JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2024

B.Tech-VII Semester (ECE)

COURSE CODE (CREDITS): 19B1WEC732 (3)

MAX. MARKS: 35

COURSE NAME: Pattern Analysis in Machine Intelligence

COURSE INSTRUCTORS: Dr. Vikas Baghel

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question								CO	Marks	
Q1.	A con	pany uses a	pattern rec	cognition s	ystem	to classi	fy fruits bas	sed on their size, weig	ht, and	[CO1]	
	color.										
			Fruit	Size (cm)	Weig (gran		Color Coded: 1, Oran	· · · · · · · · · · · · · · · · · · ·			
İ			Apple	7	150	0	1			:	,
			Orange	8	170	0	2				
	i.	Represent t	he fruits as	patterns in	ı a 3-di	mensiona	l feature spa	ace.			[1]
	ii.	Using the I	Euclidean d	listance, de	etermin	ne which	fruit is close	er to the query pattern	(8 cm,		[2]
		160 grams,	color code	: 2).							
	iii.				11/1/20	Marie Marie Marie To		based on the provided of			[2]
Q2.	A hosp	ital is using	a pattern re	cognition	lgorith	ım to clas	sify patient	data into two classes: o	liabetic	[CO2]	
	(Class	1) and non-d	iabetic (Cla	ass 2). The	feature	e vector i	ncludes fast	ing blood sugar (FBS, 1	mg/dL)		
	and Hb	Alc percent	age (%). Th	ne training	data fo	r two pat	ients is:	60 to 100			,
			Pat	tient.	BS g/dL)	HbA1c (%)	Class				
		3		A 1	26	6.5	1				
		1		B 1	00	5.5	2]			
		D1 241 . C.		11 1 1 1 1							[1]
	i.	Plot the fear	-				4 . 4				[2]
	ii.	(a. 14)						0%. Using a simple di	stance-		[~]
	***************************************	based classi				-					[2]
	iii. 							fication in this scenario			[2]
Q3.								customer reviews as		[CO2]	
								. The company decides			
	cosine	similarity as	s a proxim	nity measu	re for	feature	extraction.	Consider the followin	g term		
	frequer										
	•			ĺ							
	•	Review 2: (0.5, 0.1, 0.3	3, 0.4)							

	i. Compute the cosine similarity between these two reviews.								
	ii. Explain how proximity measures like cosine similarity help in pattern recognition,	[3]							
	especially in text classification tasks.	[2]							
Q4.	a) Discuss the role of the Linear Discriminant Function in solving classification problems in [CO3]								
	medical diagnosis.								
	b) Illustrate how this supervised learning approach can be employed to classify patients based on								
	disease severity using real-world data.	[2]							
	c) Highlight the importance of feature selection and its impact on the performance of the	[2]							
	classifier.								
Q5.	a) Explain the concept of wrapper methods in machine learning for feature selection. Discuss [CO4]	[5]							
	how wrapper methods differ from filter and embedded methods. Highlight their advantages								
	and disadvantages in the context of pattern classification tasks.								
	b) A company is working on a project to reduce the file size of digital images by using								
	hierarchical clustering for color quantization. Consider an image with 8 colors represented by								
	the following RGB values (with each value in the range of 0 to 255):								
	Color Red Green Blue	}							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$								
	4 255 255 0								
	i. Apply Agglomerative Hierarchical Clustering with a Euclidean distance metric to merge								
ĺ	the colors step by step. Construct the dendrogram for the clustering process.	[3]							
	ii. Determine the number of clusters you would choose for the image compression and	[2]							
	explain why. Based on the chosen clusters, compute the average RGB values for each								
	cluster and suggest how the image can be quantized using the resultant colors.								
6.	You are tasked with developing a snam emoil detection								
	Vector Machine (SVM) and Naive Bayes (NB). Both classifiers are trained on the same dataset of								
	emails, and their individual performance is as follows:								
	• SVM has an accuracy of 85%, precision of 80%, and recall of 90%.								
	Naive Bayes (NB) has an accuracy of 82%, precision of 78%, and recall of 88%.								
	You decide to combine these classifiers using voting ensemble (majority voting) and stacking. In								
s	stacking, the predictions of the two models (SVM and NB) are used as input for a third model								
	(logistic regression):								
	i. Calculate the combined accuracy, precision, and recall for the majority voting scheme if	[2]							
	both classifiers classify an email as spam.								
	ii. Explain the expected advantages and potential challenges of using stacking over majority								
	voting in this scenario.	[3]							