JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2024

PhD -I Semester (CE/BT &BI)

COURSE CODE (CREDITS): 14M31CE115 (3)

MAX. MARKS: 35

COURSE NAME: Solid Waste Management

COURSE INSTRUCTORS: Dr. Rishi Rana Kalia

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

				uestion	11 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CO	Mai	rks	
Q. No			_		•••		CO-2	5		
Q1	Estimate the required landfill area for a community with a									
	population of 56,000 assuming the following conditions: Solid							Mai	rks	
	waste generation = 6.2 kg per capita per day. Compacted specific								;	
	3370	ight of solid	wastes in land	$fill = 475 \text{ kg/m}^3$. Average dep					
	1			. " "						
	i .	_	l wastes = 9 m	4 March 3 M	C	-4:	CO-	5		
Q2	$ \mathbf{W} $	th neat sk	etches, discus	ss any two ty	rpes of separ	ation			•	
	techniques.						3&4		Marks	
Q3	(a) Estimate the moisture content, density, energy content as						CO-3	0-3 7		
	well as derive the chemical formula of a waste sample							Marks		
	1									
	(1000 Kg) with following composition:						Itimate analysis		ie	
Compone	ent	Percent	Møisture	Typical	Energy,					
		by mass	content (%)	Density,	Kj/Kg	C	H	N	S	
	Ş			Kg/m ³						
Food wa	ste	25	65	4650	29036	45	2.5	86.2	0.01	
Paper		35	11	16750	89457	32	12.9	55	0.8	
Cardboa	rds	20	1	16300	25015	9	5	23.7	2	
Plastic		15	5	32600	20312	74	3.4	29	12	
Garde	n	18	2	6500	1258	25	5.8	63.8	0.7	
Wood	1	10	50	18600	6147	7	23	17.2	0.1	
Inert		29	30	700	8530	9	25	30	12	

	(b) Give at least four differences between combustion,	CO-4	5
	gasification & pyrolysis.		Marks
Q4	Solid waste from a society is to be collected in large container.	CO-2	5
	Based on the traffic studies, it is estimated that the average time to	&3	Marks
	drive from garage to first container and from last container to the		
	garage each day is 15 and 30 minutes respectively. The time	3304	
	required to pick up loaded container and unload empty container		
	is 1.12 h/trip. If the average time required to drive between the		V
	containers is 8 minutes and full way journey is 95 km, determine		·
	the number of containers that can be emptied per day based on a	Ì	
	12 h workday? Assume the value of a, b and s as 0.016, 0.011 and		
	0.133 respectively. The off-route factor can be taken as 0.15.		
)5	Explain Pretreatment and Co-digestion for Enhancement of	CO-4	4
	Biogas Production?		Marks
6	Discuss various issues related to land filling. Explain waste	CO-3	4
	decomposition process in a landfill?	&4	Marks