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List of Notations

We use the following notation:

o . . E
* Derivatives are denoted using subscripts. &, = and

2=y
dx x

Higher derivatives may be denoted by repeating the
independent variable in the subscript, or using a coefficient.
e.g., Second derivatives are denoted as %4, = U,

« We will introduce an infinite number of independent
variables, ¥,.X,, ¥5..., and denote these using subscripts,

*We use the notation o to denote a composition (of operators
or functions). For clarity, we will always specify a
composition, meaning that the operator is yet to act on a
function.

*  GCCKdV equation means generalized complex coupled

Kortweg-de Vries equation.




ABSTRACT

“The world around us has been inherently nonlinear.”

In recent years, solitons and their nonlinear evolutionary
equations (NLEEs) have attracted the attention of many
biomathematicians and physicists. A soliton is a particular type
of solitary wave, which is not destroyed when it collides with
another wave of the same kind. Such behaviour is suggested by
numerical simulation, but is it really possible that the soliton
completely recovers its original shape after a collision? In

detailed analysis of the results of such numerical simulations, !

some ripples can be observed after a collision, and it therefore
seems that the original shape is not completely recovered.
Therefore, in order to clarify whether or not solitons are
destroyed through their collisions, it is necessary to find exact
solutions of soliton equations.

A direct method has been investigated to find exact
solutions of nonlinear partial differential equations, including
soliton equations, A new binary operator, called the D-operator,
is derived. General formulae, through which nonlinear partial
differential equations are transformed into bilinear forms, are
presented. By virtue of special properties of the D-operator,
solving these bilinear forms by ordinary reductive perturbation
methods leads to perturbation expansions that may sometimes
be truncated as finite sums. Such a truncation yields an exact
solution for the equation. Through the dependent variable
transformations and  symbolic computation, GCCKdV

equations are bilinearized, based on which the one- and two-
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soliton solutions are obtained. Through the interactions of two
solitons, the regular elastic collisions are shown.

When the wave numbers are complex, three kinds of
solitonic collisions are presented: (i) two solitons merge and
separate from each other periodically; (ii) two solitons exhibit
the attraction and repulsion nearly twice, and finally separate
from each other after such type of interaction; (iii) two solitons
are fluctuant in the central region of the collision.

Propagation features of solitons are investigated with the
effects of the coefficients in the GCCKAV equations
considered.

The work suggests that a variety of effective

analytical methods can be developed considerably to find exact

solutions for nonlinear PDEs,

R - |




CHAPTER 1

INTRODUCTION

1.1 Fundamentals of PDEs
Definition 1. A partial differential equation (PDE) is an

equation containing partial derivatives of the dependent

variable.

For example, the following are PDEs

Uy b 4, e ) (1.1.5)
Wpp o+ Bl = F (0, 1) {1.1.2) |
[ TS TT SN PR TP P {1.1.3] f‘
!
|
Wty b (00 s 0 (l.1.d)
{ﬁw_f O A Ty L IR T N Ty T (1.0.51 3
b
: 1
In general we may write a PDE as
Fla, g, -om u,, R N {1.1.4)
where x, y,........ are the independent variables and u is the

unknown function of these variables.

Of course, we are interested in solving the problem in a certain

domain D. A solution is a function u satisfying (1.1.6). From
these many solutions we will select the one satisfying certain
conditions on the boundary of the domain D.

For example, the functions

i, ) = T

wln, Y o= pnaia — od ]

are solutions of (1.1.1), as can be easily verified.




- i1

Definition 2. The order of a PDE is the order of the highest
order derivative in the equation.

For example (1.1.1) is of first order and (1.1.2) - (1.1.5) are of
second order.

Definition 3. A PDE is linear if it is linear in the unknown
function and all its derivatives with coefficients depending only
on the independent variables.

For example (1.1.1) - (1.1.3) are linear PDEs.

Definition 4. A PDE is nonlinear if it is not linear.

Definition 5. A PDE is quasilinear if it is linear in the highest
order derivatives with coefficients depending on the
independent variables, the unknown function and its derivatives
of order lower than the order of the equation.

For example (1.1.4) is a quasilinear second order PDE, but
(1.1.5) is not.

We shall primarily be concerned with linear second order PDEs

which have the general form

Al oot B, heag+ Clas yhuyy+ D2, ket Elr, ylugt Fla, ylu = Glr, y) [LL7]

Definition 6. A PDE is called homogeneous if the equation
does not contain a term independent of the unknown function
and its derivatives,
For example, in (1.1.7) if G(x, y) = 0, the equation is
homogenous. Otherwise, the PDE is called inhomogeneous.
Partial differential equations arc more complicated than
ordinary differential ones.For PDEs, selecting a particular
solution satisfying the supplementary conditions may be as
difficult as ﬁndihg the general solution. This is because the
general solution of a PDE involves an arbitrary function as can
be seen in the next example. Also, for linear homogeneous
ODEs of order n, a linear combination of n linearly
independent solutions is the general solution. This is not true
for PDEs, since one has an infinite number of linearly

independent solutions.
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1.2 Basics of Nonlinear Waves

The wave equation.

Consider the wave equation
LTI )
with u, x, and t real. Typically pose an initial-value problem to
find u given u(x, 0) = f(x) and u.(x, 0) = g(x), and subject to
suitable boundary conditions on a finite or infinite interval of x.

General solution is given by d’ Alembert’s formula:
ez F e e i F Jr+d],
with F_ arbitrary.

Determined from initial data by
Jleh=Fylel 4 Bdel. gle)s ~Fife] + (2], r
Thus,
Ut s 4 e St Q
Integrate and use
[[DERREEY !
R N
b= 52 | s,
}
where y is arbitrary (its effect cancels out of u(x, t)).
Notes:
* £o(x — t) and F_(x + t) represent travelling wave solutions of
the wave equation. They propagate without change of form at
constant speed. If F.and F_ ( represent isolated wave forms
(say have compact support), The two wave forms will
eventually separate from one another and thus a complicated
initial condition can resolve asymptotically into a sum of

simple waves.

11
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+ Of course for all time u(x, t) is a sum of simple waves. This
reflects the superposition principle shared by all linear
equations: whenever uy(x,t)and u,(x,t) are two solutions,

: ala. b=y (o i+ uyfa ],
then so is the sum P Ei = 0l iy g ]

The linear Klein-Gordon equation. Dispersion.

A simple modification of the wave equation is the
following equation
Ny = Weyp * 8 =2 4],
This is called a (linear) Klein-Gordon equation. It is
also a linear equation, and so has a superposition principle.
However, there are no localized traveling wave solutions.

Substitute
Wi ) e L8y with & = - oh gnd by the chain rule obtain

At 2-;‘;@\ .
Hy, = f [.5}‘ Big e b I{}

A

so under the substitution the equation becomes !

FUEY B s !

so if £*< 1 the \
FELEN g gt VEEEE ey s TR .

which is unbounded and not localized,
and if c*> 1 then
FUEL = mvanfE AV 2 — L] - fsind€ /w2 — 1},
which is bounded but periodic (not pulse-like).
The nature of these sinusoidal traveling wave solutions explains

why this equation doesn’t support localized traveling waves.

Generally a wavetrain solution of a wave equation has the form

Wi, b Aptttemed

and A is the amplitude, k is the wavenumber, and ® is the
frequency. These are not independent.

Upon substitution into the linear Klein-Gordon equation we see

that this is a solution as long as

12




This formula is called a dispersion relation.

Since the phase velocity of the wave train is vy, = @ /k, we see .

that in this problem
i
LS I o 3;“3, .

which depends nontrivially on k. Thus waves of different
lengths travel with different speeds. This phenomenon
is known as dispersion. Since by Fourier theory we can write

the general solution as

e o
nir, 4y [ {**4: TSR I T | Fata bl ] )P

v

a general solution is made up of waves traveling at different
speeds with respect to each other. This ultimately

leads to the distortion of any wave form that does not resemble
one of the basic Fourier components.

It should also be noted that Fourier theory gives a solution
algorithm for the linear Klein-Gordon equation,

even though there is no d’Alembert formula. That is, the

functions 4, (k) are determined in terms of

u(x, 0) = f(x) and u.(x, 0) = g(x) by Fourier transforms.

A nonlinear Klein-Gordon equation. Solitary waves.

If we want to further modify the equation to bring coherent
structures back into the picture, we have to add nonlinearity.

Consider the equation
g ™ Wy b e o omin{Swad b — winf o) ? w [
7o 43 4

The nonlinear terms here are chosen to be odd and periodic but
are otherwise arbitrary (they happen to be the first two terms of
the Fourier sine series of 1 on 0 <u < 1/2). This equation has

interesting localized traveling waves.

13
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With u(x, t) = F(£) and & = x — ct, we arrive at

1 ] I
e R r;%x:i'éi:rfl’%) =23
e - i | g
This is a nonlinear differential equation, but it is easy to 1

analyze by looking at the phase portrait in the (F, F’) plane.
Multiplying by F’ we find that

i § e | owmin J o it § i 7057 iy v i o G g
T R B B TR U h R TR

so the solution curves in the phase plane are level curves of an

energy. If ¢*< 1 we have saddle points at

¥

3

E

(and F’ = 0) and center points halfway in-between.
If ¢*> 1 it’s the other way around.

Three kinds of “motions” in £ :

* Periodic motion. Libration of the pendulum.

* Unbounded (in F) motion. Rotation of the pendulum.

» Separatrices. Heteroclinic orbits connecting saddle points.

The latter correspond to localized solutions of the nonlinear

Klein-Gordon equation! Suppose e2< 1, To

find the localized traveling waves it is enough to look at the
energy level through F=F = (:

E o %

| [’;f.l«:'}? 1 ( - L ﬁ} ;
AT ST ISR MRt

PE IhEs

-

This first-order equation may be solved directly for £ in terms

of F because
s ToE 1
;i?;;;: = ‘:L ||'|§I{ '?) i w . l—’—"}:_‘*“"‘-_w"w 5,
: S W wiandy
14




o a4 g : 1 -
sBrpoan } oo - (:l EETR e ST ey CEVER LT 2T }

Where o k !

As & is positive for 0 <u < 1, d & /dF is always nonzero, so by

the implicit function theorem we get F = F(§).

(Every monotone function has an inverse). Therefore, F(£) has

the shape of a “front”. There are traveling wave fronts of all

speeds with c?< 1. This is different from the lincar wave

equation which only admitted the speeds ¢ = £1. Note the
relativistic interpretation of the fronts: the characteristic width |

of the traveling wave solution u(x, t) = F (x—ct) is proportional

to V1 — c=. The faster it goes, the shorter it is. The scaling is
exactly that of special relativity. Also, because the passage of
the front increases the angle 2mu by 2w, there is a kind of
twisting going on, which motivates the terminology of calling

these traveling waves kinks, Localized traveling waves in

nonlinear wave equations are called solitary waves to contrast
them with solutions that are periodic in & (and therefore

resemble a whole train of waves instead of just one). Once

dispersion is in the picture, nonlinearity is essential to have
solitary waves in a system. The propagation of the solitary
wave should be thought of as a dynamical balance between
dispersive “forces” that try to pull the wave apart, and
nonlinear “forces” that try to compress it together.

We can think of a solitary wave in terms of a group of kids of
different sizes all walking along together. If they are walking

on the pavement, then some kids walk faster than others and

eventually the group spreads out, which is like dispersion, Now

put the same group of kids on a huge trampoline, and the ones
who get out in front suffer the disadvantage of having to walk
uphill while the ones who fall behind are given a boost by
walking downhill. The more kids are present, the greater the
effect is, which is the essential property of nonlinearity.

Combining the effects of nonlinearity and dispersion, the group

IS5




of kids walking on the trampoline just remains the same size —
a solitary wave.

The fact that we are now looking at a nonlinear equation means
that we can no longer count on a superposition principle. Sums
of solutions are no longer solutions. Also, there is no longer an
algorithm for solving initial-value problems. That’s just how it

is.

The sine-Gordon equation. Solitons. ' ‘

Another example of a nonlinear Klein-Gordon equation is just
Uy — U, +sin(2ru) =0,
which is known as the sine-Gordon equation. Exactly the same
kind of reasoning as before, now using |
®(u) = sin(27u) l

gives a family of solitary wave solutions (kinks) parametrized

by velocities ¢< 1. In this case, we can find the traveling

waves explicitly:

el i A
P S S T l U L ke 4 F
= ] . T

Now, we can again carry out similar numerical experiments to

examine collisions of these solitary waves.
Notes: 1 |
* The interaction is now “clean”. There is no radiation shed.

* There is a “phase shift™: after the collision the kinks reemerge I
unscathed except that they are shifted somewhat from where Il
they would have been had there been no interaction.

This strange behavior of the solitary waves in the sine-Gordon
equation justifies our promoting them to have a new name:
solitons. Since the dynamics allows any number of solitons to |
propagate and “pass through each other” (albeit with a phase I
shift) the velocities of the solitons are observable constants of
the motion. Since an initial condition could in principle be

rigged to contain an arbitrary number of solitons, there are

16




evidently an arbitrary number of conserved quantities for this
equation.

In the theory of mechanics a Hamiltonian system with a
sufficient number of conserved quantities (in involution with
respect to each other) makes the mechanical system integrable
by quadratures.

The sine-Gordon equation is an example of an infinite-
dimensional integrable system.

There is also evidently a kind of “nonlinear superposition
principle” for the sine-Gordon equation.

In one form it is the following: writing the sine-Gordon
equation in characteristic formr=x+1t,s=x —tas

U= §in (u).

and considering the relations relating two functions v and v:

1 L (ﬂwt‘} 1 AR g:')
_é(n 4], e sin ) é‘i“m I il B 1K

LY s

By cross-differentiation, it follows that both
U, = §IN (W) , ¥s= SIN (V).
so if u is a solution and we determine v through the first-order

equations above, we get another solution of the same equation!

17




1.3 A Brief History of Soliton Theory

In 1834, whilst conducting experiments to determine the most
efficient design for canal boats, naval engineer, John Scott
Russell had what he described as a “first chance interview with
a singular and beautiful phenomenon’. Russell was the first to
record a sighting of a solitary wave, and was intrigued by its
unchanging form as he chased it along the Union Canal in
Edinburgh. In his Report on Waves, Russell’s prose elegantly
describes what he calls the ‘wave of translation’.

‘[The wave] rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course along the
channel apparently without change of form or diminution of
speed.

I followed it on horseback, and overtook it still rolling on at a
rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in
height.’

Following this discovery, Scott Russell built a small wave tank
in his back garden and made further observations of the
properties of the solitary wave.

He was convinced that the solitary wave was of fundamental
importance, but prominent nineteenth and early twentieth
century scientists thought otherwise.

In fact, they hotly debated the existence of the solitary wave
Scott Russell had described, and the respected mathematician
Stokes doubted that the wave could propagate without change
in form.

The issue was not settled until after Scott Russell’s death. In
fact, soliton theory lay dormant until the appearance of the
important paper by Korteweg and deVries in 1895, in which the

KdV equation first appeared as a model for shallow water

18




waves in weakly dispersive media. We will see in section 1.4,
that one solution to KdV describes an invariant, hump like
wave travelling at constant speed.

But it wasn’t until Zabusky and Kruskal published a paper in
1965 , that the full potential of soliton theory began to emerge.

Working numerically on the Fermi-Pasta-Ulam problem, in
which a system of N—1 identical masses are connected

in a 1-dimensional lattice with N connecting springs, Zabusky
and Kruskal recovered the KdV equation. They found
(numerically) that KdV solitary waves could be shown to
remain shape invariant upon interaction, undergoing only a
phase shift and interacting elastically. Since this behaviour is I
more reminiscent of particle collisions than of wave

interactions, Zabusky and Kruskal coined the word soliton,

whose suffix on highlights the particle like nature of a solitary |

wave.,

WSS e ] The el Have o Bunshibion vt piapanu st

1
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Figure 1.1: Russell’s Waves of Translation
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Figure 1.2: Solitons in the Strait of Gibraltar

The Zabusky and Kruskal discovery had revived the study of
the solitary wave.

A seminal series of papers by Gardiner et al in 1967 paved the
way for the inverse scattering transform to be developed. This
technique finally showed that an analytical solution was
possible for solitons

Zabusky and Kruskal had investigated the invariance properties
of solitons numerically, but a slither of doubt had remained, as
small oscillations appeared in the results. Without an analytical
solution, they had been unable to tell if these oscillations were
due to numerical error or instability, or if they were a property
inherent in the solution itself. The inverse scattering transform
finally put the question of soliton invariance firmly to rest,
showing that solitons remain shape invariant as they travel, and
interact elastically after a collision.

In 1972 soliton theory had its big break, when Zakharov and
Shabat showed that inverse scattering could be generalised to

other soliton equations, not just the KdV equation.

20




A direct method for solving soliton equations was invented

by Hirota. Sato’s theory followed in the late seventies and early
eighties and was able to explain the underpinnings of Hirota’s
method and the properties of soliton equations from a unified
viewpoint, In its full description, Sato’s theory seems at once,
arcane, beautiful and powerful.

There are various ways to formulate soliton theory,
encompassing many areas of mathematics, from applied
mathematics to complex analysis, group theory, geometry

and field theory (in physics). Miwa, Date, Jimbo and
Kashiwara have extended Sato’s theory using the framework of
bosonic and fermionic Fock spaces from quantum field theory.
Today, soliton theory has multiple applications in physics and
biology. Due to their invariance properties, solitons are of great
potential use in light wave communication technology. Solitons
can be observed in the ocean, often in the narrow Strait of
Gibraltar as seen in Figure 1.2,

Solitons are also created in the atmosphere, forming cloud rolls
called Morning Glory - and also in tidal bores, where they form

solitary waves.

21




Figure 1.3: Morning Glory Cloud Solitons

Figure 1.5: Morning Glory Satellite Image
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The ocean solitons shown in Figure 1.2 & Figure 1.5 are
triggered by inflowing Atlantic water accelerated by its passage
through the narrow strait and across a sill at its entrance. If a
body of water consists of an upper layer and a denser lower
layer, the interface between the layers can undergo wave
motion, causing an internal wave inside the body of water. At

the interface between the fresher, lighter Atlantic water and

more saline, denser Mediterranean water, internal wave sets are
generated. Each soliton develops independently as the tidally
driven, eastward flowing water is compressed, and upwelling

results causing small soliton waves to appear on the surface.

The morning glory cloud soliton is unique to the Gulf of
Carpenteria in Northern Australia. Like ocean solitons, the

cloud rolls are generated by atmospheric layering caused by the

interaction of nocturnal sea breezes over Cape York Peninsula.

The cloud solitons have been observed to propagate for at least
300kms and can retain their shapes for several hours. Porter

and Smyth have argued that the cloud rolls can be modelled by

the forced Benjamin Ono equation.

Similarly, tidal bores (figure 1.4) are waves which may travel
for miles down a narrow river or stream. In this case the wave
maintains its narrow focus because the sides and bottom of the
river provide just enough of a nonlinear compressing force to

counter the normal dispersion of the wave.

In general solitons may propagate in many different
media, ranging from infinitesimal, to meteorological and
astrophysical. There are certain conditions in space in which |
quarks may form a soliton. |

Boojums, compactons, fluxons, kinks, antikinks, and twists are
other names for types of solitons predicted in everything from

supercooled fluids to empty space.

23




1.4 What Exactly is a Soliton?

Instead of starting from a mathematical definition of a soliton,
we list the observable properties of solitons and note that the
solutions obtained analytically obey these.

We define a soliton as a wave that has the following properties:

« Soliton equations come in infinite hierarchies, with a high

degree of symmetry, which are mostly integrable. This has

been found by observation. Not only are solitons symmetrical

in cross section about their point of maximum amplitude, but
their governing equations have a great deal of intrinsic

symmetry.

Figure 1.8: A Soliton in Cross-section

« Solitons scatter elastically, retaining their original speed and
shape after a collision. The shape invariance property of a

solitary wave occurs in systems displaying both nonlinearity

and dispersion. Firstly, we will show that the speed of a soliton
is proportional to its height. Secondly, we will show that for
KdV type equations if more than one soliton is present in a

given solution then these solitons must be of different heights

and travel at different speeds. |
» Solitons interact non-linearly. When solitons collide and |
overlap, the linear superposition principle does not apply, as
solitons are governed by non-linear evolution equations. There
actually exists a non-linear analog of the superposition

principle, the Backlund transformation, which is essentially a

transformation connecting two soliton solutions.
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Solitons are a localised wave and it is smooth and

continuous. Let the amplitude of a soliton be u, We assume that

ueC A soliton vanishes sufficiently rapidly asymptotically,

such that we may impose the following boundary condition.
u(x, t) — 0 as x| — +o0 (1.3.1)

We assume that 1.3.1 occurs sufficiently rapidly, by which we

define the following.

Let u be a member of the Schwartz class, S(R). This means that

u is infinitely differentiable and u and its derivatives decay

faster than any power of ]x|_l as [x| — +oo.

It is possible to solve KdV without this condition in terms
of Abelian integrals, but hereafter we will only consider
solutions which have the boundary conditions specified above,

as we are interested only in the soliton solutions.

The KdV Equation and Other Miracles

As mentioned earlier, KdV is a celebrated soliton equation
derived by Korteweg and de Vries in 1895 . It is derived using
fluid dynamics to approximate a model for shallow water
waves in weakly dispersive media. The KdV equation can be

expressed as

Uy = Ugpapy. + Uy (1.4.2)

This is a nonlinear evolution equation for u(x, t), where u is the
amplitude of the wave. The .., term is a dispersion term and

the ¢, term is a non-linear term,

25




Scale Invariance
KdV is scale invariant, which means we can set the value of the
coefficients of its three terms to arbitrary values by choosing
appropriate scaling transforms for x, t and u. These coefficients
have been set arbitrarily to one in 1.4.2,

Consider the arbitrary scaling transform from u to i ,

T — QX { — bt TR 1]

(1.4.3)
where a, b, ¢ are arbitrary constants. Using the chain rule we
find

Uy = o ol = 9 C‘)fm“r = i
T Bl T elet bt
a . & Z‘J:I‘pﬁ faxeili
U, = T Ci = U = ——
* e OF 6t a da
2 ¢ i ¢ GHi
yrr = S o e — T3 no
b dx? a OF ad F
and substitution into 1.4.2 gives
¢ c I
'5'1!1 = (?umr{—guuy
1 1 ¢
=l = gy T =y
b o a

Thus, choosing arbitrary values of a, b and ¢, we may re-scale

each of the coefficients separately to any arbitrary value.

Galilean Invariance
The KdV solution is invariant under a Galilean transformation
to any inertial reference frame, The most general Galilean

transformation is

R
(1.4.4)

where v, is the constant velocity of the new reference frame.

Transforming 1.4.2 in this fashion, we find that the KdV

equation is retained, but with u shifted by a constant, A.
T =u-2
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Unique Soliton Solutions from Initial Data

In their important series of paper in 1967, Gardiner et al
showed that it is possible to re-construct the KdV variable u at
any time, t> 0, given initial data that approaches a constant, p,
sufficiently rapidly as x — +w. By virtue of Galilean

invariance, y can be set to an arbitrary value, including zero.

Lemma :
Solutions of KdV that decay sufficiently rapidly are uniquely
determined by initial data.
Proof :

Let us assume that a solution to KdV exists, and that the
initial data takes the form of a soliton such that 1.4.1 is satisfied
at all times, t.

Let us write KdV such that

W+ Uy + B, =0
T e TR (1.4.5)

Let u and v be soliton solutions to KdV in 1.4.5. Let w be the
difference between these solutions, such that w = u — v. We
will assume that u and v satisfy the same initial data

u(x, 0) =v(x, 0) = f(x) (1.4.6)
and we ask whether this initial data admits unique solutions
under the evolution of KdV.

Substituting w into 1.4.5 gives
Wy + Guﬂ.f:;: + G’EU'U;,; F Wygy = 0

Multiplying this equation by w and integrating over all x , we
obtain

X
f (ww; + Gwuw, + 6’11}2’1)1. + wwmm) =
o
Where ¢, is an arbitrary constant of integration. Now,

integrating by parts and using the chain rule and the asymptotic

boundary condition in 1.4.1, the last term vanishes since

27




ol 0
/ Willppedt = [l wli™ — / Wy WaodT

o —iX

A I 9
= 0*/ mﬁ(uw) dax

= 0

Then, integrating by parts on the second term (with the chain
rule and asymptotic boundary condition), we have

| %)

—— w?da + / (6v, — 3u,) w?de =0
2.a¢ f. I

= (1.4.7)
Where we have used the fact that u, v and w and their
derivatives vanish as x — =, to set ¢; = 0 for a non-trivial
solution. After integration, this becomes an ODE for t. Since
we are trying to show that w = 0, we don’t need to perform the

actual integration. Instead, we use an inequality. Let
B = 5 /_: widw < oo
and let M be
M = sup |6v, — 3u,l <
where the supremum is the least upper bound, such that no

member of |61, — 31| exceeds it. Now, we can write the ode in

1.4.7 as an inequality without the need to integrate explicitly

N ®
9 ”
— [ v < =M | wlde

PN

ot

J—x -0

[

Joyfr)eM!

1A\

At
Y (1.4.8)
where ¢,(x) is a constant of integration with respect to t.
From 1.4.6, we have w(x, 0) = 0 and thus, we have the

initial condition B(0) = 0. Using this initial condition on 1.8, we

2
find that c,(x) = 0, such that B(t) < 0. But, since w is an even

function, then B(t) > 0.
This implies that B (1) =0 Vt>0and w=0,sou=vVvt=0.
Therefore, only one unique solution is possible from an

arbitrary initial soliton condition.
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The One Soliton Solution by Direct Integration

It is possible to find the simplest soliton solution for KdV by
direct integration. Consider the KdV equation in 1.4.5

uy = G?LN._,, + Upge

Let us assume that the soliton solution takes the form of a
travelling wave. We make the change of variables to a Galilean
reference frame

u(x, t)=u(x + At)=u(z) (1.4.9)
where XA is the speed of the wave. Once again, since we are
looking for a soliton solution, we assume that u € Cm and we
have the asymptotic boundary condition given in 1.4.1
Substituting 1.4.9 into KdV in 1.4.2, and using the chain rule,
we have

-Au, +6 (éuz) + by, =0

“

Integrating this with respect to z gives
—Au + 3u? +u,, = ¢
where ¢ is an arbitrary constant of integration. As x —oo, then
z —oo, and thus from the asymptotic boundary condition, ¢ = 0.
We can integrate once more by multiplying by 1i., we can make

use of the chain rule

A + 3w, + wau. = 0
1. 1 . | g
XM zu? 3 = el R ¢
(211 );+ (3u )z+(2u‘ ) 0
— w4+ ud+ 1u2 = 0
o 2 ' 277

The constant of integration has vanished, once again, courtesy

of the boundary condition.
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We may now re-arrange this for w«_ and perform one final

integration by solving a first order ODE
w, = VAu?—2u?

o .

= z+d (1.4.10)
where &, is a constant of integration.

Now the LHS of 1.4.10 can be integrated by substitution

LHS = /—‘Ii_:
J oA —2u

and making the substitution v = /(A = 2u) to remove the

square root, we have

- 2
LHS = /r—di' :/ - dv
=307 = A)e A (40

And 1.4.10 becomes

P

2 /—\/\——-(]r' = VAz+ 8
v? — \’)\
—arctanh (—{_i) = L;(Z + &)
v

ﬁ = tanh ( (u + dg )
A —2u
\ 3 = —tanh
A—2u = Mtanh? ( —(z + a{,))
u = -—% [Ltmh (3 F( + &y ) = 1]
AoV .
w o= Esooh‘z (\T(: + 6|)))

A

a1 =
u = =sech® (— VA 4+ M)+ 10 )
4 2{ } (1.4.11)

where 7, is an arbitrary constant.
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Letting p = /2, we can remove the square root signs.

}2

! L, 4
i = 755(,(]1 (5 {pr+p tﬂm})
(1.4.12)
Now, letting n = M(x + At) + 7, describe a Galilean reference
frame, where 1, sets the starting position of the soliton, we can

express u as

w = is((h 2(2)

2 2 (1.4.13)

Notice that the amplitude of the wave in 1.4.12 is directly
proportional to its velocity, and increases as the velocity
increases. The soliton shape remains invariant as it travels at a
constant speed, keeping a hump like shape given by sech®(n/2)
as t increases .
Figure 1.3.4 shows a plot of this function, which can be
compared to the shape of an actual soliton in 1.3.4.
Note that in 1.4.9 we have assumed that the wave travels in one
direction, to the left. Conversely, if we assume that the wave

travels to the right, such that u(x, t)= u(x — At)= u(z), then this

amounts to changing the sign of A in the analysis above, and in

arctan instead of arctanh. Thus, the solution becomes
oscillatory.

However, if we wish to find a KdV soliton solution travelling to
the right, we can change the sign of A by changing the sign of
the co-efficient of 1¢,. We can do this using the scale invariance
property of KdV, and thus we are also able to obtain a soliton
travelling to the right with the form of 1.4.13 for a KdV
evolution equation. Thus, KdV admits solitary waves travelling

to the left or to the right (but not in both directions at once) for

a given KdV evolution equation.




Tools & Software used

1. STATISTICAL ANALYSIS SYSTEM (SAS 9.1)
2. MAPLE

3. MS-EXCEL 2007
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CHAPTER 2

DIRECT METHOD IN SOLITON THEORY

2.1 The Idea of Hirota’s Method

The basic idea of Hirota’s method is to construct soliton
solutions using exponentials. Eventually, we will motivate this
idea by showing that a soliton cannot be constructed by a linear
superposition of waves. Firstly, we develop some results from
the well known wave theory, We then explore the avenues of
dependent variable transforms and perturbation expansions.
Armed with these all of these ideas, along with what we already
know about the properties of solitons, we ask how a soliton
solution might be possible. Finding a few small results and
analytic approximations using our varied armoury of
mathematical techniques, we can then make a few educated
guesses. Eventually, Hirota’s calculus begins to manifest in our
algebra, and we are able to motivate the D operator.

The D operator describes a new calculus with unique
properties. By virtue of these properties, the ordinary
perturbation technique actually leads to an exact soliton
solution. To illustrate all of this, we take the most famous of the

soliton equations, the KdV equation, as our example.
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2.2 Dependent Variable Transformations

2.2.1 Transforming to Bilinear Form

Hirota’s method relies on a transformation to a bilinear
equation. A bilinear function is a nonlinear function of degree
two. A simple example is = xy.

More generally, a quadratic form involving the real variables
Xy, X3, g ..., and associated with the matrix A = a;, is given by
Qv ¥ ¥3.0)= QX

The equations we will come across will be quadratic forms but,
we use the term bilinear hereafter as this is done throughout the
literature.

We begin by trying to find a dependent variable transform that
might help to simplify the KdV equation. However, we are
unable to categorise the non-linear equations that can be
linearised or simplified using a transformation. All we can do is

list a few examples.

2.2.2 Linearising Differential Equations
The Ricatti equation, Burgers’ equation and the Liouville
equation are three examples of nonlinear differential equations

that can be linearised.

The Ricatti equation

(‘) «
—(‘jlfi = alt) -+ 2b(t)u +4*  where u = u(t) (2.1)

can be linearised by a rational transform

(2.2)
Differentia

n=-

g
7
ting 2.2, we have

of —gh
4 = T
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And substitution into the Ricatti equation in 2.1 yields

(g —alt)f =gy F—{fe +b}f +9)g =0

Introducing an arbitrary function A (t), we can separate this into

two linear equations in two unknowns,

fr+b()f +g=A0t)f g = a(t)f - bty = Mt)g

W\
Burgers’ equation
U = Upy + 20ty
can be linearised with the Hopf-Cole transformation
w = (log fla = I (2.3)
S Firs

tly we can integrate with respect to x by introducing a potential

function, w such that u = w,
— 2
Wy = Wy W, ¢

where ¢ is an arbitrary constant of integration. This can then be

linearised via a logarithmic transform

h that
.f.r:n.f e f;»z 2
fotet

simplifies to

,fl = _fa:m + Cf
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2.3 Beyond Linear Wave Theory

2.3.1 Linear Non-dispersive Waves

Consider the linear wave equation for a unidirectional

dispersionless wave {(moving to the right)

g Iy,
. ety =1 9.5
((')I l U;If) faty =0 (2:)

where v is a constant wave speed (or phase velocity of each
wave). Assuming that this wave train is periodic, the most

fundamental solution is a superposition of plane waves with

various wave numbers, k I

flr.t) = explifwt - kz)]
= ¢ (Asinwt + Beoswt) (2.6)

2.6 is chosen because each of its superposed plane wave

solutions satisfies equation 2.5 along with both of the the

boundary conditions at x — 4w and x — -oo. That is, in
constructing a solution via linear superposition, we add plane
waves which individually satisfy the governing equation and its
boundary conditions over the whole domain. We note that the
exponential solution f(x, f) = exp[t(px — Qt)] also satisfies
equation 2.5, but diverges at one of the boundaries. Thus, it is
rejected as a solution in linear wave theory. This is an
important point to note.

The relationship between the angular frequency, w, and the

phase velocity for a particular solution is called the dispersion

relation. This can be found by substituting the solution into the 1l

original PDE. Here we find that substituting 2.6 into
2.5 gives the dispersion relation

w = vk (2.7)

This is a linear relationship between angular frequency and |
phase velocity, which means that each of the superposed waves
travels at the same speed and the wave solution is non-

dispersive. The group velocity, dw/dk, for the superposed
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solution (or wave packet) is the rate of change of frequency
with respect to wavenumber, giving a measure of how the wave

packet disperses. Here the group velocity is given by

— =1

Ok
so the group velocity is the same as the phase velocity in a non-

dispersive wave, and the wave packet does not spread out as it

travels.

2.3.2 Linear Dispersive Waves
If we now add a dispersion term to the governing wave

equation above, we have

O L0 O
M Vo O

) S, t)‘ =10 (2.8)

= — g
P

2

Substituting a plane wave solution (in the form of 2.6) into 2.8,

we find

iwf — vikf 4 6(ik)3 f 0
if(w—vk—8k"f = 0

3 =X

and for a non-trivial solution, a non-linear dispersion relation

results
w = vk — ok* (2.9)
so that the group velocity is given by

(')w' .2
é)_k == U—st)]w.

Thus the group velocity and the phase velocity are different,

and the wave packet spreads, changing its shape as it travels.

2.3.3 Non-linear Non-dispersive Waves

We add a non-linear term to the dispersionless wave equation
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a é} 1l a _ . )
(a -I--z;ax +af 6-1:) flz,t) = 0 (2.10)

which can be re-written by setting v(f)=v + a.f™

(5 +uhg) feny = 0 (211)
Now the wave speed will depend on f and we can express a
travelling wave using the ubiquitous D’ Alembert’s solution

Jx )= flx — vy

If v = v(f) and o> 0, then the wave will travel faster as its
amplitude, f, increases. This means that the top of the wave will
move faster than the base of the wave, and the wave will
steepen (and eventually break).
Thus, a non-linear non-dispersive wave will exhibit steepening

and does not remain invariant like a soliton.

2.3.4 Nonlinear Dispersive Waves
If we now add both a non-linear term and a dispersion term to
our governing wave equation, we have

(% + ra—dl; + 6()0—; + a-f’"%) flz,t) =0 (2.12)
It is known that this equation has soliton solutions that travel
with unchanging shape. Here we assume that soliton solutions
exist.

We have seen that non-linearity or dispersion alone do not
produce soliton solutions, and now we investigate how it might
be possible for 2.3.4 to do so. To this end, it is necessary for the
velocities at the top and the base of the wave to be the same.
We consider a reference frame moving at constant velocity,

introducing the change of variables n = px — Qt where v = Q/p

and p is a free parameter.

3
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top

‘/ hase base \

Figure 2.1: Soliton
From the form of the one soliton solution in 2.1, we know that
it is symmetrical around the point of maximum amplitude and

must be an even function in 1.

Thus, at the top of the wave in the neighbourhood of the point
of maximum amplitude, we can approximate f by a quadratic
function in . We will call this approximate solution frop

This means that the dispersion f,,, will be zero in the
neighborhood of the point of maximum amplitude. Thus £, .,
will satisfy the dispersionless governing equation given in 2,11
with v(f)= v + aA™, where A is the maximum amplitude of the
wave.

Meanwhile, close to the base of the wave, we may neglect the
non-linear term because f is small here. We will find an
approximate solution, f,... , in the neighborhood of the base of
the soliton on each side. Now, f, ... approximately satisfies the
linear governing equation given in 2.8, where the group

velocity and phase velocity are respectively

tph = u—’: = v —§k? (2.13)

Fro
m this, we see that both the group and phase velocities are

smaller than v -for &> 0, indicating that the top and bottom of
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the wave do not move at the same speed! This cannot be the
soliton solution for 2.3.4.

But, we have claimed that the soliton solution does exist for
2.3.4. We must re-think our linear approximation at the base of
the wave. In fact, the velocities at the base of the wave are
incorrect for the soliton solution. It is certainly correct to
approximate the governing equation as a linear equation in the
neighbourhood of the base of the wave. The oversight arose in
finding the solution to this governing equation, because we
chose plane wave solutions (as in 2.6) according to the
common understanding of linear theory. We rejected
exponential solutions because they don’t satisfy physical
boundary conditions at n — +oo for a superposition of plane
waves on the infinite domain.

But we must remember that here we are only interrogating the
global solution by comparing approximations in different
neighbourhoods -and the global solution is not made up by a
superposition of linear waves on the infinite domain. It is

nonlinear and is not subject to superposition. In fact, we may

choose
f=e as n— +x (2.14)
et as 5 — —x (2.15)

and approximate the solution in certain neighbourhoods with
localised pieces. We can’t add up individual solutions over the
entire domain by superposition to find the global solution, but
we do know that the global solution must be asymptotic to
these pieces in the associated neighbourhoods.

With this in mind, if we now include the case of exponential

wave solutions at the base of the wave, (denoting them f(x, t))
fola,t) = exp [£(pz — Q)] (2.16)

Now we obtain a single, non-linear dispersion relation from the

linear equation in 2.8 and the solutions in 2.15.
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FQfy topfy+ (Ep)f = 0

0 = up+ op° (2.17)

The velocities at the top and base of the wave become

Q .

v, = — =v-+ Sp*  at the base of the wave
2

v, = v+aA” at the top of the wave

And it is now possible for these velocities to be equated at the
top and base of the wave, such that, when v, = ¥,

5 = A" (2.18)

If this relation holds, then a soliton solution might still be
possible, as we do not see the wave changing shape (at the top

or the base) in this approximation.

2.4 Towards a Soliton Solution

In this section, we follow Hirota’s idea to work towards a
solution of the KdV equation. This will guide us to Hirota

derivatives, and explain Hirota’s motivation for inventing the

direct method. The approach is partly algorithmic, and partly
trial and error, but eventually the symmetry in KdV begins to
emerge, producing certain patterns of derivatives. Hirota’s i
method does not allow for a deep mathematical insight into

solitons, but it does lead directly to a soliton solution.

So far, we have found that dispersive-nonlinear PDE’s (such as
that in 2.3.4) are candidates for soliton solutions. We found that

the equation in 2.3.4 has one type of travelling wave solution |

that does not remain invariant in shape, and another type of
travelling wave solution that looks promising on the invariance
front, passing an asymptotic test requiring that the base and the
top of the wave travel at the same speed. Hereafter, we will

investigate the latter solution.
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In order to approximate or learn more about this solution, we
can compute a perturbation expansion, which is a power-serics
expansion in a small parameter. The discussion in section 2.3,
provides an important clue for solving non-linear wave
equations. We should not employ, as a first approximation,
normal plane waves seen in linear theory -but rather, we should
use exponential solutions.

As a first approximation, we might try to expand f in a power-

series in €™ such that

Fla,t) ~ ea, e + ape + Page® + .. (2.19)
where 1 = px — Ot and ¢ is a small parameter.
In fact, with a few little miracles, we will see that such an

expansion will actually provide an exact solution!

Following Hirota’s train of thought that lead him to the direct
method, let’s try and guess a soliton solution to KdV using
what we know already. Firstly, we know that 1.4.13 is an exact
solution for a single soliton. Secondly, from section 2.3.4, we
have seen that non-linear, dispersive waves admit an
exponential candidate for a soliton solution. This solution also
behaves asymptotically as an exponential (as in equation 2.15).

Connecting the above ideas and noting that the one soliton
solution in 1.13 is a transcendental function, let’s write it in

terms of exponentials
v
1 == %sechz(gﬂ)

By the definition of sech, we have,

2 2¢”
sechi=) = =
seeh(z) e?+e7F e 4]

. 4e?*
.‘7‘(‘_’.(:]!2(2) = m

Thus, we can express the one soliton solution in terms of

exponentials
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‘2

2 2.1
iy = !—sm*h (= ) P

(" + 1)?

(2.20)

Next, we use the idea of a dependent variable transform to
exploit what we know about the one soliton solution in the
form of 2.20. We try a rational dependent variable transform

= % (2.21)

keeping in mind that

F="+17 and g=2p%" (2.22)

give a known solution of KdV in the form of 2.21. Substituting
2.21 into the KdV equation

U, + Gutty + thyp, =0 (2.23)

where we have chosen the coefficients for algebraic

convenience.

Using the quotient rule to find derivatives, we have

af —gh &f —afs

Uy o = Uy = — 7

Jl"Z

4 _ Uaax 3g,mf:p + 3K]a{fmm + f]ﬁmm {;gwfﬁ + gj.:t]‘f.'!! Y J:
Uypy = 7 - 2 + 0 IS i
and substituting these into the KdV equation, we find

f qfl (/.tf - sz ga"uf - 3!}::0)[‘.1 - :Sgazfa:sf - Q'f:m—:r
St yo (2 )+ >
fjxf + fgfeefs = 9fs
fi

We will now try to decouple this equation into two equations in

=0 (224)

fand g, by setting part of it to zero.
If we set terms with denominator f2 (the first and third terms)

to zero

af —gfi+ g:r.?:.‘r:f = 3Gerfr — 392 for — 0 fara
I
then we find that f and g satisfy 2.25 if we change the sign of

=0 (2.95)

the —3g, f.. term.

So, if we decouple 2.24 into two equations, 2.25 and the rest,
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gif — 9t + geae S — 3gea fo — 3Gn fan — G fran

=0
I

9 {9:f = 9fr f9cf2+ F9faete — af? b
8 fartl — N | g, il SR =0 2.26
o ( Iz ) i g f3.28)

and then add E—j& to the first equation in 2.26 and minus it

from the second, we find two decoupled equations which
satisfy fand g in 2.22. The first equation in
2.26 becomes

f1 f = !},fi + !]:J:;m:f = 3!].::.r,ﬁr~ + :Bffsrfﬁ;ra: = g,fa‘a‘.rs

" =0 (2.27)

and the second is

g (g —qfs Joef2+ fafeeke — 0f2  0gpfre
(E _ 6 - 0
o ( I ) " fi I

% o =g Pl Fufeads =i Pl

ii(g:rf —gf») [(fj — (ffan — ff)]

F
6 ,
70l ~al2) l9f = Ffea + f3] (2.28)
Note that since our decoupled equations, 2.27 and 2.28, are

independently zero, they may be written as

gf = gfi + Gee — B0pefs + 30 Se = §liee = 0

which are bilinear equations in f and g. Thus, we have
bilinearised the KdV equation using a rational transform and
trial and error.
Note also that in the known one soliton solution,
2ptelt
U = —
(en 4+ 1)?

the numerator is related to the derivative of the denominator,

such that

2p%e” , 0 ;
———— 3*{ (e =1
(e +1) 2 dan e T
Bl e gl (" +1) (2.30)
o = = = 4] gl e i
On(en+1)  (en+ 1)2 ! ony? KA

Thus, we notice that
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g i .
t = 7 X Wlog(e’ + 1)
0)2

In?
PRy

&3
; 9 7 e F 23
o ox 2 e log f (2.31)

log f%

¢
Now, since n = px +Qt describes a (alilean reference frame
and KdV is Galilean invariant, we can replace n with x in 2.31

for KdV, and we expect
ay2

"= 2(”)3:2

log f (2.32)

to transform KdV in into bilinear form.

2.5 The D Operator (Hirota Derivatives)

In the above discussion, we noticed that in transforming KdV
into a bilinear form, patterns of derivatives appeared with
alternating minus signs. This lead Hirota to introduce the D-
operator , or, Hirota Derivatives and develop the associated
calculus.

2.5.1 Introducing a New Calculus

Given two functions of a single variable x, we can write

o0

fle+ygle -y =>" %(Di'lf gy (2.33)

j=0 "
whete the operator (f, g) |~ DI f » g is defined as the Hirota
derivative of order j with respect to x. Note that DJ f'+ g is to be
thought of as a single entity, and thus the D operators
themselves are not to be treated as individual operators.
If we write out Taylor expansions of f(x + y) and g(x — y),

multiply these together on the LHS of 2.33 -and then compare

coefficients with y/ on the RHS, then we have defined all D/,
The single variable Taylor expansion for f(x + h) can be

expressed as
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Sl v h)y =35 Ll j @), (2.34)

i1 oF
prardkl o

Using 2.34, the LHS of 2.33 is expanded as

1) = Td%(e),
;z' dpt v Zlm' dym (=3)

=

3 o ?2 ?3
(f+f: LI S +) (g_grﬁgz:.; e

fla+ygle -y

6 2 6
By collecting combinations of products m and n terms which
give terms in each j index (j € Z7), this can be written in the

form

Z% (CpY

FEry

where C; are the coefficients of y ;.

We can write out the first few terms.
The v° coefficient is given by fg. The ¥* co-efficient is given
by —fg. and f,g. The coecfficient of ¥* will be given by the

. . 1 1
combinations = £, g 3 fg... —f.g,and so on...

So the LHS of 2.33 becomes
wi y ¥
f('T + y)g(af - -’)') = fqa' + (_.f:tg - fgs“)ﬂ + (f?.rg - 2f1‘gdf + f.(hr) 5 +

and matching coefficients of v /-n' with the RHS of 2.33, we

can write down the first few single variable Hirota derivatives
Daf g = Fg-fo

D,%f 9 = [~ 20200 + [ (2.35)
Dif g = ferng — e + 3folee - fuza

D;f g = fa.'ua'.g - ‘Ifmmg.r + Gf rrlfar — ‘1f rQrer + f Gorasr

For functions of many variables, f(x; + vy, %, %+ 375....) and
g(xy — ¥4. %3 — ¥s...), we have

e+ wa 4y )gln — v — .. = PRI £ (9 36)
where D, is the Hirota derivative with respect to xy. The many
variable Taylor expansion of f (xy+fy.%; +/#14...) can be

expressed as
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o0

f(grl + i’l-]. R h’n) = Z j
=0 '

g i
th— ey, ty) {2.37)
] et Bfl:k
Writing out the LHS of 2.36 using 2.37 and comparing
coefficients of (v,)” with the RHS defines all of the Hirota
Derivatives. For example, for the 2 variable case f = f(x, t) and

g = g(x, t), we have

[yt +s)g(e =yt —g) =P f g (2.38)
Expanding out the LHS of 2.38 using 2.37, we have

Xy

ZI Ia-i-sg J'j"
i Yo T 0t

j=0

flatyt+s)

il

I

P 0fe 0+ g (et 250 20) + o (20

gle—yt-s) = ) (-y@ _*}}—r) 9

=i
1 .
= g (yga+s0) +3 (2020 + 25UG1 + 5°gu) — ... (2.40)

and the RHS of 2.38 can be expanded in a Taylor series also

fa v

> 4 (yDy + sD)"
nl

n=0 """
1,0 1.
= (E +yDe + 8D, + —Q-y‘!Di + §s‘f)f +ysDLDy + ) fg

(241)

{%I)Iy‘{-.'),sf g

To obtain a definition of DD, f + g, for example, we match
coefficients of ys on the LHS and RHS of 2.38. The
combinations of products from 2.39 and 2.40 that give ys
coefficients on the LHS of 2.38 are —f.g.— f.g. and
fo.8 *+ fo.. .The co-efficient of ys on the RHS of 2.38 is D, D,
from 2.41 . Hence we can define DD, fegand D, D, f+f.

DD f-g=—foge — fige + frg + [one (2.42)

DD f==2ffc+2fnf (2.43)
Once again, we notice that Hirota derivatives are the same as

normal derivatives of products (using the Leibnitz rule) except

for the alternating minus signs.
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In fact, 2.36 would define normal derivatives operating on
products if there were no minus signs in the function g.

One way to write the Leibnitz rule for normal derivatives is

: (‘)m 0?? y ‘
DEDalz,t) -blx,t) = ——=—alz+yt+oalblz = y,t— 8)lyansmn (2.45) ' i
1 Jgm d! ln- : ‘
where m, n € Zx , and we note that Hirota derivatives may also |
be defined as ;.
61’!
Dia(z) - b(a) = oy a{x + y)b(z — y)|y=o (2.46)

where m,n € Z# .

Writing out 2.45 for the case of a function of one variable, we

can express the Hirota derivative as

an

. ‘ a
DL‘ (;.(;F) i f}{:}.’) = (;,'?'y" a(;f; + y)b((g: — y);y=0 (246)

Finally we note an important property of Hirota derivatives that

=

normal derivatives do not have. Notice that

DYf-f=0 fornodd (2.47)

o

It is easy to see this happening by direct computation. From
2.36, we have

Dpf - f = faf —ffe=0
1-),;{ . / — .I:I‘J‘;?f.f - ?qufr = 3.,:1:j:r.r S ff;m‘a: =0

... and so on. So from the pattern of derivatives in the Liebnitz
rule and alternating minus signs in Hirota derivatives, we can
see that every second Hirota derivative will be zero.

In fact, we can see from the definition in 2.33, that swapping
the order of fand g in the Hirota derivative changes which
terms the minus signs appear in. (A minus sign will appear
where g is differentiated an odd number of times. Combine this
with the pattern of derivatives in the Leibnitz rule). Thus, we

have
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DYg - f=(-DD3f-g (2.48)
and for g=f, wehave DU'f ¢ f=(—1Y*DDf o f which

implies 2.47.

So, every second single variable Hirota derivative is zero,
which implies that there might be more types of solutions to
equations written in terms of Hirota derivatives than normal
differential equations. This is a special property of soliton
equations and we will see that it is this property that allows us

to find an exact soliton solution in the case of Hirota’s method.

2.5.2 Hirota Derivatives and the Exponential Identity
Writing the RHS of 2.33 in the form of an exponential, we have

afle + )ble —y) = Z %(Dq’a Ny’
j=u "
= o) - bla) (2.49)

This is sometimes called the exponential identity for Hirota
derivatives and is nothing more than their definition. We can

use 2.49 to prove the following useful logarithmic identity
2 cosh (u% log f) = log [cosh{yD.) 1 - f] (2.50)

This identity will make life more pleasant when bilinearising
the KdV equation with the logarithmic transform in 2.60.
Proof: |
Firstly, notice that using 2.46 we can express the RHS of 2.49
as
P d .
e ma(ae) - bla) = exp (y%) a{a + )bz — §)ls=o
where 8 is a dummy variable, Thus, we have
¢)
a(x + y)b{z — y) = exp (ya)a(m + 8)b(x — 8}s=n (2.51)
C

Using 2.51 and setting £ = {f(x), a = log fand b = 1, we find that
the RHS of 2.50 may be written as
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RHS = [(zx}) (y%) -+ oxr (—y%)] log f

= log f(x + ) +log f(w —w)

= logif(x + ) f(a — u)]
But, this is equal to the LHS of 2.50 since
LHS = loglcosh(yD.) f - f)

= log [% (e 4 7Py F f]
But using 2.49,
Pef f = fletyfie-y)
WS = fla=faty)
so LHS = log [f(x + y}(x — y)] = RHS and the proof of 2.49 is

complete.

2.5.3 The D, operator

We wish to use Hirota derivatives to re-write the KdV equation
in bilinear form using the logarithmic transform in 2.60. The
KdV equation is a function of two variables, and so far, we
have been proving results in one variable only. We have done
this for simplicity, and now we take advantage of the linearity
of differential operators (and thus the linearity of Hirota
derivatives).

We define the D operator as

D7 = (D +eD)" 2.52)
with % = % + (%

D7 is a linear combination of (linear) differential operators such
that

(DeteD)'a-b=Da-b+nelf ' Dya- bt + Db . (253)

We may use 2.53 (the binomial theorem) to calculate products
of D operators. For example, 3D,D}a ¢ b is the co-efficient of
€ in (D, +€D )% b.

Because the D, operator acts linearly, we think of it as an
operator of a single variable z, where z is defined by the linear

transformation z = t + €x. All of our previous results for single
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variable D operators will hold for D.. For example, we can

write 2.50 in terms of D,

()
2 cosh (;j(;;—'_]()g f) = log [cosh (yD.) [ f] (2.54)

where y is a scalar and f= f(z).

2.5.4 Fundamental Formulae for the Logarithmic Transform
Taylor expanding each side of 2.54 with respect to y and
collecting powers of y, we are now able to derive some
fundamental formulae for the logarithmic transform.

On the LHS we have

) . o0t oyt o . \
(S Y— o = 9 [ Sl Fle 7 o 2924
2 cosh (y()z) log f 2 (i = 2.2 + 107 + .. ) log f (2.55)

We write a Taylor expansion for the RHS in the form

> L ft(0)
7l

o)
where f)(y) = ‘;%;i and f(y) = log [cosh (yD.)f - f]

We make use of
R _Jw
oy log a(y) = 77

and use the quotient rule whilst keeping operators and the

functions they act on intact. For example, the first few
derivatives are

vy Desinh (yD,)f - f it ; e
Siw) = cosh (y2,)f - f = JO=0

D2 [eosh(yD.)f - fI - D2[siuh(yD,) - I P3f.f
[cosh(yD.)f - f]* i

Equating terms on each side in powers of y and using 2.52, we

') =

i f”(D) s

have
2;)1 log f = mff_ L (2.56)
20?0: log f = Q"_;!L_f (2.57)
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2.6 Hirota’s Bilinear Equation

Hirota’s bilinear form is defined as
P(hr-7= {(2.59)
Where P (D) is a polynomial in the Hirota D-operator. This

equation is bilinear in the function .

2.6.1 Bilinearising the KdV Equation

Using the D operator, we may now employ the dependent

variable transform motivated in section 24,
u = 2(log 7). (2.60)

to transform the KdV equation into Hirota’s bilinear form .

Consider the KdV equation

iy + Ottty + thppy = 0 (2.61)
Using the chain rule, we re-write this as ~
U+ 3t g + tpan = 0 (2.62) ?‘
Introducing the potential w, defined by !1/ .
w = tw, (2.63) ®

we may integrate 2.62 once to give

wy+ 3()? + Wae = (2.64)
where c is an arbitrary constant of integration.

We now make the dependent variable transform

w = 2(log flz (2.65)
and 2.64 becomes

2(log [)ae + 3 (2(10g fas]” + 2llog flaa = ¢
Now, using 2.56 -2.58, the KdV equation becomes

D.D.f - D -NE ODUF (DA R ,
DL o (BLAY BT (B g

Cancelling the 2nd and 4th terms, this simplifies to
DD f - f+ Dof - f=cf?
Da(Dy + D)V - f = f? (2.67)
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Equation 2.67 is the KdV equation in Hirota Bilinear Form if
we choose the constant of integration, ¢ to be zero. We will see
in the next section that we must set ¢ = 0 to find soliton

solutions.

2.7 Hirota’s Method
We now have all the information required to use Hirota’s
method. Here we find soliton solutions of the KdV equation in

bilinear form

Do(Dy+D)Hr-17=0 (2.70)

As in the standard perturbation technique, we will expand fas a
power series in a small parameter €.

r=14er+m+ e+ .0 (2.71)
We require P (0) = 0 to find the soliton solutions. Without this
condition, we have ¢ =0 inln 2.67 and we find that the €° term
in 2.71 gives P (0)1 ¢ 1 = 0. This implies that T in 2.71 will not
be a solution. Thus, we require P (0) =0 and ¢ =0 in order to
find soliton solutions.

Substituting 2.71 into 2.70 we obtain

DDA+ D) (L4 en+En+ém+.) (L+en+eén+eén+.)=0
Matching coefficients of € on both sides of this equation gives

c: [De(D+D))(r-1+1-7)

& [D;.-(,D;. - Df)] (ra-1+7-7+1-7) (2.72)
3

A [De(De+ D)) (s L+ mi+m ot L)
where the coeffecient of €" is [D (D, + D3)] acting on all
combinations of 7;. 7, terms where j + k = n for I, k,n€ Zx .
Using 2.36 and 2.43 respectively, we can calculate the required
Hirota derivatives.
For the €* terms, we have

Dir, 1=DM 7 = (Th)aeae (2.73)
DJ_.DITH 1= ])11)r1 = (Tn);vr’ (27’L)

Thus, using 2.73 and 2.74, the co-efficient of £* is
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2D, Dy -1 4+2D3 -1 = 0
= (Tl ).T:r:rr.-n + (T.i):z:t = 0 (275)
which is a linear differential equation for z,. The most obvious

solution to this equation is

T =t m = prx + Ut + 0 (2.76)

where n! is an arbitrary phase constant for a soliton, which

allows an initial condition to be set. We also have ,+ p2 =0

from the dispersion relation in 2.17. Note that we have chosen

an exponential solution as discussed in relation to equation

2,19,

Similarly, the coefficient of £ in 2.72 can be re-arranged in

terms of 1,

— DD+ D)) 71 = [Da(Di+DH] (ry- 141 7)
= 2D,Dyry- 142D, -1

= 2(7"2):13:131‘;1' i+ 2(7—2)1{
where we have used 2.73 and 2.74 to simplify the RHS. We can

now substitute the solution for t, into the LHS to obtain

— [De(De+ D] €™ - ™ = 2Ta)oewe + 2A70)ut (2.77)
Now, making use of 2.45, it is easy to compute the action of D-

operators on arbitrary exponentials, e/ ande ", where j, k € N

D DR - e = (p; — i) (S — ) (278)
We note that when j =k
DEDfe™ e = (p;j — py)" (4 — ) e =0 (2.79)

This is an important result that comes from the unique action of
D-operators on exponentials, as 2.79 implies that the LHS of
2.77 will be zero. Thus, we have,

(72)awzz + (T2)2r = 0 (2.80)
This equation has exponential solutions, and is also satisfied by
the trivial solution T, = 0. If we choose the trivial solution here,
then we obtain a non-trivial solution for our perturbation
expansion, and the expansion will truncate at t,, providing an

exact solution to KdV

T = 14 em
1 + ee™
1 + eePraHiitng

|
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Since € is an arbitrary small parameter, we can write €= e%,
and absorb € into the phase constant n$ . Thus, the exact
solution that we have found can be written as

ro= Lt (2.81)
We can now verify that 2.81 is the same as the one soliton
solution in 1.13. Applying the logarithmic transform, 2.60, to
the solution, 2.81, we find

w=2(log ) = 2flog(l + " )]as

gy 2em e
= xm using 2.30

2 p‘f’ e
(L + em)?

22 ‘
= '%3@::]:2('%1) using 2.20

which is exactly the same as the one soliton solution found by
direct integration,
We now find the two soliton solution using Hirota’s method.
We repeat the analysis seen in the one-soliton case, finding the
co-efficient of € as in 2.75
(M)ezre + (M) = 0
Previously, we chose the simplest solution for this equation
Ty = e, . If we now choose a sum of exponentials involving
7, and 77,, this will also be a solution. Thus, we choose
n=e" 4" (282)
where 1; = p,x +£; + »? and the non-linear dispersion relation
is 2, + p}=0fori € Z+ . The order €  equation is still the
same as for the one soliton case
- [Dm(f)z + Di)} T Tt = AT amer + 2w
and substituting the new solution for 1, into the LHS, we obtain

= [Dok D+ D] (7 + &™) - (e + &™)

= 2{D(Dy+ DL e

= =2pt =)l = o (g1 = )] (2.83)
where we have used 2.78 and 2.79. Thus, we may choose the

2(72 )m:.z.r: + 2{72).1.1

solution

= algf‘—?“fm (284)
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where @, is an arbitrary constant. Substituting 2.84 into 2.83

and using 2.78, we can solve for a4,

o —p2)
2T (Ll + p2)?

Now, we substitute the solutions for 7, and 7, into the linear

(2.85)

differential equation for 73 in 2.72,

[DaDe+ D) (r3- 147 mi+7 72+ 1-m) =0
DDA+ DH (1 matmye 1) = = [Dol Dyt D] (- 1y + 71 )

and using 2.73 and 2.74 to simplify the LHS and 2.78 on the
RHS we have
(B)awar + (M)t = = [Dal D+ D] (ry mi471m)

= =2[Dy(Dy+ DY)] emt(e™ + ™)

= Ipy( + )M 4 2y (2 + py)e™

= 0 by virtue of the dispersion relation €+ p? =0
Thus, we may choose the trivial solution for 75 = 0 here.
The coeffecient of € gives the linear differential equation
[D;,;(.Dr + D;)} (- l4mm+n n+n -m+l-7)=0
where we have all combinations of T in which the indices add
to 4 (with 7o = 1). Setting 73 = 0, this becomes
[Da(De+D3)] (74147 -Ta+1-7)=0
Noting that the inhomogeneous term [D,(D, + D3)] (1,°17)
vanishes once again using the D operator property in 2.79.
Thus, we have the familiar homogeneous differential equation
for 7.

(Ta)wzanw + (T4)ax = 0O

and once again, we may choose the trivial solution. Following
this pattern, we see that we can choose all higher J; terms to be
zero, and we obtain an exact solution for the two soliton by
substituting the results for f; and f> into the perturbation

expansion. Thus, the two soliton solution is

T=14e(e" +e)+ e'ilamﬁrrﬂrrn
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and once again, we may absorb the € constants into the phase

constants 5 to give
r
T=14e" +&® +qpentn (2.86)

This solution describes two solitons travelling to the right.
Since #; = p; x +£2;t describes an inertial reference frame, with
velocity proportional to p;, the speed of each soliton is related
to its amplitude via the parameter .. By virtue of the D
operator property in 2.79, we see that solitons must be of
different height for a non-trivial solution.

Hence, in the two soliton solution the taller soliton will travel
faster than the smaller one, eventually overtaking it.

By considering the form of the solution at various times, t, it
can be seen that solitons keep their shape after the interaction.
The @4, term accounts for a phase shift after interaction, but the

two solitons keep their shape and speed.

2.8 The N-Solitron Solution

N e

Continuing on in the above fashion, we can set
Tt =¢e" +e® 4" 5 obtain the three-soliton solution, and in
general setting Tt = ™ + €% + ... + eMgiveg the N-soliton
solution.
Here we state the n-soliton solution for soliton equations in the
form of 2.70 without proof. These are often called KdV-type
soliton equations or Hirota equations. The KdV-type equation
PDyr-t=0 (2.87)
has an n-soliton solution that can be expressed as

T= ) exp [Z titn + g fhmdu] {2.88)

e dtn=0,1 i=l igi

where the first summation is over all possible combinations of
i =0Lp=0,1..10,=01
and means a summation chosen over all possible pairs i, j from

the set 1<)
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[n]=1, 2, 3....n with the condition that i<j.

Using vector notation and setting

Q= (0 PLQi)
*o= (La.yed)  we have, fori, j=1,2,3..N
1 = {4 - X; + constant (2.80)
P{) =10 (2.90)
and the phase shift is given by
= —ﬁfﬁ—;gﬁ (2.91)

The function P (D) is not arbitrary. It must satisfy the Hirota

condition given by

N N
Z ( (T;Q,‘) HP(O’,-(E; - stlj)ﬂj(fj =0 (292)
Bl pin=00E i=T1 £ j

This condition can be found by substituting the n-soliton

solution in 2.88 into the Hirota equation in 2.87.
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CHAPTER 3

SOLITONIC <COLLISIONS FOR GCCKdV
EQUATIONS

3.1 Introduction

The Kortweg-de Vries (KdV) equation,

g~ Gty + Ugpgr = (1, (1)

describes the weakly non-linear long waves in the fluids and
plasmas,where the wave amplitude u is a function of the scaled
“space” x and scaled “time” t.

Based on a (4x4) matrix spectral problem with three potentials,
certain NLEEs have been derived. Among

them, the complex coupled KdV (CCKdV) equations, are
significant,

1
w = 5““’«'3 — Buu, + 3(]v|2)m .

V= —Vppr + SUly (2)
where u is a real function and v is a complex function with
respect to x and t.
We will consider the following generalized CCKdV

(GCCKdV) equations:

Uy = & (“-:m::n - 6"-5‘?-4:1:) + ﬁ(ivirz)-’r s
v = 2ee(—vagn + 3“'“51-') : (3)

where o and P are both arbitrary real constants. When o = —1
and v = 0, System (3) reduces to Eq. (1); whena = 1/2 and B =
3, System (3) reduces to System (2); when a = 1/2, B = 3 and

Im(v) = 0, System (3) reduces to the Hirota—Satsuma equation,
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which describes the interaction of two long waves with
different dispersion relations.
Objective is to find the two-soliton solutions for System (3)

and discuss their interactions.
3.2 Bilinear Forms and One-Soliton Solution

Through the dependent variable transformations,

= —2{Infes . (1)

v = % , (5)
where f(x, t) is a real function with respect to variables x
and t, and g(x, t) is a complex one. The bilinear forms of
System (3) turn out to be the followings,
DeDif f—eDAf f48gg° =0, (6)
Dig-f+2alig f=0, (7)
where * denotes the complex conjugate and DmxDnt is the

Hirota’s bilinear derivative operator defined by

|
|

ar o ot o

x e, ) b(::;',t')tw’w: by {(8)

We expand f, g, and g* into power series of a small pa-

rameter € as

f=l+efatetfit . (9a)
g=cg +eg+etgn+ -, (ob)
g =cgl +egs+ e gi (9¢)

Substituting Expressions (9) into Egs. (6) and (7) and collecting
the coefficients of the same power of €, we have

D, D(1-1y—aDi(1.1)=0, (10)
e :Di(g1-1}+2aD3 (g 1) =0, (11}
22D, D(1- o) —2aDi(1- )+ Bg1gl =0, (12)
e Di{gi-fotgs 1)
+2c1D2(g;-f2+g3v1)=0, (13)
DDy =D fa fot 1 fr+ fa-1)
+3(q195+asay} =0,

(14)

In order to obtain one-soliton solutions of System (3),
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we assume that

gl:._CEl’ Elzwlt+k1il:+€(}}s (15)

where the angular frequency w1, wave number ki, and initial

phase £01 are the real constants. Inserting Eq. (15) into

|

Expression (11), we can get the dispersion relation
wy = ~2ak? . (16)
Substituting Ea. (15) into Expression (12), we can obtain

: 8
L TR R TE

JRIE I (17)

Correspondingly, it can be derived that g3 = f4 = g5 =16 = -=0.
So Expressions (9a) and (9b) can be truncated to

f=1+éf, (18)

g=cg. (19)

With € = 1, one-soliton solutions for System (3) in the

explicit form are !

F[cosh(2D) + sinh(21)]

|

=

! 20 4 g el B coshil) 3 smb(T) Z

l 180 (b + k(K 4K )“[ﬁa(kl PR ED) T Btk PR t ] !
i #{eosh(T) +sinh{T)) - ¢
5 a2 Fg[ 3 cosh(l) g A sinh(T) ]‘

ot ')ﬁuw1+ﬁﬁuf+kﬁ)Tsaur+ﬁym§+gﬂ
cosh(T") + sinh(T)
e [ B cosh(I) 3 sinh(T) r’ (21)
6ok + k2K £ K7 Salke+ A2 +AT)

where T = ~2tak} + ok ~ 2ok + 2k + &)+
In the following part of this section, the influence of

and B on the one-soliton propagation will be investigated.

Suppose £01 = £0%1 = 0, through Eqgs. (20) and (21), we

S T

obtain the characteristic line of u and v as the following:
~alkd 4ok - 2tak]® 2k =0, (22)

Velocity of the one soliton can be obtained as

A 200k + AP
< - :

V==
d ky + R}

(23)
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Through Eq. (23), we find that if the wave number k1 has the
definite value, velocity of the one soliton will be decided only
by o. For the influence of a on the one-soliton propagation,
Figs. 1(a) and 2(a) show that when a = 1, velocity of the one
soliton is V = 2; if a = 2, V = 4, as presented in Figs. 1(b) and
2(b). Comparing Fig. 1(a) [2(a)] with Fig. 1(b) [2(b)], we find
that the change of o has the influence on the amplitude of v, but
no influence on that of u. For the one-soliton propagation with
B changing, comparing Fig. 2(a) with Fig. 2(c), we find that the

amplitude of v obviously becomes smaller.
3.3 Two-Soliton Solutions and Their Interactions

Similarly, to derive two-soliton solutions, we take

g1 = o5t 4 b2, S =wit+kor+ &? )
Ey = wot + ko + £, (24)

where the angular frequencys wi, wave numbers ki, and
initial phases £€0 i (i = 1, 2) are the constants. Substituting Eq.

(24) into Expression (11) gives the dispersion relations
wi=—2aki (i=1,2). (25)
Inserting Eq. (24) into Expression (12), we can obtain

fo=zy €58 4o el bl o ofiHE o 084G (26)

where
i}
Jf = . i ! 97
i bk + k}‘)z(k{: + 139 (27)
s
o — / .
T bk +RVEOT R (28)
ﬁ -
(29

9 ba (e + k)3(R3 + k%)
Gox ( + K3)2(KE + k37

(30)

2}

Substituting Eqs. (24) and (26) into Expression (13), we can
obtain

g3 - S] pET*Sl’I‘&E _I_ S'l {}E;{n&"‘rfg, (31)
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where

:)B(M ~ ko) (k3 + k) (32)

" Galk KR RRRE R R

Blky ~ k) (k3 + K2) .

sy = s I PG (33)
ﬁﬂ ;I.l'{'k (A}'}'L) (;vl'i',f )U»z“i""z)

Substituting Eqs. (24), (26), and (31) into Expression (14), we

.

can obtain
fi=n pSTHEHLE , (34
where
B Pk - ko +h (e - k‘) [fx‘ H’ } )
35&2“7] %AT}Q(R?-I'M? ’xl%ft; ) }»1 WFJ-H‘*) U;)-Hq (R -{-A;)IL)'-I—L '
Correspondingly, it can be obtained that g5 =f6 = g7 = {8 =.=
0 . So Expressions (9a) and (9b) can be truncated into
f=1+fa+e'fy, (36)
g=eq +edgs. (37)
With € = 1, two-soliton solutions for System (3) in the explicit
form is
u=-2{l(y plith it A pliH 2 piith +21 plith 4 2 plit Hlez, {38)
o pbi et ool 1 ofe 1o pfythE
. sy @t Lol 4 pfe gy of £ [39)

Ly et Ete p o6146 4 gy o840 4 g pfiHe 4 gy pfite
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Fig. 1 One-soliton propagation of u via Expression (20) when ¢ = 0 (bold solid line), t = I (dashed line), and
t =2 (solid linezl, (@ witha=1,8=1k=16=0(b)witha=2 =1k =1¢ =0, (¢) witha =1,
.B:Zklzlygl:[]'

13

Fig. 2 One-soliton propagation of v via Expression (21) when ¢ = 0 (bold solid line), t = 1 (dashed line), and
t =2 (solid line), (a) witha =1, =1,k = 1,60 =0; (b) witha =2, f=1, ks =1, €] = 0; (¢) witha = 1,
B=2k=1,8=0

Fig. 3 (a) Two-soliton interactions of u via Expression (38) witha =1, 8=1, k1 =1, ky = 1.6, &4

=L &=
{b) Contour plot of Fig. 1(a); (c) Wave profiles with £ = —1 (solid line), ¢ = 0 (hold solid line), and ¢

=€
1 (dashed line).

Fig. 4 (a) Two-soliton interactions of v via Expression (39) with a

=LA=lLki=1k=16¢=c=1&=2 ()
Contour plot of Fig. 2(a); () Wave profiles with { = =1 (solid line), { =0

(bold solid line), and ¢ = 1 (dashed line).

64

s




Fig. 5 (a) Two-soliton interactions of » via Expression (38) witha =1, =1,k =241, ky = 184083, &, =& =(
¢ = 1; {b) Contour plot of Fig. 3(a); (¢} Wave profiles with ¢ = ~0.5 (solid line), £ = 0 (bold solid line), and ¢ = {.
(dashed line).

Fig. 6 (a) Two-soliton interactions of v via Expression (30) witha =1, 3 =1, ki = 244, kp = L8+ 0.8, & = & =(
¢ = 1; (b} Contour plot of Fig. (a); (c) Wave profiles with ¢ = ~0.5 (solid line), ¢ = 0 (bold solid Tine), and ¢ = 0.
{dashed line). '

Fig. 7 (a) Twe-soliton interactions of u via Expression (38) witha = 1, f= 1, ky = 241, by = 23+ 1.2}, & = o = (
¢=1; {b) Contour plot of Fig, 5(a); (c) Wave profiles with £ = 0.1 [bald solid fine), and ¢ = 0.8 (sofid line).

Fig. 8 (a) Two-soliton interactions of v via Expression (30) with a =1, §=1,ky =244, ky = 234 1%, & = & = (
¢= 1; {b) Contour plot of Fig. 6(a); (c] Wave prefiles with ¢ = 8.1 (bold solid linc), and ¢ = 0.9 (solid line).
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Fig. 9 {a) Two-soliton interactions of u via Dxpression (3§ witha=1, =1, ki =2+i ko =3+18, =61 =0,
¢=1; (b) Contour plot of Fig, 7(a); {c) Wave profiles with £ = ~05 (solid line), { = 0 (bold scfid linc), and ¢ = 05
{dashed line).

Fig. 10 {a) Two-soliton interactions of v via Expression {38) witha =1, f=1, k= 2+i, b =3 4 L&, f =& =0,
¢ = 1; (b) Contour plot of Fig. 8{a}; {c) Wave profikes with £ = -0.5 (solid line), t = 0 (bold solid line), and ¢ = 05
(dashed lne).

Fig. 11 {a) Two-soliton interactions of v via Expression (3§) witha =15, =1L ky=1, kh=16 i =e=1,6 =2
(b) Contour plot of Fig. 11{a); (c) Wave profiles with t = —0.5 {solid line), ¢ = 0 (bold solid line}, and ¢ = 0.5 (dashed
line).

Fig. 12 (a) Two-soliton interactions of v via Expfession Wwitha=i50=1k=1k=168=¢=16=2
(b} Contour plot of Fig. 12{a); {¢) Wave profils with { = —0.5 (solid line], ? = 0 (bold solid line), and £ = 0.5 {dashed
lin).
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Fig. 13 (a) Two-soliton interactions of ¢ via Expression (38) witha=1, f=2 k=1, kp = 16, i =¢=1, & =2
{b) Contoar plat of Fig, 13{a); {c) Wave profies with = ~0.5 (solid Line), ¢ = 0 (bold solid line), and ¢ = 0.5 (dashed
line).

Fig. 14 (3) Two-soliton interactions of v via Expression () witha=1, =2 k=1, k= 16,41=c=1 & =2
(b} Contour plot of Fig, [4(a}; (c) Wave profiles with ¢ = ~0.5 (solid Line), ¢ = 0 (bold solid line), and ¢ = 0.5 {dashed
fine). ‘
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3.4 Numerical Estimations & Discussions

The following part of this section is devoted to analyzing the
.two-soliton interactions. Without loss of generality, we suppose
that o = 1 and B = 1. Through choosing the different values of
the wave numbers k and k, in Egs. (24), then substituting them
into Expressions (38) and (39), we find that the two-soliton
propagation trajectories present different forms. When the wave
numbers %, and k, are both real numbers, such as k., =1 and
%, = 1.6, two-soliton interactions are described by Figs. 3 and
4. Figures 3 present the two-dark-soliton interactions while
Figs. 4 show the bright one. From Figs. 3 and 4, we can find
that the two-soliton interactions possess elastic collision

features. Two solitons can pass through each other, and their

shapes keep unchanged with a phase shift after the separation.
The similar phenomena have been investigated in the arterial
mechanics.

When the wave numbers ¥,and k, are both complex numbers,
we find that the two-soliton interactions present three kinds of
different forms. We illustrate those characteristics of
interactions with the aid of Figs. 5(6), 7(8), and 9(10). For
simplicity, we fix the wave number k1 =2 + i, only leaving the
wave number X, to be variable. Figures 5 and 6 show that when
the wave number k2 = 1.8+0.8i, two solitons merge and
separate from each other nearly twice, then diverge from one
another and never interact again.

At the same time, Figs. 5 and 6 also illustrate that the two-
soliton interactions have elastic-collision properties, i.e., the
shapes of two solitons are variational within the range of
interaction and the shapes resume the original ones away from
the range of interaction.

When the wave number %, = 2.3 + 1.2i, with respect to u, the

two dark solitons propagation trajectories present the forms of
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periodic continuous humps, and with respect to v, the two
bright solitons propagation trajectories describe the forms of
periodic continuous valleys which are shown in Figs. 7(a) and
8(a). During the propagation, two solitons merge and separate
from each other periodically. From Figs. 7(c) and 8(c), we can
find that two solitons amplitudes increase and decrease
alternately. The phenomena that the two bright solitons merge
and separate from one another periodically are similar to the
cases of bound vector solitons in the optical fibers.

The alternate change of amplitudes is considered as the
transformation of energy from one soliton to another. When the
wavenumber &, = 3 + 1.8i, from Figs. 9(a) and 10(a), it can be
observed that two-soliton propagation trajectories are fluctuant
in the central range of the collision. However, through Figs.
9(b) and 10(b), it is not difficult to find that the fluctuations are
analogous before and after the collision except for phase shift.
At the same time, we can also find that the shapes resume
original ones away from the collision center.

The last part of this section is devoted to analyzing the
influence of o and B on the two-soliton interaction, with the

real wave numbers. For the influence of a on the two-soliton
interaction, comparing Fig. 11(a) [12(a)] with Fig. 3(a)

[4(a)], the two-soliton interactions still possess the regular
elastic collision features when o turns into 1.5 from 1.
Comparing Fig. 11(c) [12(c)] with Fig. 11(c) [12(c)]} with Fig.
3(c) [4(c)], we find that the propagation velocity of two solitons
increases with o increasing. For the influence of B on the
interaction, when P turns into 2 from 1, comparing Fig. 14(c)
[Fig. 13(c)] with Fig. 4(c) [Fig. 3(c¢)], we find that the
amplitude of v clearly decreases, but that of u remains

invariable,
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CONCLUSION & FUTURE SCOPE

KdV-typed equations have been used in fluids and plasmas.
Present work has verified a generalized KdV model. Using the
Hirota’s bilinear method, we have constructed the bilinear
forms and derived the one- and two-soliton solutions of KdV
System.

Based on the two-soliton solutions, we have observed that the
two-soliton propagation trajectories present different forms by
changing the values of the wave numbers. &, and ¥,.

When %, and &, are both real, for example k; =1 and &k, = 1.6,
substituting them into Expressions (38) and (39), we can find
that the two-soliton interactions possess the regular elastic
collision features (as seen in Figs. 3 and 4).

When k&, and &, are complex, we have fixed k, = 2, only
leaving k, to be variable and found that the two-soliton
propagation trajectories

contain three kinds of patterns: (i) When k, = 1.8 + 0.8 i, two : '
solitons merge and separate from one another nearly twice, then
diverge from each other and never interact again (as seen in
Figs. 5 and 6); (ii) When &, = 2.3 + 1.2 i, solitons merge and
separate periodically (as seen in Figs. 7 and 8); (iii) When k, =
3 + 1.8 i, two-soliton propagation trajectories are fluctuant in
the central range of the collision (as seen in Figs. 9 and 10).
Specially, the phenomena that the two bright solitons merge
and separate from each other periodically are similar to the
bound vector solitons in optical fibers. Meanwhile, we have
pointed out the similarity among those complex interaction
patterns, which is that the shapes of two solitons resume the
original ones away from collision center except for Case (2).
Propagation features of the one and two solitons have been

investigated with the changes of the o and p.
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Comparing Fig. 1(a) [Fig. 2(a), Fig. 11(c), Fig. 12(c)) with Fig.
1(b) [Fig. 2(b), Fig. 3(c), Fig. 4(c)], we have found that the
velocities of the one and two solitons increase with «
increasing, while the v amplitudes of the one and two solitons
increase with o increasing and decrease with B increasing as
shown in Fig. 2(a) [Fig. 14(c), Fig. 1(c), Fig. 4(c)].

The results could be expected to be helpful for the study of

nonlinear phenomena in fluids and plasmas.
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