Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. SPo70/9 Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

4 The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

N

DN

|

I

SP07019

rﬁ | ; D |

ENERGY REDUCTION IN WEAKLY
HARD REAL TIME SYSTEMS

By
| ANKITA JAIN 071441
ISHA WALIA 071412
TALWINDER KAUR 071429

Under the Supervision of Mr. YASHWANT SINGH

May — 2011

Submitted in Partial Fulfilment of the Degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLGY (IT)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT

TABLE OF CONTENTS

CHAPTER NO. TOPICS PAGE NO.
Certificate from the Supervisor II
Acknowledgment I
Abstract v
List of Figures VIL
List of Abbreviations ' VIII
1. Chapter-1 Introduction 1
1.1 Real Time System 1
12 © Hard Real Time Systems 5
1.3 Soft Real Time Systems 6
1.4 Weakly Hard Real Time Systems 8 1
1.5 Energy Aware Real Time System 9
1.6 Problem Statement 13
1.7 Objectives and Contributions 13
1.8 Organization of Thesis 14
2. Chapter-2 Real Time Scheduling: An 16
Overview
2.1 Clock Driven Scheduling : 16
2.2 Priority Driven Scheduling 18
3. Chapter-3 Methodology 24

3.1 System Energy Model 24

3.2
33
34
3.5

4. Chapter-4

4.1
4.2

5. Chapter-5

5.1
52

5.3

=

. Chapter-6

6.1

Terms used

Real Time Scheduling(m-k) Deadline
Existing Techniques

Partitioning Techniques

Proposed Modification: Inverse RM

Calculation of Energy by RM
Calculation of Energy by Inverse RM

Feasibility Analysis and Limitations

Feasibility Analysis
Calculation of Feasibility Analysis
Limitations

Results and Conclusions

Future Scope of the Work

Bibliography

Appendix A

25
26
27
30
32

33
34
37

37

37

38

39

40

41

43

CERTIFICATE

This is to certify that the work titled “ENERGY REDUCTION IN WEAKLY HARD
REAL TIME SYSTEM” submitted by ANKITA JAIN (071441), ISHA WALIA
(071412) , TALWINDER KAUR (071429) in the partial fulfillment for the award of degree
of Bachelor of Technology (IT) of Jaypee University of Information Technology, Waknaghat
has been carried out under my supervision. This work has not been submitted partially or
wholly to any other University or Institute for the award of this or any other degrec or

diploma.

Signature of Supervisor

Name of Supervisor

Designation

Date

v

ACKNOWLEDGEMENT

It gives us great pleasure in presenting the project report for our project on “ENERGY
REDUCTION IN WEAKLY HARD REAL TIME SYSTEM’., We would like to take this
opportunity to thank our internal guide Mr.Yashwant Singh for giving us all the help and
guidance we needed. We are really grateful to her for her kind support throughout the
analysis and design phase. We are also grateful to Brig. S.P Ghrera, Head of Computer

Department, Jaypee Institute of Information and Technology for giving important

suggestions.
ANKITA JAIN ‘ (071441)
ISHA WALIA (071412)

TALWINDER KAUR (071429)

DATE

ABSTRACT

We propose a scheduling algorithm to minimize the energy consumption in weakly hard real
time systems, i.e., the (m, k)-model, which requires at least m out of k consecutive instances
of a task meet their deadlines. Firstly, we recommend a strategy to partition real time jobs
into mandatory and optional part in order to meet weakly hard real time constraint. Secondly,
introduced an approach which can effectively reduce the energy by 15% along with DVS
strategy which provide significant energy savings while maintaining real time deadline

guarantees.

Real-Time systems are becoming pervasive. Typical examples of real-time systems include
Air Traffic Control Systems, Networked Multimedia Systems, and Command Control
Systems etc. In a Real-Time System the correctness of the system behaviour depends not
only on the logical results of the computations, but also on the physical instant at which these
results are produced. Real-Time systems are classified from a number of viewpoints i.e. on
factors outside the computer system and factors inside the computer system. Special
emphasis is placed on hard and soft real-time systems. A missed deadline in hard real-time

systems is catastrophic and in soft real-time systems it can lead to a significant loss. Hence

predictability of the system behaviour is the most important concern in these systems.
Predictability is often achieved by either static or dynamic scheduling of real-time tasks to
meet their deadlines. Static scheduling makes scheduling decisions at compile time and is
off-line. Dynamic scheduling is online and uses scheduling test to determine whether a set of

tasks can meet their deadlines.

In this we propose a different approach. We introduce the concept of Inverse RM among
tasks as a new metric for expressing performance requirements. The meaning of this
importance relationship is to express that in a schedule it is desirable to run a task in
preference to other ones. This model is more intuitive and less restrictive than traditional
utility-based approaches. By extensive simulation, we show that the new approach combined
with the existing techniques algorithm outperforms the rate monotonic priority algorithm and

EDF in several practical problems are discussed in the thesis.

Signature of Student
Name

Date

Signature of Student
Name

Date

Signature of Student

Name

Date

Vi

Signature of Supervisor
Name

Date

Vil

LIST OF FIGURES
TITLE
L. , Fig 1.1 Automated Car Assembly
1 2. Fig 1.2 Basic Model Of Real Time System
3. Figl.3 Graph of Hard and Soft Real Time Systems
4. Figl.4 Research in Energy Managemcﬁt
5. Fig 1.5 Pie chart for Energy saving
6. Fig 3.1 Types of Real Time Scheduling
7. Fig 3.2 Earliest Deadline Scheduling
8. Fig 8. 5.1 DVS Processor Specification

9. Fig 5.2 Inverse RM Scheduling

PAGE No,

12

14

20

24

26

29

37

44

50

SYMBOLS

ep,i

g

]
rel;

thd,

Vil

LIST OF ABBREVIATIONS

DESCRIPTION
Computation required by the frequency dependent components
oftask 1;
Computation required by the frequency independent components
of task ;
Release time of a job r{ , Le., rel{ = j*p;
Absolute deadline of a job 'rf , L., D{ =j*p; + d;
Finish time of a job r{
Critical speed of the processor for the task 1;
Speed of the processor assigned to the task 7;
Speed of the processor assigned to the job r{
Frequency independent component g; is associated with the task
i
Energy consumed per unit time by the device a; associated with
task 7; in sleep state
Energy {:-onsumed per unit time by the device a; associated with

task 7; in active state

DPD threshold of the device g;

Epiate
Epslp

pi

thp

IX

Energy consumed per unit time by the processor in the idle state
Energy consumed per unit time by the processor in the sleep state
Energy consumed per unit time by the processor when running at
aspeed s; (E,; = Csj where C is constant)

DPD threshold of the processor

MK hyperperiod

Pre-emption Overhead is context switching time required when a

higher priority pre-empts a lower priority task

Energy consumed during each pre-emption

CHAPTER 1: INTRODUCTION

1.1 REAL TIME SYSTEM

A real time task is one for which quantitative expression of time is needed to describe its
behaviour. This quantitative expression of time usually appears in the form of a constraint on
the time at which the task produces results. The most frequently occurring time constraint is a
deadline which is used to express that a task is required to compute its result within some
tasks: deadline. “A real time task can be classified into hard, soft, or firm real time task
depending on the consequences of a task missing its deadline.” It is not necessary that all
tasks of real time applications belong to the same category. It is possible that different tasks
of real time systems can belong to different categories. There are various examples of real
time systems which are illustrated in the next section. Real time systems are being
implemented in various fields one of them is INDUSTRIAL APPLICATION, constitute a
major usage area of real time systems. A few examples of industrial applications of real time

systems are:
1.1.1 Automated Car Assembly

An automated car assembly plant is an example of a plant automated system. In an automated
car assembly plant, the work product (partially assembled car) moves on a conveyor belt.
Alongside the conveyor belt, several workstations are placed. Each workstation performs
some specific work on the work product such as fitting engine, fitting floor, fitting wheel and
spray painting the car etc. as it moves on the conveyor belt. An empty chassis is introduced
near the first workstations. At each workstation, a sensor senses the arrival of the next
partially assembled product. As soon as the partially assembled product is sensed, the
workstation begins to perform its work on the work product. The time constraint imposed on
the workstation computer is that the workstation must complete its work product moves away

to the next workstation. The time bounds involved here are typically of the order of a few

hundreds of milli seconds.

/ 3

'-.--": '/ ,"’_-' / i ;.“‘ ‘r e
\ I//] . |
\ v/ v/ , |
| | e] = II/L | i
|
2 e

E - { it \ "/ fit \

| g H};\. \door | el | .-/gpl-a}-.' P)

‘ o R T AR O e |

- chassis X / ; \l*-- A | . ’
4 finished car

........ TS T b.

FIGURE 1.1

Figure 1.1 Automated Car Assemblies

1.1.2 Chemical Plant Control

Chemical plant control systems are essentially a type of process application. In an automated 1
chemical plant, arel time computer periodically monitors plant conditions. The plant 1
conditions are determined based on current readings of pressure, temperature, and chamical ||

concentration of the reaction chamber. These paramerters are sampled periodically. Based on
the values sampled at any time, the automation system decides on the corrective actions
neccesary at that instant to maintain the chemical reaction at a certain rate. Each time the
plant conditions are sampled, the automation system should decide on the exact
instantaneous corrective actions required such as changing the pressure, temperature, or
: chemical concentration and carry out these actions within certain predefines time bounds.
Typically, the time bounds in such a chemical plant control application range from a few

micro seconds to several milli seconds.
1.1.3 Laser Printer

Most laser printers have powerful microprocessors embedded in term to control different
activities associated with printing. The important activities that a microprocessor embedded

in a laser printer performs includes the following : getting data from the communication

e g e e

port(s) ,typesetting fonts , sensing paper jams , noticing when the printer runs out of paper ,
sensing when the user presses a button on the control panel , and displaying various messages
to the user. The most complex activity that the microprocessor performs is driving the laser
engine. The basic command that a laser engine supports is to put a black dot on the paper.
However, the laser engine has no idea about the exact shapes of different fonts,.font sizes,
italic, underlining, boldface etc. the embedded microprocessor receives print commands on
its input port and determines how the dots can be composed to achieve the desired document
and manages printing the exact shapes through a series of dot commands issued to the laser

engine. The time constraints involved here are of the order of a few milli seconds.

Input '_ »| Input -
; _Cond?tmnmg Interface

Unit
SEnsor
Human
*Real-Tine|,_ | Computer
Computet Interface
Output 'D ¢
E"v Conditioning [™ Olltlg‘llt .
Unit Interface
actuator
operators

Figure 1.2 A Basic Model of a Real Time System

We need to have a basic conceptual understanding of the underlying hardware. We try to
develop understanding of high level issues of the underlying hardware in a real time system.
This figure shows a simple model of a real time systems in terms of its functional blocks.
The sensors are interfaced with the input conditioning block, which in turn is connected to
the input interface. The output interface, output conditioning and the actuator are interfaced
in a complementary manner. The roles of the different functional blocks of a real time

systems:

¢ Sensor : A sensor converts some physical characteristic of its enviornment into clectrical

signals. An example of a sensor is a phtot-volatic cell which converts light energy into

electrical energy. A wide variety of sensors are used. A temperature sensor typicaily
operates based on the principle of a thermocouple and many other physical principle s

exist.

Actuator ; An actuator is any device that takes its input from the output intlerface of a
computer and converts these electrical signal into some physical actions on its
enviornment . The physical actions may be in the form of motion, change of thermal,
electrical. A popular actuator is a motor. Heaters are also commonly used along with

several hydraulic .

Signal Conditioning Units : The electrical signals produced by a computer can rarely be
used to directly drive an actuator. The computer signals usually need conditioning before
they can be used by the actuator, This is called output conditioning. For example, analog
signals generated by a phtot-volatic cell are normally in the milli voltage range and need
to be conditioned before processed by the computer. There some of the important types

of conditioning such as : Voltage Amplification , Voltage level shifting .

Frequency Range Shifting and Filtering : Frequency range shifting is ofien used to
reduce the nise components in a signal. Many types of noise occur in narrow bands and

the signal must be shifted from the noise bands so that noise can be filtered out.

Signal Mode Conversion : A type of signal mode conversion that is frequently carried
out during signal conditioning involves changing direct current into alternating current
and vice-versa. Another type signal mode conversion that is frequently used is conversion
of analog signals to a constant amplitude pulse train such that pulse rate is proptional to

the voltage.

Interface Unit : It commands from the CPU are delivered to the actuator through an
output interface. An ouput interface converts the stored voltage into analog form and then
outputs this to the actuator. The cpu selects a data register of the output interface and

writes the necessary data to it. It takes care of the buffering and the handshake control

aspects. Digital to analog conversion is frequently used in an output interface.

e Analog to Digital Conversion : Digital computers can not process analog signals.
Therefore, analog signals need to be converted to digital form using a circuitry whose
block diagram is shown above.Sampling is done by a capacitor circutory that stores
voltage levels. These voltage levels can be discretized after a sampling into a step

waveform.

1.2 HARD REAL TIME SYSTEMS

A real time task is one that is constrained to produce its results within a certain predefined
time/unds. The system is considered to have failed whenever any of its hard real time tasks
does not produce its required results before the specified time bound. The completion of an
operation after its deadlines is considered useless; it may cause a complete failure or the
* events that occur with a strict deadline. When a process is considered hard real-time, it must
complete its operation by a specific time. If it fails to meet its deadline, its operation is
without value and the system for which it is a component could face failure. There are |

various examples of Hard Real Time Systems which are illustrated in the next section.

e A car engine control system. Such a system is considered hard, real-time because a

late process could cause the engine to fail. Hard real-time systems are employed when
it is crucial that a task or event is handled by a strict deadline. This is typically

necessary when damage or the loss of life may occur as a result of a system failure.

i e A system having hard real time tasks is a Robot .The robot cyclically carries out a
number of activities including communication with the host system , logging all
completed activities , sensing the environment to detect any obstacles present,
tracking the objects of interest , path planning ,effecting next move etc.Now consider
that the robot suddenly encounters an obstacle. The robot must detect it and as soon
as possible try to escape colliding with it. It fails to respond to it too quickly (i.e. the
concerned tasks are not completed before the required time bound) then it would

collide with the obstacle and the robot would be considered to have failed. Therefore

detecting obstacles and reacting to it are hard real time tasks.

e Another application having hard real time tasks is an anti-missile system. An anti-
missile system consists of the following critical activities (tasks). An anti —missile
system must first detect all incoming missiles, properly position the anti-missile gun,
and then fire to destroy the incoming missile before the incoming missile can do any
damage. All these tasks are hard real-time in nature and the anti-missile system would
be considered to have failed, if any of its tasks fails to complete before the
corresponding deadlines. For hard real-time tasks in practical systems, the time
bounds usually range from several micro seconds to few milliseconds. It may be
noted that a hard real-time task need not to be completed within the shortest time

possible, but it is merely required that the task must complete within a specified time
bound.

1.3 SOFT REAL TIME SYSTEMS

The few misses of deadline have no harm. It just decreases the overall performance of the

system. When a system is considered soft, real-time, however, there is some room for

4
q
i
lateness. For example, in a soft, real-time system, a delayed process may not cause the entire '
system to fail. Instead, it may lead to a decrease in the usual quality of the process or system. 1

\

There are various examples of a Soft Real Time Systems Are illustrated in the next section:

° A soft real-time task is a task handling a request for a seat reservation in railway
reservation application. Once the request is made for reservation, the response should
occur within 20 seconds on the average. The response may either be in the form of a
printed ticket or an apology message on account of unavailability of seats.

Alternatively, we might state the constraint on the ticketing task as: At least in case of

95% of reservation requests, the ticket should be processed and printed in less than 20

seconds.

° Soft real-time task is web browsing .Normally, after an URL (Uniform resource

locater) is clicked; the corresponding web page is fetched and displayed within a

couple of seconds on the average. However when it takes several minutes to display a

ek

requested page, we still do not consider the system to have failed, but merely express

that the performance of the system has degraded.

e — ,r_,wj

: Point at which :
SOFT . degradation starts ;

;
|
i D L TP
[HARD i Performance degraded ! |
‘ Y CEITY SRR : |
|] T\\ _____ s 3
D1 D2 ‘
INFINITE TIME _
LOSS Ty |
{: 1 £ \
i

Figure 1.3 Graph for hard and soft real time system

|
As in the graph, D1 is the deadline for hard real time systems. The graph is plotted between !
utility and time. The task is completed after the deadline i.e. dl, it undergoes an infinite loss. |
In other case i.e. soft real time systems so here d2 is the deadline for soft real time systems |

where task misses its deadline d2 it leads to the performance degradation. It will not undergo :

Scvere consequences.

P TTE——p—

1.4 WEAKLY HARD REAL TIME SYSTEMS

It is the generalized case of real time systems. It is motivated by the observation for real time
applications; some deadline misses are acceptable as long as they are spaced evenly. It can be
tolerated at the cost of compromising quality of service. The sysfems where missing of few
deadlines can be tolerated at the cost of compromising quality of service limiting to the
acceptable quality measured as (m,k) known as weakly hard real time systems. It is
measured by a general model i.e. m-k model where it needs to meet at least m deadlines in
every consecutive k jobs. There various examples of Weakly Hard Real Time Systems which

are illustrated in the next section:

A number of closely-related models were proposed by several research groups over the years.
In the skip model, a task’s tolerance to deadline misses is characterized by the skip parameter
s. in any s consecutive instances of the task at most one can miss its deadline [7, 15]. The
more general (m,k)-firm deadline model [11, 22, 23] requires that each task meet at least m
deadlines in every coﬁsecutive k instances. If this constraint is violated in any time window,
the system is said to exhibit a dynamic failure (implying possible degradation in system
performance or quality-of-service). Figure 1 shows a sample schedule for a (2,3)-firm real-
time task over six consecutive periods. The third instance is skipped, but the task meets its
(2,3)-firm deadline constraint in the first execution window that encompasses the first three

task periods, thanks to the timely completion of the first and second task instances.

. MONITORING SYSTEMS: Another example of a real-time task is a monitor. A
task periodically performs a set of monitoring actions. The sampling period may be
carefully computed (and probably overestimated) or decided as a rule of thumb, Again
missing an occasional deadline means that the action from monitoring will be delayed

by some bounded period of time. Provided that the effect of such a delay can be

tolerated, deadlines can be missed.

- ok e e

. MULTIMEDIA SYSTEMS: A multimedia system is one that exhibits different
media simultaneously. From the real-time point of view, we are interested in media
that changes as a function of time, for instance, digital audio and video. These systems
are generally considered soft systems as missing a deadline has no catastrophic
consequences unless very high fidelity. Consider, for example, a digital Video system.
The system decodes some video streams and plays the frames at some rate (say, 30 .
frames per second). If it does not have enough time to finish decoding a frame, it is
either skipped or only partially displayed. Not displaying a frame on time is
considered a missed deadline. In this case, a missed deadline results in a lower quality
of the service provided by the computer. If it is not known how missed deadlines are
distributed over time, several missed deadlines may occur in a row, which will be

manifested by a frozen screen for a short while.

1.5 ENERGY AWARE REAL-TIME SYSTEM

1.5.1 ENERGY MANAGEMENT IN REAL TIME SYSTEM

High performance is desired to satisfy peak computation requirement or meeting the
timing constraints for real time applications. However, maintaining the peak
petformance all the time in a system may not be a wise decision since the computation
requirement in a system generally has big variations and high performance generally
implies high energy consumption. For example, the average workload for web server is
only 10% to 20% of their peak workload. Thus, it is preferred to tune system
iaerformance according to run time computation requirement while lowering the system
energy consumption. The rate of energy consumption (power) has increased over the
years. Thus, efficient energy management is required to extend the operation time of i
battery operated devices (e.g., cell phones, PDAs and solar explorers) or to reduce the

operation cost of energy hungry systems (e.g., server farms) and increase their

reliabilities. In order to dynémically manage the power consumption in a computing

system, dynamic power management techniques are used as described in the following

section. -j
Energy conservation has come to be recognized as a critical issue in design of pervasive real-

time embedded systems, particularly due to the proliferation of mobile systems with limited

power resources. For the sake of mobility, these portable computing and communication
devices require low energy consumption to maximize the battery lifetime. As VLSI
technology continues its remarkable advances, the power consumption has been increased
exponentially. Current battery technology, with its 5% annual capacity increase [2], cannot
effectively address this problem. In addition, serious concerns are raised with 're‘gards to
managing the heat dissipation from the rapidly elevated power consumption, Left unchecked,
the power consumption will threaten to curtail the availability of the future high performance
portable devices and advanced multimedia functionality on these devices. Power aware
scheduling has been proven to be an effectively way to reduce the power consumption.
Rooted in the traditional real-time scheduling technology, the power aware scheduling
techniques change the system computing performance accordingly based on the dynamically
varied computation demand. Two main types of power management mechanisms are

reported in the literature.

1.5.2 DYNAMIC ENERGY MANAGEMENT:

Rate of energy consumption is proportional to supply voltage and frequency, ie.,P « Vi f, ‘
where Vyy aﬁd [are the operating voltage and frequency. Hence, to minimize the dynamic
power (rate of energy) consumption Vyy or f should be reduced. The dynamic power 1
consumption scales up square times with the operating voltage hence, a small reduction in
the voltage will be able to reduce the dynamic power consumption drastically. In addition,
the processing frequency (speed) also has an almost linear relation with operating voltage.

Therefore, reduction in the speed would reduce the powér consumption cubically.

Thus, the major focus of dynamic energy management lies on the techniques to scale down
the speed of the components is termed as dynamic voltage scaling (DVS). However,
lowering the speed causes increased delay of CMOS circuit and requires the system to
operate for longer duration. The more reduction in speed saves larger power consumption
while elongating the execution time by large amount, The processor that supports switching
between the voltage levels is termed as DVS processors. Consider for example, a DVS
processor that can operate at two speed levels s; and s, with their respective power

consumption as p; and p,. In case 5, is greater thans,, the power consumption p; will be

10

more than p,.In such system lowering the operating speed always saves energy and

scheduling algorithms addressing such systems are referred to be processor energy aware.

Table 1.1 Researches in Energy Management

Author DVS DPD Processor/System
Technique Technique Energy

Weiser Yes No Processor
Lee & Sakurai Yes No Processor
Shin & Choi. Yes No Processor
Kirovski & Potkonjak Yes No Processor
Niu & Quan. Yes No Processor
Aydin et. al. Yes No System
Jejurikar & Gupta Yes No System
Niu & Quan No Yes System
Niu & Quan. Yes Yes System
Kim & Roy Yes No Processor
Present work Yes Yes System

11

!

!
| |
| 1000 {

- | l
| |
i | |
| s |
| 900 ; l
| 800 | }

700 I
|
600 |
I
= |
£ 500 |
o
g 4
: a*
400 ‘
300 {—— — — 1
|
5 & I : I 2
D = . yo I e i I - T . — — 1
1999 2001 - 2003 2005 2007 2009 2011
Year =
Figure: 1.5 Pie chart showing the saving of the Energy
12

1.6 PROBLEM STATEMENT

To propose a scheduling algorithm for reduction of the energy consumption in weakly

hard real time systems with conservative deadline.

1.6.1 OUR DESIGN GOALS

o Ensure timing constraints: The completion of an operation after its deadlines is
considered useless; it may cause a complete failure or the events that occur with strict
deadlines, so the task has to be completed within a specified time limit otherwise it will
cease to failure.

Example: A late command to stop a train may cause collision.

e Reduction in energy consumption: With the advancement in the technology, the energy

consumption has increased. Hence, energy reduction is a key issue for designing of real

time embedded systems.

1.6.2 CONSTRAINTS

Reducing the energy consumption increases the computation time which increase the chance

of missing the deadline i.e. energy and deadline are counterproductive. This research focuses
on design of an efficient resource manager for a system energy constrained static hard real-

time system.

1.7 OBJECTIVES AND CONTRIBUTIONS

1.7.1 OBJECTIVES

The objectives, intended to be achieved by this research work is to “To propose a
scheduling algorithm that would reduce system energy consumption of weakly hard
real time systems.” To achieve better quality of service in terms of tolerance and energy

consumption while honouring minimum tolerance requirement, maximum encrgy available

within strict timing constraint.

1.7.2 CONTRIBUTIONS

There is a need for design of an efficient resource manager that minimizes system energy
consumption while giving better tolerance to static hard real time system with arbitrary
deadline exposed to transient faults. Thus, issues of enecrgy and real time constraints can be
integrated into single framework to achieve reduced system energy consumption within
deadline by the use of check pointing, tolerance patierns, pre-emption control, speed fine
tuning, delay start, speed patterns, criticality and sensitivity In this work, study has been
carried out on periodic task sets with arbitrary deadlines to reduce energy consumption. An
energy reduction technique has been employed for reduction in energy consumption of the
system with conservative deadlines. It is further extended for arbitrary deadline with the use
of speed pattern, Finally energy issues are combined resulting reliable energy aware

scheduling technique.

1.8 ORGANIZATION OF THESIS

The work presented in this thesis has been arranged in seven chapters.

Chapter-1 Gives an introduction to real time systems, types of real time systems, Energy

aware systems and it presents the problem statement, motivation and constraints.

Chapter-2 it gives an overview about the scheduling of the real time systems , various types

of scheduling, detailed method of clock driven , and priority based scheduling .

Chapter-3 surveys the methodology consisting of system model, existing techniques and
proposed technique also it studies the problem of energy aware scheduling for conservative
deadline. It presents a scheduling algorithm that offers lesser system energy consumption for
weakly hard real time systems consisting of voltage scalable (processor) and non scalable

components (peripheral device), modelled with (m, k) constraint.

Chapter-4 it highlights about the proposed modification ie. Inverse rm and also the
calculation of energy, comparison between the energies of Inverse rate monotonic and rate

monotonic.

14

Chapter-5 it gives an overview about the feasibility analysis of the real time systems,

whether the system is feasible or not, and limitations of the proposed modification.

Chapter -6 concludes the work and provides direction for future research, how to proceed

further and what all can be done in the near future is explained in this section.

15

CHAPTER 2: REAL TIME SCHEDULING:
AN OVERVIEW

In typical designs, a task has three states: 1) running (executing on the CPU), 2) ready (ready
to be executed), 3) blocked (waiting for input/output). Most tasks are blocked or ready most
of the time because generally only one task can run at a time per CPU. The number of items
in the ready queue can greatly vary, depending on the number of tasks the system needs to
perform and the type of scheduler that the system uses. On simpler non-preemptive but still
multitasking systems, a task has to give up its time on the CPU to other tasks, which can
cause the ready queue to have a greater number of overall tasks in the ready to be executed
state. Whenever two processes with the same absolute priority are ready to run, the kernel
has a decision to make, because only one can run at a time. If two processes are ready to run
but have different absolute priorities, the decision is much simpler, and is described in
Absolute Priority. Each process has a scheduling policy. For processes with absolute priority
other than zero, there are two available: The most sensible case is where all the processes

with a certain absolute priority have the same scheduling policy.

2.1 CLOCK DRIVEN SCHEDULING

Clock driven schedulers make their scheduling decisions regarding which task to run next
only at the clock interrupt points. Clock driven schedulers are those for which the scheduling
points are determined by timer interrupts. Clock driven schedulers are also called off line
schedulers because these schedulers fix the schedule before the system starts to run. That is,
the scheduler pre- determines which task will run when. Therefore, these schedulers incur
very little run time overhead. However, a prominent shortcoming of this class of schedulers
is that they cannot satisfactorily handle aperiodic and sporadic tasks since the exact time of
occurrences of these tasks cannot be predicted. For this reason, this type of schedulers is also

called a static scheduler.

16

ol i - K —— —

Real Time scheduling
Clock Driven scheduling Priority Based scheduling
Static Dynamic
3 RM DM ESF EDF
Figure 2.1 Types of Real Time Scheduling
17
F

2.2 PRIORITY DRIVEN SCHEDULING

Tt is based on the priority of the jobs. When the higher priority is ready it pre-empts the

lower priority which is running. There are two types.-

2.2.1 STATIC APPROACH: Prioritics are assigned to tasks once for all and every job of

a task will have same priority

2,2.1.1 RATE MONOTONIC ALGORITHM (RM)

Rate monotonic algorithm is a dynamic pre-emptive algorithm based on static priorities. The
rate monotonic algorithm assigns static priorities based on task periods. Here task period is
the time after which the tasks repeat and inverse of period is task arrival rate. For example, a
task with a period of 10ms repeats itself after every 10ms. The task with the shortest period
gets the highest priority, and the task with the longest period gets the lowest static priority. At
run time, the dispatcher selects the task with the highest priority for execution. According to
RMA a set of periodic, independent task can be scheduled to meet their deadlines, if the sum

of their utilization factors of the n tasks is given as below.

2(2) cum=n@"-1)
C;=worst — case task execution time of task
T;=period of task;

U (n) = Utilization bound for n tasks

18

T,(4,1)
0o 1 4 5 8 9 12 13 16 17 20
T5.(5:2)

| | [

0 1 3 5 7 10 12 15 16 17 18
‘ il ’ [T4(20,5)
| i Ml |

0 i = 8 9 10 13 15 20

Figure 2.2 Scheduling for Rate monotonic

In this example we have three tasks Ty, T, T;
T,(4,1)
T, (5, 2)
T3 (20, 5)

Where 4, 5, 20 are the period and 1, 2, 5 are the execution time of the task. It has a hyper
period 18 i.e. The Total period of the task this is calculated by taking LCM of the periods.

First we will release T1 because it has shorter period (in rate monotonic algorithm shorter
period has higher priority) after execution of first job of T1 we will release T2 who has next
shorter period and its jobs execute in the background of T1 so for this reason the execution of
the first job in T2 is delayed until the first job of T1 completes and the fourth job in T2 is

pre-empted at the time 16 when the fifth job in T1 is released because here the job in T1 has

=

a highest priority than T2 because T1 has shorter period than T2 so here instead of complete
the fourth job in T2 we will complete the fifth job in T1 so T1 is pre-empted at time 16.
Similarly T3 is executes in the background of T1 and T2. The jobs in T3 execute only when
there is no job in the higher priority tasks ready for execution. Since there is always at least

one job ready for execution until time 18 the processor never idles.

PREEMPTION: execution of jobs can often be interleaved. The scheduler may suspend the
execution of a less priority jabs and give the processor to more priority job. Later when the
more priority job completes the scheduler returns the processor to less priority job so the job

can resume execution. The interruption of job execution is called pre-emption.

2.2.1.2 DEADLINE MONOTONIC ALGORITHM (DM)

One of the problems with RM is tha;t many systems will need job deadlines shorter than the
job’s period which violates the assumption mentioned earlier. A solution to this problem
arrived in 1982 with the introduction of the Deadline Monotonic (DM) algorithm. With DM,
a job’s priority is inversely proportional to its relative deadline. That is to say, the shorter the

relative deadline, the higher the priority.

DM T.(2,0.8)
I ; ’ ’
0 06 2 28 4 46 6 6.6 8 86
T (2.5,0.2)
i i
| [
i | .
| | |) | |
D.6:0.8 ° 25588 - 7 5 5.2 75 7.7 10106 108
Ta(81.2)
. | | | i
| i e ‘ .. | \I L |
0.8 7 2 SRS R TR B T O A

Figure 2.3 Scheduling of Deadline Monotonic

20

In this example we have three tasks Ty, Ta, T
Ty (2, 0.6)

T, (2.5, 0.2)

Ts (3, 1.2) |

Where 2, 2.5, 3 are the period which is same as the deadline of the task and 0.6, 0.2, 1.2 is
the execution time of the task. It has a hyper period 10 i.e. Total period of the task which is
calculated by taking LCM of the periods. In this T1 has the higher priority because it has a
shorter deadline, so first we release T1, when its execution time completes then we release
T2 who has next higher priority. It job executes at the background of T1.So for this reason
the execution of the ﬁrs.t job in T is delayed until the first of Ty completes. The 2™ job in T;
is pre-empted at time 4, when the 3™ job in T, is released because it has higher priority than
Ts. Similarly the 3™ job in T is pre-empted at time 7.5.Since there is always at least one job

ready for execution until hyper period, the processor never get idle until that time.

} 2.2.2 DYNAMIC APPROACH: The priorities of tasks may change from request to request;

different jobs will have different priorities.

(S =S F .)

2.2.2.1 EARLIEST DEADLINE FIRST(EDF)
Assign priorities to jobs is on the basis of their deadline. Earlier the deadline, highest the
priority. Algorithm is optimal when used to schedule jobs on a processor as long as pre-

emption is allowed. It is based on absolute deadline.
In this we have two tasks

Ti (2, 1)

Tz (5, 3)

T1 has a higher priority because its deadline is earlier than T» .First we release T, when its
execution will complete , then we release T2.At the time 0,first job J(1,1) and J(2,1) of both
tasks are ready .But the absolute deadline of J(1,1,) is 2 while the absolute deadline of J(2,1)
is 5 .So consequently J(1,1).

21

18t job of T1
: / T1(2v1)
1]
f

0 RO T R RN S 10

1% job of T2 T5(5,3)

; Ar A

i |
| (e oy
| :

preemption

Figure 2.4 Scheduling of Earliest Deadline First

In this we have two tasks
Ti 2, 1)
T2 (5, 3)

T1 has a higher priority because its deadline is earlier than T, .First we release T when its
execution will complete , then we release Ta.At the time 0, first Job J(1,1) and J(2,1) of both
tasks-are-ready-But the-absolute deadlinc of J(1,1,) is 2 while tlie absolute deadline of I(2,1)
is 5 .So consequently J(1,1) has a higher priority and executes .When J(1,1) completes J(2,1)
begins to execute. At time 2 the 2™ job T, is released and its deadline is 4, earlier than the

deadline of job 1 of Ts. Here 2™ job of T; pre-empts the first job of T, and exccute. When job

22

2" of T; completes , the processor ten executes Job 1 of T (At time 4 job 3 of T, is released
its deadline is 6 which is later than the deadline of job 1 of T , hence processor continue to
execute the first job of Ta. At time 5 T has completed its first job now the deadline o.f T, is
10 and deadline of T; is 6. Here T} has higher priority because it has deadline earlier than T

so this way jobs continue to execute in tasks Ty and Ta.

23

CHAPTER 3: METHODOLOGY

There are existing techniques such as DVS and DPD. The DVS is the most common and

effective approach in low-power embedded system design. The basic idea is to apply low
supply voltage on tasks to utilize the system idle time. In this work, we present an approach
that reduces the configuration energy by applying the DVS on the reconfiguration process.

DPD is a switching to sleep mode or low power mode of unused component of a system.

3.1 SYSTEM ENERGY MODEL

This chapter aims to minimize the system energy consumption for a system having
independent periodic task set T = {7y, T3, T3 ... T, } that guarantee minimum QoS defined by !
(m, k). The priority of a job is assigned based on the earliest deadline first policy. The
system consists of two types of components namely, processor (termed as frequency
dependent component) and peripheral devices (termed as frequency independent component).

) While formulating the energy model following considerations are taken into account:

e The frequency independent components are represented by set A ={a;, az,

as .. ay} where a; represents a memory or peripheral device. The power

= - = =

management policies reported in uses only two states (active and sleeping) for a
frequency independent component with no recourse conflicts. Same consideration is

taken in this work.

° The frequency dependent components (DVS processor) can operate at N’ + 1 discrete
voltage levels, ie., V ={vgp, V1, V2, V3..Vy} where a voltage level v; is
associated with its corresponding speed s; from the set S ={sqy,, 51, Sz,
S3 ... Sy }.The speed s; is the lowest operating speed level measure at voltage v,
whereas maximum speed s at the voltage level vy.. A processor can lie in one of the
three possible states namely active, idle and sleep. In the active state the processor
can run at any of the speed levels between s; tos;-, while in the idle state and sleep

state it will function at speed s; and sy, respectively.

24

Each task 7; € T has attributes < e;(s;), p;, d;, my, kg > where p; and d; are the period
and relative deadline of the task respectively. The computation time at speed s; is e; (sj) =
e,i/s + ey; wheree,; and ey, are the computation requirement for frequency dependent
component at the speed s; and independent component respectively. Beside these temporal
characteristics minimum QoS requirement is represented by a pair of integers(m;, k;), such
that ouf of k; consecutive releases (jobs) of 7; at least my; releases must meet their deadline.
The tasks relative deadline is d; < p;termed as conservative deadline are used and we

consider same constraint in this chapter.

3.2 TERMS USED

In the following section some terms which we use are described.

o Job: - Unit of work that is scheduled and executed by the system.
e Task: - Set of relative jobs which acting to consume resources and producing one or

more results. The jth instance of a task Ti would be denoted as Ti (j).

o Release time of a job: - The response time of a job T{ at speed s is the sum of its
own time requirement and its higher priority jobs pre-empting it.

o Execution time of a task: - The amount of time required completing the execution of
any job.

e Deadline: - The instant of time at which the task must complete its execution.

e Relative deadline: - The maximum allowable response time of the job. (1 hour)

e Absolute deadline: - It is equal to interval of time between release times and actual

instant at which deadline occurs. (Till 5:00 p.m.)

e MK _hyperperiod:- It can be defined the point after which all the task in the set are
in phase and (mm, k) pattern as for each task is restarted i.e., the situation at time
t = 0 is restored. Mathematically, L = LCM (l;py, kop;, k3ps ... K, p,) where, LCM

stands for least common multiple.

e Critical speed of the task: - Speed at which system energy requirement is least for a
task is called the critical speed. Each task in the system has its own critical speed

because its computation demand and set of associated components may differ.

23

3.3 REAL-TIME SCHEDULING WITH (m, k) DEADLINE

To schedule a real-time task set with (m, k)-firm deadline involves two sub-problems: (i)
mandatory/optional partitioning problem, i.e., to determine if a job should be mandatory or
optional, and (ii) scheduling problem, ie., to schedule these jobs properly to guarantee their
deadlines. As proven in, both problems are NP-hard problems. Some related real-time
scheduling results for (m, k)-firm guarantee. For ease of our explanation, we use patterns to
denote the mandatory/optional partitions. A pattern is an infinite binary sequence associated
with each task such that a job is mandatory if its corresponding bit is “1” and optional
otherwise.
The mandatory/optional partition decision can be made off-line or on-line. Two known static
mandatory/optional partitioning strategies are reported in literature. The first one is called the
deeply-red pattern or R-pattern. The (m, k)-pattern defined with formula (2) has the property
that mandatory jobs are marked evenly, and is therefore referred as the evenly distributed
pattern (or E-pattern).
The most significant advantage of applying static patterns is that they enable the application
of theoretic real-time techniques to analyze system feasibility, Analytical schedulabilty
results are available for both fixed-priority and EDF scheduling policics, based on either R-
pattern or E-pattern. The problem, however, is its poor adaptively in dealing with the run-
time variations, which is inherent in many real-time applications. Dynamic
" mandatory/optional partitioning, on the other hand, is more flexible and therefore can
accommodate run-time variations more effectively. The problem is how to ensure the
deadlines of all the mandatory jobs. A number of dynamic mandatory/optional partitioning
heuristics are proposed with no guarantee for the deadlines of mandatory jobs at all.
Currently, two dynamic techniques published can ensure the (m, k)-guarantee. proposed a Bi-
Modal Scheduler, which runs jobs at two modes: normal mode and panic mode. A task is
first executed at the normal mode and promoted to the panic mode if the dynamic failure will
occur if it stays in the normal mode to shift the E-pattern dynamically when an optional job

meets its deadline.

26

—

-

A

=

3.4 EXISTING TECHNIQUES USED
3.4.1 DYNAMIC VOLTAGE SCALING (DVS)

It is based on adjusting the processor voltage and frequency on the fly. Power requirement
depends on operating frequency as well as voltage i.e. the dynamic processor 'power is
strictly increasing convex function of the processor speed. The DVS reduce the processor
speed to the extent it is possible to obtain higher energy saving. The speed of a frequency
dependent component is said to be reduced if it is either operating at lower voltage or
frequency. The task response time increases with the reduced processor speed leading of the

following consequences:

o Arelease may miss its deadline when it is feasible at higher speed.

e The longer execution time will be able to decrease the dynamic energy consumption of
the processor. -

* Frequency is dependent component remains active for longer time and increase energy
consumption. '

e Longer execution time implies more losses in energy due to leakage current.

Power requirements are one of the most critical constraints in mobile computing applications,
limiting devices through restricted power dissipation, shortened battery life, or increased size
and weight.

The design of portable or mobile computing devices involves a trade off between these
characteristics. For example, given a fixed size or weight for a handheld computation
device/platform, one could design a system using a low-speed, low-power processor that
provides long battery life, but poor performance, or a system with a (literally) more powerful
processor that can handle all computational

loads, but requires frequent battery recharging. This simply reflects the cost of increasing
performance. For a given technology, the faster the processor, the higher the energy costs
(both overall and per unit of computation). It focuses on the energy consumption of the
processor in a portable computation device for two main reasons. First, the practical size and

weight of the device are generally fixed, so for a given battery technology, the available

27

n -/

A%

energy is also fixed. This means that only power consumption affects the battery life of the
device. Secondly, we focus particularly on the processor because in most applications, the
processor is the most energy-consuming component of the system. This is definitely true on
small handheld devices like PDAs [3], which have very few components, but also on large
Japtop computers that have many components including large displays with backlighting. As
a result, the design problem generally boils down to a trade off between the computational
power of the processor and the system's battery life. One can avoid this problem by taking
advantage of a feature very common in most computing applications: the average
computational throughput is often much lower than the peak computational capacity needed

for adequate performance.

3.4.2 DYNAMIC POWER DOWN (DPD)

The dynamic power down technique suggest to switching to sleep state (low energy
consuming state) of the idle components to reduce the energy consumption. For switching
from active state to sleep state and back from sleep state to active state will incur an overhead
called the DPD overhead. Thus, switching to sleep state too often may be counterproductive
and estimated a threshold value for shutting down the components by comparing the energy
consumption required in idle state with energy consumption on power down state and
wakeup. If the energy consumption for switching to slecp state is less than or equal to the
energy consumption in idle time then switching to sleep state is preferred over leaving the
component idle. Suppose Py, is the power consumption per unit time when the processor is
idle for t time period and would consume Egp,,, energy when it is shut down and wakeup for
the same period then if (Pige * £) = Egpye then this shutdown will lead to a positive energy
gain. DPD has been widely adopted in real time scheduling. A majority of DPD techniques
have been proposed for soft real-time systems, where task deadlines can be missed albeit
with reduced quality levels. The multimedia applications are judiciously scheduling the real
time tasks and switching to sleep state the processor (employ dynamic power down DPD
approach) reduces the energy consumption while guaranteeing the QoS requirements for

weakly hard real time system.

28

\ Table 3.1 DVS Processors Specifications
DVS Processor CPU Voltage (V) | CPU Power (maw) b
Frequency(MHz) '
[
Intel Scale PXAGO 200 1.0 178
300 : 1.1 283
400 1.3 411
Transmeta Crusoe] 300 1.2 130
400 1.225 190 ;
‘ 533 1.35 300
600 1.5 420
667 1.6 530
IBM PowerPC 405LP 33 1.0 40 |
100 1.0 120
133 13 280 |
200 ‘ 15 . 630 |
266 18 1000 .
|

29

3.5 PARTITIONING TECHNIQUES

Selection of m jobs from a window k consecutive jobs for execution .Referred to as
mandatory and represented by 1.

3.5.1 DEEPLY RED PATTERN (RED PATTERN)
This pattern was proposed by Koren & Shasha where first ‘ms;’ releases out of ‘k;’

consecutive releases of task 7; are mandatory. Mathematically, this can be described as

j _{1, 0<jmodk; <my
L 70, otherwise

When n{ is 1, release T{ is mandatory while it is optional in case 0 is assigned ton’{ . We refer
this pattern as Red Pattern. Advantage of applying this pattern to a task set for energy
minimization is that it aligns the optional jobs together so that a component has a better
opportunity to switch into sleep state to save energy. For a task whose critical speed is higher
than or equal to the highest possible speed (s) the operating speed should never be scaled
down. Assigning Red_Pattern to such a task helps to extend the idle interval for switching to
sleep state. However, for a task whose critical speed is lower than s) Red_Pattern overloads

the system leading to large size busy intervals and need more energy to be feasible.

3.5.2 EVENLY DISTRIBUTED PATTERN (EVEN PATTERN)

In this evenly distributed pattern in which the first release is always mandatory and the
distribution of mandatory and optional is even i.e., alternating. Mathematically, this can be

described as

) ={1‘ ifj:”%]* ;‘TJ for j=0,1,..k -1
0, otherwise

We refer it to as Even_Pattern,

30

e _‘.A.ﬁ-l:l -

3.5.3 REVERSE EVENLY DISTRIBUTED PATTERN (REV_PATTERN)

This pattern is a reverse of the Even_Pattern, hence the first release is always optional and

the distribution of mandatory and optional is alternating. Mathematically:

o = {0 =P Tl - o
, otnerwise

We refer it as Rev Pattern.
3.5.4 HYBRID PATTERN (HYD_PATTERN)

In which instead of assigning same pattern to all the tasks in the task set, they assigned
different type of patterns (Red_Pattern or Even_Pattern) to each task. For example, task 7, is
partitioned into mandatory and optional according to Red_Pattern while 7, and 73 could be
assigned Red Pattern or Even_Pattern. Thus, yielding 2™ possible combination of pattern

assignment where n is the number of the tasks in the task set.

3.5.5 MIXED PATTERN (MIX_PATTERN)

The hybrid pattern allows a task in the task set to be scheduled by Red_Pattern or
Even_Pattern. In both cases at least the first release of each task is mandatory (if not more
e.g., (m, k) = {(3,5), (4,7)} first two releases of both the task are mandatory with the
Hyd Pattern) and are in phase hence, will overload the system, forcing it to be feasible with
high energy requirement. Therefore, to improve the performance of Hyd_Pattern suggested a
mixed pattern (Mix_Pattern) which combines the Hyd_Pattern with the Rev_Pattern yielding
3" possible combination of pattern assignment. By including the Rev_Pattern the
Mix_Pattern would give fairer chance to a task for executing at lower speed (the second
release of both the task in the above example would be mandatory while the first may or may
not be so. Since the second release of a task would usually be out of phase with the other
releases and will not overload the system as hybrid pattern does). Thus, Mix_Pattern is the

superset of all the above suggested patterns. This work uses Mix_Pattern.

31

CHAPTER 4: PROPOSED MODIFICATION:

Our main focus is to reduce the energy consumption of a real time system and to enhance the
performance of the system. Reduction in energy consumption increases the computation time
which therefore increases the chance of missing the deadline i.e. energy and deadline are
counterproductive. So, we have introduced an approach which can effectively reduce the
energy by 15% along with DVS strategy which provide significant energy savings while
maintaining real time deadline guarantees. It is inverse of rate monotonic scheduling where
shorter the period higher is the priority but in case of inverse RM higher is the period, higher
is the priority of the task set. It includes peripheral devices and energy is calculated using the

existing techniques such as DVS and DPD. Let’s observe the scheduling and energy

consumption of task set T using Inverse RM:

L]

0 10 14 1617 21

RalEeR

0 10 14 17 2021 24 30 33

AV ST) el
54 57 60 63

| J l |
3233 37 48 50 &4 64

40 50

Figure 4.1 Scheduling of Inverse RM

32

.,68,\. e 30

INVERSE RM

T,(3,10,10)

3rd

SR ST A Hih e
70 7 80

T,(4,16,16)

2nd

o

T5(10,40,40)

1—|

1st

W

80

A TS -/

\ Now above is an instance where we assign priorities based on their periods. Higher is the | ;
period; higher is the priority of the task set. In this example we have three task set T1 (3, 10,
10,1,4),T2(4,16,16,1,1), T3(10, 40,40, 1 ,1) which includes execution time ¢ ,
period p, deadline d , m jobs which can miss deadline , k consecutive jobs. Here 3, 4, 10 are
the execution time of the task T1 ,T2, T3 and 10, 16, 40 are the period and deadline of the
tasks T1, T2, T3. It has the hyper period 80 i.e. total period of the task which is calculated by
taking the L.C.M. of the periods. As release is available at time 0, three of the tasks are
available but as T3 has the higher period so it will have the highest priority whereas T2 will
have the 2™ priority and T1 had the 3™ priority. Now T3 will take 10 units of time, the first
job of the task T3 is executed then T2 will start executing, it will execute till the next release
of job. After the execution of task T2, T1 will execute its 2" job as 1% job is set to be
optional by using m-k model where m jobs can miss their deadlines accordingly. Since, lst
and the 4™ release is made optional of the task T1, will execute 3 units of every job. It will

reduce the energy consumption of the system.

| 4.1 CALCULATION OF ENERGY BY RM

A={T1, T2, T3} where T; = { (e, pi, &, mi, ki) } : (3, 10,10, 1, 4)

(4,16, 16, 1, 1)
(10, 40, 40, 1, 1)
4.1.1 UTILIZATION OF TASK |
U=ei/p;
T1=3/10=.3; T2=4/16=25 T3=10/40=25
4.1.2 TOTAL UTILIZATION
3425+425= 80 <l

Energy =e; *[(y o(Si)+ ya]*n

Where g; = execution time of the task

33

Si = operating speed
¥ p = speed of the processor
va = speed of the device

n =no. of jobs

Power = Energy/ unit time: ey
Frequency scalable (Processor): v, o S® where s : operating speed
Dynamic voltage scaling DVS: y,(Si) a Si?

Energy =e; *[(y p(S;) + va |*n
T1 = 3*[(10)"3+50]*6 = 18900

T2 = 4¥[(10)"3 +100)*4] + [(10°3) *4 + (55-48)*100] = 74304

T3 = 10*[(10)"3%2+[(60-43)+(27-7)]]*150=25550

Total Energy = T14+T2+T3 = 118754

4,2 CALCULATION OF ENERGY BY INVERSE RM
A={T1,T2, T3} where T; = { (ei, pi, di, mi, ki) } : (3, 10, 10, 1, 4)
@, 16, 16, 1, 1)
(10, 40, 40, 1, 1)

4.2.1 UTILIZATION OF THE TASK
U=e/pm
T1=3/10=3;
T2 = 4/16 = 25;
T3 = 10/40=25

34

\ 4.2.2 TOTAL UTILIZATION
‘ 3+25+25= .80 <l
Energy =ei *[(y p(Si)+ ya]*n

Where
e; = execution time of the task
Si = operating speed
¥ p = speed of the processor
va = speed of the device

n = no. of jobs

Power = Energy/ unit time: ey
Frequency scalable (Processor): v, a s?

Where s: operating speed

Dynamic voltage scaling DVS: v, (Si) o Si*
Energy =e; *[(y p(S)+ Ya *n

T1 = 3*[(10)*3+50]*6 = 18900
T2 = 4*[(10)"3+100]*5 = 22000

T3 = 10*[(10)"3+150]*2 = 23000
Total Energy = T1+T2+T3 = 63900

By implementing inverse RM, energy is reduced by 37.7%

Hence proved algorithm is feasible.

35

The reduction in energy consumption of the system can be calculated. The calculation of
energy reduction by RATE MONOTONIC and INVERSE RATE MONOTONIC is as
follows: In this we have taken three tasks { T), Ty, T3 },with the respective execution
time,period and deadline Ti= {(ei, pi, d;) } also here (m;, k; Jrefers in this m number of jobs

can be missed out of k consecutive total jobs.
RATE MONOTONIC SCHEDULING:

In the RM, utilization of the task can be calculated as execution time of any job per the
period of that very job for a particular job that is occurring (U= e; / p;) .Similarly we
calculate the utilization for all the three tasks. The summation of the three tasks should be
less than 1, for a job or a task to be feasible. Thereby we calculate the energy of the task by
Energy =i *[(y »(Si}* ¥4]*n

Where, €i = execution time of the task
Si= operating speed
¥ » = speed of the processor
v4 = speed of the device
n =no. of jobs

Also 1, o S3 where s: operating speed so therefore yp (Si) a S;’.Therefore the energy -
calculated for RM: Total Energy = T1+T2+T3 = 118754

Similarly for the calculation for INVERSE RM SCHEDULING:

The utilization of the task is calculated here in the same way as done in RM.Therfore the
calculation for the energy reduction of INVERSE RM is calculated to be 63900.

So by implementing the inverse RM the percentage reduction of energy can be calculated as
Energy calculated by RM - Energy calculated by Inverse RM /Total energy calculated by

inverse RM which is calculated and the output is 37.7% reduction in energy consumption.

36

CHAPTER 5: FEASIBILITY ANALYSIS
AND LIMITATIONS

5.1 FEASIBILITY ANALYSIS

It is done in order to check whether the task set is feasible or not i.e. Can execute all the
jobs residing in a task set T. A weakly-hard real-time system is schedulable if it can be
guaranteed that at run-time all weakly-hard temporal constraints are always satisfied. Given a

task set ordered by priorities, the feasibility analysis requires:
» Computing the worst-case -pattern of each task at its corresponding priority level.
o Checking if the p-pattern satisfies the weakly-hard constraint.

Naturally, a task set can have tasks with either hard deadlines or weakly-hard constraints.
All tasks must be tested with the response-time equation but only the infeasible ones with
weakly-hard constraints require the two above steps. A finction W(e, k) that returns true
when the j" task in the priority ordering o meets the weakly-hard constraints is described in
. Function W (a, k) starts checking the strict feasibility of the j™ task according to the FPS
feasibility test; '

+ If feasible, it will not miss any deadline and therefore it is also weakly-hard feasible;

» If infeasible and with a strict hard deadline, it is infeasible;

37

4

-

5.2 CALCULATION OF FEASIBILITY ANALYSIS
Rir =g+ Z n=1 (Ril'_l/ Pu) * e

Where R/ = response time
& = execution time
P = higher period

ep = higher execution time

For instance:

Task set:
T1 (3, 10, 10)
T2 (4, 16, 16)

T3 (10, 40, 40)
FORTASK T3=10 It will execute for 10 units,
T2=4+[4/40] *10=4+10=14
=4+[7/;40]* 10=4+10=14
TI=3+[3/401*10+[3/16]*4=3+10+4=17
=3+ [17/40]* 10+ [17/16]*4=3+10+8=21 l

|
=3+ [21/40] % 10+ [21/16] *4=3+10+8 =21 |

38

‘ Therefore, the task set T1, T2, T3 is feasible in nature but it also has some limitations.

5.3 LIMITATIONS:
Every task i.e. feasible by RM may not be feasible by inverse RM.

39

CHAPTER 6: RESULTS AND CONCLUSION

In this, we present a dynamic scheduling algorithm to minimize the system wide energy
consumption with (m, k)-guarantee. The system consists of a core processor a number of
peripheral devices, which have different power characteristics. Energy consumption is
critical in the design of pervasive real-time computing platforms. The power consumption for
peripheral devices, as a significant part of the overall power consumption, must be taken into
consideration to reduce the system wide power consumption. Along with the adopted single
known mandatory/optional partitioning strategy, we propose to incorporate different
partitioning strategies based on the power characteristics of the devices as well as the
application specifications. We introduce a feasibility condition, and based on which, we
propose an algorithm to performance the mandatory/optional job partitions. In this , we
presented a dynamic DPD and DVS approéch(calculation) to reduce the system wide energy
consumption while guaranteeing the QoS requirement, which are modelled as the (m,k)-
constraints. The energy saving performance of our approach comes from the facts that we
dynamically change the mandatory/optional job settings, and merge the idle intervals
effectively by delaying the execution for mandatory jobs. Our experimental results
demonstrate that our approach can greatly reduce the number of idle intervals and thus the
power consumption, while still providing (2, £)-firm guarantee. We also propose a novel pre-
emption control scheme, which can be well incorporated into our dynamic scheduling
algorithm. Extensive experiments have been performed and demonstrate the effectiveness of

our approach.

Our results indicate that the energy-consumption of the real time systems along with
the greedy algorithms when the system is significantly energy-constrained is reduced by

15% and enhance the performance .

40

s

N

6.1 FUTURE SCOPE OF THE WORK

In the future, we would like to expand this work beyond the deterministic/absolute real-time
paradigm presented here. In particular, we will investigate other scheduling technique with
probabilistic or statistical deadline guarantees. We will also explore integration with other

energy conserving mechanisms.

ol

41

Bibliography

Buttazzo, G. C. ,Rate Monotonic vs. EDF. Real-Time Systems, 9(1) , 5-26.
Chaeseok Im, S. H, (June 11-13,2004). Dynamic Voltage Scaling for Real-Time Multi-
task. LCTES’04 (20053). .

E. D. Jensen, C. D., A Time-Driven Scheduling Model for Real-Time Operating Systems.

In IEEE Real-Time Systems Symposium , pages 112-122 (1985).

G. Bernat, A. B., Weakly Hard Real-Time Systems. IEEE Transactions on Computers,
50(4) , 308-321 (2001).

J. A. Stankovic, R. R. Real-Time Operating Systems. Real-Time Systems,28(2-3),237—
253(2004).

J. Xu, D. L., Priority Scheduling Versus Pre-Run-Time Scheduling. Real-Time Systems,
18(1) , 7-23(2000).

L. Niu, G. Q., Energy minimization for real-time systems with (m,k)-guarantee, IEEE
Trans. on VLSI, Special Section on Hardware/Software Codesign and System Synthesis
717-729 (July 2006).

H

Nasro MIN-ALLAH, Y. J W.-5., (Enhanced Rate Monotonic Time Demand Analysis.
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol.1,
No.3, 149-153 (July 2007).

Niu, L.,Energy-Aware Dual-Mode Voltage Scaling forWeakly Hard Real-Time Systems.
SAC’10, 321-322 (March 22-26, 2010).

S. Agrawal, R. S., A Preemption Control Technique for System Energy Minimization of
Weakly hard real time systems. SNPD{ 2008).

Santhi Baskaran, P. T. ,Dynamic scheduling of skippable periodic tasks with energy
efficiency in weakly hard real time system. International Journal of Computer Science &
Information Technology (IJCSIT), Vol 2, No 6 , 100-110 (December 2010).

42

Smriti Agrawal, R. S. A Preemption Control Approach for Energy Aware Fault Tolerant
Real Time Systetn. International Journal of Recent Trends in Engineering, Vol. 1, No. 1,
382-383 (May 2009).

Smriti Agrawal, R. S., (A Preemption Control Technique for System Energy
Minimization of Weakly Hard Real-Time Systems. Studies in Computational
Intelligence, Volume 149 , 201-215 2008.

Sprunt B,. Priority-driven preemptive /O controllers for realtime systems. Proceddings
of 15th International Symposium on Computer Architecture , 152-159 (1988).

T. A. AlEnawy, H. A. (Proceédings of the 16th EuroMicro Conference on Real-Time
Systems (ECRTS'04)). Energy-Constrained Real-Time. June 2004,

P. R. Goossens!, Overview of Real-time Scheduling Problems, Universite Libre de Bruxelles,
(2004),

J. P. Lehoczky, L. Sha, Y. Ding, The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior, in IEEE Real-Time System Symposium,
pp.166-171 (1989).
P. Ramanathan. Overload management in real-time control applications using (m, k)-firm
guarantee. IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 6, pp. 549
— 559, (June 1999).

S. Hua and G. Qu, Energy-Efficient Dual-Voltage Soft Real-Time System with (m, k)-
Firm Deadline Guarantee, CASES’04, Washington, DC, USA, (Sep. 22-25, 2004).

R.J ejurik'ar and R. Gupta, Dynamic voltage scaling for system-wide energy minimization
in real-time embedded systems, ISLPED, (2004).

S. Agrawal, R. S. Yadav, Ranvijay, A Pre-emption Control Technique for System Energy
Minimization of Weakly Hard Real-time Systems, SNPD (2008).

43

N et

APPENDIX-A

THE CODE

CALCULATION FOR THE UTILIZATION AND FEASIBILITY OF A
TASK

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>

3 #include<math.h>

A
class task _ »

{

A

int ¢p, p, d, m, k, cd, Sa,e, rel no;
float res;
public:
void read_data(int);
void accp(int);
] void RM_sa(int , int[]);
3

|
void main() %
|

|
44 {

task T[10];

int n;

int speed[5] = {5,10,15,25,30};
cout<<"enter the no of tasks"<<endl;
cin>>n;

for(int i=0;i<n;i++)
T[i].read_data(30);

T->accp(n);

T->RM_sa(n, speed);

e

I }

void task :: read_data(int Smax)

e

{ g
cout<<"\n enter the computation and devices speed"<<endl;
cin>>¢p>>cd;

cout<<"n enter the period of the task"<<endl;

cin>>p;

cout<<"\n enter the deadline of the task"<<endl;

cin=>d;

cout<<"\n enter the no of jobs which can miss deadline"<<endl,

cin>>m;

45 |

cout<<"\n enter the no of jobs"<<endl;

cin>>k;
Sa = Smax;

3
void task :: accp(int n)
{
float ul=0, u2=0 ;
for(int i=0;i<n;i++)
ul= ((this[i].cp/ this[i].Sa)+ this[i].cd);
u2+= (ul/this[i].p);
if(u2 <1)
{
cout<<" \n The task is acceptable : " <<end! ;
}
else
cout<<™n The task set is not acceptable"<<endl;
}
void task :: RM_sa(int n, int speed]])
{
inte,i,a,b;

int S =0;

46

int not_feasible = 1;
while(not_feasible)
{
this[i].Sa= speed[S];
not_feasible = this->accp(n);
}
for(i=0;i<n;i++)
{
a= (this[i].cp/ this[i]. Sa) + this[i].cd;
b=a;
for(int j=0;j<i;j++)
{
this[jl.e = (this[j}.cp/this[j].Sa)+ this[j].cd;
b= b+ ceil(a/this[j].p)* this[j].e;
}
while (al=b) {
b=a;
for(=0;j<i;j++)
{
this[j].e = (this[j].cp/this[j].Sa)+ this[j].cd;

b= etceil(b/thisj].p)* this[j].e;

47

}

if(this[i].res > this[i].d)

{

not_feasible ;
not_feasible = this->acep(n);

}

else

cout<<" the task set is feasible"<<endl,

1

PRIORITY QUEUE.

#include <iostream.h>
#include <stdlib.h>
class p_queue

{

mnt x;

p_queue * next;

public : p_queue® insertion (int);
p_queue* deletion (int *);

void display () ;
p_queue:p_queue()

{

cout<<"\n constructor called ";

48

M

main()

x=-1;
next=NULL;
}

{

p_queue *head ;

head = new p_queue;

nt x;

/fcout<<"enter the value u want to insert "<<endl;
head = head -> insertion(5);
head -> display();

head = head -> insertion(16};
head = head -> insertion(1),
head = head -> insertion(12);
head = head -> insertion(18);
head = head -> insertion(10);
cout <<"deletion"<<endl;
head = head -> deletion(& x);

cout<<"\n deleted element is "<<x;

head -> display(};

}

p_queue* p_queue :: insertion (int y)
{

if(x==-1)

{

X=Y;

return this;

}

p_queue * temp;

49

temp = new p_queue;
temp ->x=y;
p_queue * ptr = this;
cout<<"\n before if” <<ptr -> x;
if (ptr > x>y)
{
cout<<"\n in if part";
temp -> next = this;
cout<<temp;
return temp,
3
else
-
while (ptr -> next! = NULL)
{
- if (((ptr -> next) ->x <y)) :
| |
cout<<"n in else part "<< ((ptr -> next) -> x);
ptr = ptr ->next;
}
else
break;

}

temp -> next = ptr -> next;
ptr -> next = temp;
cout<< '"\n new "<<this;

}

return this;

}

p_queue * p_queue :: deletion(int * data)

50

' {

p_queue *temp = this -> next;

* data = this -> x;

return (this -> next) ;

1‘)

% void p_queue :: display ()

{

p_queue * temp = this;
cout<<" \n priority queue is as follows :"<<endl ;
while (temp != NULL)

{

cout << temp -> x<<endl;
temp=temp->next;

}

Lo

SCHEDULING OF THE TASK

#include<iostream.h>
#include<conio.h>

float task1(float ,int ,int);
float task? (float , int , int);
float task3 (float , int , int); "
void main()

{

clrser();

float el , €2, e3;

int pl, p2, p3;

int d1 , d2, d3;

float ul ,v2,u3,t,P;

inta,b,c,d,i,j,nl,n2,n3;

51

ikt

int sp,sd,S,Ei Er, ch;

cout<<"ENTER THE EXECUTION TIME FOR ALL THE THREE TASKS :";
cin>> el >>e2 >>¢3 ;

cout<<"\n ENTER THE PERIOD FOR ALIL THE THREE TASKS:";
cin>> pl >> p2 >> p3;

cout<<" \n ENTER THE DEADLINE FOR ALL THE THREE TASKS :";
cin>> d1 >> d2 >> d3;

ul =taskl(el,pl,dl);

cout<<"\n UTLIZATION FOR THE FIRST TASK IS : " <<ul ;

u2 =task2 (e2, p2, d2);

cout<<"\n UTILIZATION FOR THE SECOND TASK IS:" << u2 ;
u3 =task3 (e3,p3,d3);

cout <<"\n UTILIZATION FOR THE THIRD TASK IS : " <<u3;
t=ul +u2+u3;

if(t<=1)

{

cout <<"\n TASKS ARE FEASIBLE ";

}

else

{

cout <<" \n TASKS ARE NOT FEASIBLE" ;

}
cout<<"\n TOTAL UTILIZATION IS "<<t;

a=0;

b=20;

while (a! == 1)
{

b++;

¢ = b*d3;
if{(c%d1 == 0)&&(c%d2 == 0))

52

d=c;
at+t;
|)
; }
| for(i=0 ; i<d; i++)
{
afi] =0 ;
}
for(i=0; i<d; i++)
{
if (a[i] = 0)
{
cout<<"\ni="<<i;
if ((i%d3=—=0)&&(%d1=0)&&(i%d2==0})
{
cout<<" \n COMBINE" ;

cout<<i;

for G=0;j<e3;j+t)
{

ali] = 3;

if ((i%d1 = 0)&&(1%d21=0) & &(i%d3==0))
{

for (j=0; j<e3;j++)

{

‘ afi] = 3;

53

else
if{(i%d1!=0) & &(1%d2==0)& &(i%d3==0))
{
for(i=0;i<e2;i++)
{
ali]=2;

e et el 2] s £ 4 Ban Ty

else

if{(i%d11=0)&&(i%d2!=0)& &(i%d3==0))
? {

for(j=0;j<e3;j++)

{

ali] = 3;

else

if((i%d1!=0)& &(i1%d21=0) & &(i%d31=0))
{

for(j=0;j<e2;j++)

{

afi] =2;

1t+;

54

else

if((i%d]1==0)& &(1%d21=0)& &(1%d3 !=0))

{

for(i=0; i<el ; it++)

{

cout<<"\n a"<<i<<" =" << a[i];

}

cout<<" \n OPERATING SPEED : ";

cin>> §;

cout<<"\n SPEED OF THE PROCESSOR ";
cin>> sp;

cout<<"\n SPEED OF THE DEVICE ";
cin>>sd ;

cout <<"\n NUMBER OF JOBS FOR TASKI1" ;
¢cin>>nl ;

cout<<"\n NUMBER OF JOBS FOR TASK2" ;
cin>>n2;

cout<<"\n NUMBER OF JOBS FOR TASK3 " ;
cin>> n3; |
cout<<"\n ENTER THE CHOICE";

cin>> ch;

switch(ch)

{

case 1 : cout<<" \n CALCULATION BY INVERSE RM ":

El =el* [(sp(S)*3 +sd] *nl;
E2 = e2* [(sp(S)*3 +sd] *n2;
E3 =e3* [(sp(S)*3 +sd] *n3;
Ei=El +E2 + E3;

55

i .

v cout<<"THE ENERGY BY INVERSE RM :" <<Fi;
break;

case 2 : cout<< "\n CALCULATION BY RM :";
El =el* [(sp(S)"3 +sd] *nl;
E2 =e2* [(sp(S)*3 +sd] *n2;
E3 =e3* [(sp(S)"3 +sd] *n3;
Er=El1+ E2 + E3;
cout<<"THE ENERGY BY RM :"<<Er;
break;

default : cout <<"\n NOT FEASIBLE " ;
break;

h
P = ((Ei/ Er)*100}; :
cout<<"\n PERCENTAGE BY WHICH ENERGY IS REDUCED "<< P;
getch();
'
float taskl (float el , int p1, int d1)
{

float al;
al =el/pl;
return al ;

}

float task2 (float €2 ,int p2 , int d2)

{
float a2;

a2 =e2/p2;
return a2 ;

}

float task3 (float €3 , int p3 , int d3)

56

{

float a3;
a3 =e3/p3;

B, |

return a3 ;

57

