JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

MTech-I Semester (CSE)

COURSE CODE (CREDITS): 10M11CI111

MAX. MARKS: 35

COURSE NAME: Advanced Data Structure

COURSE INSTRUCTORS:

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	Marks
Q1	A two-dimensional array defined as A [-4 6] [-2 12] require 2 bytes	4
	of storage for each element. If the array is stored in row mater order form	*
	with the address A[4][8] as 4142. Compute the address of 4[0][0]	
Q2	What are splay trees? Consider an empty splay from and Doubers at	4
	Tollowing sequence of operations and determine the final structure of the	-
	1000, 120 , 130 , 140 , $a10$, 150 , $a20$, where iN is insert operation and aN is	
	an access operation. What is the final structure of the tree after all the	
00	Operations:	
Q3	Consider an external memory algorithm for searching in a large sorted	7
	dataset stored in disk. Discuss the trade-offs between using a binary good b	
	vs a linear scan in terms of 4/O complexity. Under what conditions would a	
Q4	linear scan be preferable?	
Q 4	Consider the following tree-based data structures: Binary Trees, Binary	7
	Search Trees (BST), AVL Trees, and Red-Black Trees. You are tasked with	
	designing an efficient search algorithm for a dataset of size $N = 10^6$, and	
- 1	you must choose between these tree structures based on its time complexities	
Q5	of search operations, tree manipulation operations (insert, delete and update). Explain the following:	
~~		6
l	a) Wavelets and its application to Engineering problems b) Sliding windows data structure and its applications	İ
Q6 s	Describe the implementation of a distributed stack and the challenges	
· Control	involved in ensuring that push and pop operations are consistent across	7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	multiple nodes. How would you handle failure recovery for a distributed	j
11/1/11/11/11/11/11/11/11/11/11/11/11/1	stack?	
- 3		