, 'db3'});

figure (2);

cBA=uint8{ch}:;

cA=double (cA) ;

% imshow (cA} .

[thr, sorh, keepapp]=ddencmp mod ('cmp', 'wv', cH);

[xdl, cxd, 1lxd,perf0,perfl2] = wdencmp_mod('lvd’',cH, 'db3’, 2, thr,sorh);

[thr, sorh, keepapp]=ddencmp mod('cmp', 'wv',cV); w
[xd2,cxd, 1xd, perf0, perfl2] = wdencmp_med('lvd',cV, 'dbk3’', 2, thr, sorh);
[thr, sorh, keepapp)=ddencmp mod('cmp', 'wv', cD) ;
[%d3,cxd, lxd, perf0, perf12] = wdencmp mod('lvd’,cD, 'db3’, 2, thr,sorh);

figure (3);

axis ('square');
®¥dl=uint8 (xdl);
xdll=double {xdl);

figure {(4):

axis ('square');
xd2=uintB (xd2);
size (xd2)
xd22=doubkle (xdZ2);

figure (5);
axis('square');
xd3=uint8 (xd3);
xd33=double (xd3);

perfl
pexrfl2

40

p=ilwtZ (cA, xd11, xd22, xd33, 'db3'});
figure (4);

p=double (p) ;

p=uint&(p) ;

imshow (p) ;

4.6.2 Functions used:-

ddencmp mod ()*

function [thr,sorh, keepapp,crit] = ddencmp mod (dorc, worwp, x}
% Check arguments.
nbIn = nargin;
if nbIn<3
error ('Not enough input arguments.');
elseif isequal {(worwp, 'wv')
if (nargout>3)
error ('Toc many output arguments.');
enag
elseif isequal (worwp, 'wp')
if (nargout>4)
error ('Too many output arguments.');:
end
else
error ('Invalid argument value');
end

-

% Set problem dimension.
if min(size(x))~=1, dim = 2; else , dim = 1; end

% Set keepapp default value.
keepapp = 1;

% Set sorh default value.
if isequal (dozc, "den') & isequal (werwp, 'wv'} , sorh = 's'; else ,sorh =
'h'; end

% Set threshold default wvalue.
n = prod(size(x));

% nominal threshold.
switch dorc

case 'cmp' , thr = 1;
end

% rescaled threshold.

if dim ==
[c,1l] = wavedec(x,1,'dbl");
c=c{l{(l)+l:end);

else
[e,1] = wavedec?(x,1,'dbl"};

41

c = c(prod(l(l,:))+1l:end);
end

normaliz = var{(abs(c))+6;

% 1f normaliz=0 in compression, kill the lowest coefs.

if dorc == 'cmp' & normaliz ==
normaliz = 0.05*max (abs(c)):
end
if dorc == 'cmp'
thr = thr*normaliz;
if worwp == 'wp', crit = 'threshold'; end
end
thr h = [thr*normaliz thr*normaliz+2]; % Horizontal thresholds.
thr d = [thr*normaliz+l thr*normaliz+3]; % Diagonal thresholds.
thr v = [thr*normaliz+3 thr*normaliz+l]; % Vertical thresholds.

thr = [thr_h ; thr_d ; thr_v] ;
sorh

keepapp
% crit

wdencmp_mod()*

function [xc,cxc,lxc,perfl,perfl2] = wdencmp (o, varargin)
% Check arguments and set problem dimension.
klo=10;
dim = 1; % initialize dimension to 1D.
nbIn = nargin;
nbQut = nargout;
switch o
case 'gbl' , minIn = 7; maxIn = 8;

I

case 'lvd' , minIn = 6; maxIn g
otherwise , error('Invalid argument value.')
end
if nbIn < minIn
error ('Not enough input arguments.');
elseif nbIn > maxIn
error ('Too many input arguments.');
end
okOut = [0:1 3:5];
if ~any (okOut==nbOut)
error ('Invalid number of output arguments.');
end
if nbIn == minIn
¥ = varargin{l}; indarg = 2;

if min(size(x))~=1, dim = 2;
end
else
¢ = varargin{l}; 1 = varargin{2}; indarg = 3;
if min(size(l))~=1, dim = 2;
end
end

42

% Get Inputs

W = varargin{indarg};

n = varargin{indarg+l};

thr = varargin{indarg+2};
{

sorh = varargin{indarg+3};

if (o=='gbl' & nbIn==7) | (o=="lvd' & nbIn==6)
if dim == 1, [¢,1] = wavedec(x,n,w);
else, [c,1l] = wavedec2(x,n,w);
end

end

% Wavelet coefficients thresholding.

if o=='gbl’
if keepapp
% keep approximation.
CXCc = C;
if dim == 1, inddet = 1(1)+1:length(c);

else, inddet = prod(l(1l,:))+1l:1length(c); end
% threshold detail coefficients.
cxc (inddet) = wthresh(c(inddet), sorh, thr);
else
% threshold all coefficients.
cxc = wthresh(c, sorh, thr);
end
else

if dim == 1, cxc = wthcoef('t',c,1,1:n,thr,sorh);
else

cxc = wthcoef2('h',c,1,1:n,thr(1,:),sorh);
cxc = wthcoef2('d',cxc,1,1:n,thr(2,:),sorh);
cxc = wthcoef2('v',cxc,1,1:n,thr(3,:),sorh);
end
end
1xc = 1;

[}

% Wavelet reconstruction of xd.

if dim == 1,xc = waverec (cxc,1xc,w);
else

XC = waverec?Z (cxc, lxc,w);
end

if nbOut<4 , return; end

Q

% Compute compression score.
pertl = 100* (length(find(cxc==0))/length(cxc));
if nbOut<5 , return; end

% Compute L"~2 recovery score.
nc = norm(c);

if nc<eps

43 i

It

perfl?2
alse
perfl2
end
% size (xc)

]

% CR= size(c)/size (cxc)

100;

100* ((norm(cxc)/ng) *2);

4.6.3 Results and comparisons:-

Original Result

Normal recovery=93.2613
Compression score = 99.4317

44

Conclusion

The conclusion that we would like to draw from this project is that we have achieved a
better compression of images than that was existing. This was done by careful examination
of the text that we consulted as well as the books that we referred to. Forming a basis of our
approach. This lead to the new algorithm that we have developed which gives us better
results than that of previous one.

Another point that should be taken into consideration is that we found that there still
are few areas that can be improved upon, namely:-

1. The threshold can be selected more precisely
2. The input given to the newer algorithm can be altered to
achieve better outputs

Thus we can say that these areas can be of imminent importance for the improvement of
image compression.

45

Brief Bio data

AMAN VERMA- Department of Computer Science & Engineering
Jaypee University Of Information Technology,
Waknaghat, Solan (H.P)

Pursuing Name Of School/University Year CGPA

B.Tech Jaypee University Of

CSE Information Technology, 2011 6.7 (73.03%)
Solan (H.P.) Up Till 7"sem

Currently working on the Image compression using second generation lifting scheme.
Team size: Two

PUNEET TANEJA- Department of Computer Science & Engineering
Jaypee University Of Information Technology,

Waknaghat, Solan (I1L.P)
Pursuing Name Of School/University Year CGPA
B.Tech Jaypee University Of
CSE Information Technology, 2011 6.3(70.0%)
Solan (H.P.) Up Till 7"sem

Currently working on the Image Compression Using Second Generation Lifting
Scheme.
Team size: Two

46

References

II.

II1.

Iv.

VL

VIIL

VIIL

IX.

X.

yEric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for computer
graphics: A primer, part 1. /[EEE Computer Graphics and Applications,15(3):76-
84, May 1995.

Wim Sweldens .The Lifting Scheme: A Construction Of Second Generation
Wavelets May 1995, Revised November 1996 To appear in SIAM Journal on
Mathematical Analysis

Laurent Demaret (GSF-IBB Neuherberg, Germany),Nira Dyn (Tel-Aviv
University, Israel), and Armin Iske (University of Leicester, UK) “Image
Compression by Linear Splines over Adaptive Triangulations”

Rajesh Siddavatam.2009 International Conference on Advances in Recent
Technologies in Communication and Computing Image Noise Cancellation by
Lifting Filter Using Second Generation Wavelets (LFSGW)Kottayam, Kerala,
India October 27-October 28 ISBN: 978-0-7695-3845-7

Rajesh Siddavatam international conference on advances in recent technology in
communication and computing,2009.ARTCom ‘09,27-28 Oct. 2009,pages on 509-
513 kottayam,Kerela,978-1-4244-5104-

B. Pradhan, Shattri Mansor, Institute for Advanced Technologies (ITMA)Faculty
of Engineering, University Putra Malaysia, 43400, UPM, Serdang Selangor Darul
Ehsan, Malaysia

Book on image processing by Rafael C. Gonzales and Richard E. Woods

N. Dyn, M. S. Floater, and A. Iske, “Adaptive Thinning for Bivariate
Scattered Data”, J. Comput. Appl. Math. 145(2), 2002, pp. 505-517.

Y. Eldar, M. Lindenbaum, M. Porat, and Y.Y. Zeevi, “The Farthest
Point Strategy for Progressive Image Sampling”, IEEE Trans. Image
Processing 6(9), Sep. 1997, pp. 1305-1315.

Iske, Multiresolution Methods in Scattered Data Modelling,Springer, Heidelberg,
2004.

47

XL

XII,

XIIL

M. Jansen, R. Baraniuk, and S. Lavu, “Multiscale Approximation of
Piecewise Smooth Two-Dimensional Functions using Normal Triangulated
Meshes”, Appl. Comp. Harm. Anal. 19(1), 2005, pp. 92-130.

E. LePennec and S. Mallat, “Sparse Geometric Image Representation with
Bandelets”, to appear in IEEE Transactions on Image Processing.S. Mallat, “A
Theory for Multiresolution Signal Decomposition: The “Wavelet Representation®,
IEEE Trans.

Pradhan, Shattri Mansor, Abdul Rahman Ramli and Abdul Rashid B. Mohamed
Sharif, K. Sandeep,”A New Robust Data Comprssor For Lidar Data “,Institute for
Advanced Technologies (ITMA) Faculty of Engineering, University Putra
Malaysia, 43400, UPM, Serdang

48

