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Abstract

An ALU is the fundamental unit of any computing system. Understanding how an ALU
is designed and how it works is essential to building any advanced logic circuits. Using
this knowledge and experience, we can move on to designing more complex integrated
circuits, We have designed a 32 bit ALU which performs eight functions through three
select pins. According to the v‘alues of these pins different functions of the ALU are
represented. After giving a specific combination of input selection pin the required output
is produced. The functions performed by the ALU are and, or, nand, nor, addition,

subtraction, left shift, right shift, left rotate, right rotate . All the results are testified by

test bench waveforms .




CHAPTER 1
INTRODUCTION

i The central processing unit (CPU) of a computer is the main unit that dictates the rest of
the computer organization.
The CPU is made of three major parts
1. Register set: Stores intermediate data during the execution of instructions;
2. Arithmetic logic unit (ALU): Performs the required micro-operations for executing the
instructions.
3. Control unit: supervises the transfer of information among the registers and instructs

the ALU as to which operation to perform by generating control signals.
1.1 ALU

An arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical
operations. The ALU is a fundamental building block of the central processing unit
(CPU) of a computer, and even the simplest microprocessors contain one for purposes
such as maintaining timers. The processors found inside modern CPUs and graphics
processing units (GPUs) accommodate very powerful and very complex ALUs; a single
component may contain a number of ALUs. Mathematician John von Neumann proposed
the ALU concept in 1945, when he wrote a report on the foundations for a new computer
called the EDVAC. Research into ALUs remains an important part of computer science,
falling under Arithmetic and logic structures in the ACM Computing Classification
j System.
Most of a processor's operations are performed by one or more ALUs. An ALU loads
data from input registers, an external Control Unit then tells the ALU what operation to
perform on that data, and then the ALU stores its result into an output register. Other
mechanisms move data between these registers and memory.
A simple example arithmetic logic unit (2-bit ALU) that does AND, OR, XOR, and
addition
Most ALUs can perform the following operations:
1. Integer arithmetic operations (addition, subtraction)

i 2. Bitwise logic operations (AND, NOT, OR, XOR)

_
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3. Bit-shifting operations (shifting or rotating a word by a specified number of bits to the
left or right.

ALU allows the computer to add, subtract, and to perform basic logical operations such
as AND/OR. Since every computer needs to be able to do these simple functions, they are
always included in a CPU. How a company designs their ALU has a significant impact
on the overall performance of their CPU.ALU is a digital circuit that performs Arithmetic
(Add, Sub . ..) and Logical (AND, OR, NOT) operations.

1.1.1 Logic Unit

Logic unit performs logical operations such as and, or, not efc.

Figure 1.1 shows the basic logic gates.

=D

'AND' Gate

-

'OR' Gate

-

'XOR' Gate

>

'WOT' Gate

ml)s

'NAND' Gate
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'NOR' Gate

=D

XNOR'

Figure 1.1: Basic logic gates

These logic gates work by taking two inputs (one input for the NOT' gate) and producing
an output. These logic functions are by themselves an important part of a CPU's
functionality, but performing logic operations on two inputs is only so useful. By

combining these gates together we can have devices with more inputs.

1.1.2 Arithmetic Unit

By combining these gates we can perform other useful functions, like addition,

subtraction. Figure 1.2 shows a typical configuration referred to as a half-adder

N — SUM
4

w

CARRY

Figure 1.2 Half Adder
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1.2 Project Overview

The motive of the project 32 bit ALU” is implementing fundamental operations like and,
or, nor etc and some upper level functions like addition, rotation etc .These functions are
implemented as well as simulated in VHDIL(VHSIC HARDWARE DESCRIPTION
LANGUAGE) using XILINX 8.2i. The implemented functions are testified successfully
by test bench waveform simulation. In initial phase all eight functions of the ALU are
implemented and simulated separately and later they are multiplexed in one program

using port mapping. The faults and errors occurred in implemented functions and

simulations were seriously taken in to consideration and were efficiently removed.




CHAPTER 2
INTRODUCTION TO VHDL

2.1 What Is VHDL?

VHDL is an acronym for VHSIC Hardware Description Language (VHSIC is an
acronym for Very High Speed Integrated Circuits). It is a hardware description language
that can be used to model a digital system at many levels of abstraction ranging from the
algorithmic level to the gate level. The complexity of the digital system being modeled
could vary from that of a simple gate to a complete digital electronic system, or anything
in between. The digital system can also be described hierarchically. Timing can also be

explicitly modeled in the same description.

2.2 History

The requirements for the language were first generated in 1981 under the VHSIC
program. In this program, a number of U.S. companies were involved in designing
VHSIC chips for the Department of Defense (DoD). At that time, most of the companies
were using different hardware description languages to describe and develop their
integrated circuits. As a result, different vendors could not effectively exchange designs
with one another. Also, different vendors provided DoD with descriptions of their chips
in different hardware description languages. Reprocurement and reuse was also a big
issue. Thus, a need for a standardized hardware description language for design,
documentation, and verification of digital systems was generated.

A team of three companies, IBM, Texas Instruments, and Intermetrics, were first awarded
the contract by the DoD to develop a version of the language in 1983. Version 7.2 of
VHDL was developed and released to the public in 1985. There was a strong industry
participation throughout the VHDL language development process, especially from the
companies that were developing VHSIC chips. After the release of version 7.2, there was
an increasing need to make the language an industry-wide standard. Consequently, the

language was transferred to the IEEE for standardization in 1986. After a substantial




enhancement to the language, made by a team of industry, university, and DoD
representatives, the language was standardized by the IEEE in December 1987; this
version of the language is now known as the IEEE Std 1076-1987. The official language
description appears in the IEEE Standard VHDL Language Reference Manual made
available by the IEEE. The language described in this book is based on this standard. The
language has since also been recognized as an American National Standards Institute
(ANSI) standard.

The Department of Defense, since September 1988, requires all its digital Application-
Specific Integrated Circuit (ASIC) suppliers to deliver VHDL descriptions of the ASICs
and their subcomponents, at both the behavioral and structural levels. Test benches that
are used to validate the ASIC chip at all levels in its hierarchy must also be delivered in

VHDL. This set of government requirements is described in military standard 454.

2.3 Capabilities

* The language can be used as an exchange medium between chip vendors and CAD tool
users. Different chip vendors can provide VHDL descriptions of their components to
system designers. CAD tool users can use it to capture the behavior of the design at a
high level of abstraction for functional simulation,

* The language can also be used as a communication medium between different CAD and
CAE tools, for example, a schematic capture program may be used to generate a VHDL
description for the design which can be used as an input to a simulation program.

* The language supports hierarchy, that is, a digital system can be modeled as a set of
interconnected components; each component, in turn, can be modeled as a set of
interconnected subcomponents,

* The language supports flexible design methodologies: top-down, bottom-up, or mixed.

* It is an IEEE and ANSI standard, and therefore, models described using this language is
portable. The government also has a strong interest in maintaining this as a standard so

that re-procurement and second-sourcing may become easier.

10
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2.4 Hardware Abstraction

VHDL is used to describe a model for a digital hardware device. This model specifies the
external viéw of the device and one or more internal views. The internal view of the
device specifies the functiona!ity or structure, while the external view specifies the
interface of the device through] which it communicates with the other models in its
environment. . Figure 2.1 shows the hardware device and the corresponding software
model,

In VHDL, each device model is treated as a distinct representation of a unique device,
called an entity in this text. Figure 2.2 shows the VHDL view of a hardware device that
has multiple device models, with each device model representing one entity. Even though

entity I through N represents N different entities from the VHDL point of view, in reality
they represent the same hardware device.

i Device
Device — 3 E)\('tigwal model
Digital Lees. | Modsl
->' system >
—>
Internal views

Figure 2.1 Device versus device model.

Entity 1 Davice model 1

Entity 2 Device modal 2

Entity N Device modal N

Actual hardware VHOL view

Figure 2.2 A VHDL view of a device.
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CHAPTER 3
MODELING FEATURES OF VHDL

’ VHDL is a hardware description language that can be used to model a digital system. The
digital system can be as simple as a logic gate or as complex as a complete electronic
system. A hardware abstraction of this digital system is called an entity in this text. An
entity X, when used in another entity Y, becomes a component for the entity Y.
Therefore, a component is also an entity, depending on the level at which you are trying
to model.

3.1 Entity

To describe an entity, VHDL provides five different types of primary constructs, called”
design units . They are

1. Entity declaration

2, Architecture body

3. Configuration declaration

4. Package declaration

5. Package body

3.1.1 Entity Declaration
The entity' declaration specifies the name of the entity being modeled and lists the set of
interface ports. Ports are signals through which the entity communicates with the other

, models in its external environment.

3.1.2 Architecture Body

The internal details of an entity are specified by an architecture body using any of the
following modeling styles:

L. As a set of interconnected components (to represent structure),

2. As a set of concurrent assignment statements (to represent dataflow),

3. As a set of sequential assignment statements (to represent behavioral),

4. Any combination of the above three

12




3.1.3 Configuration Declaration

A configuration declaration is used to select one of the possibly many architecture bodies

“that an entity may have, and to bind components, used to represent structure in that
| architecture body, to entities represented by an entity-architecture pair or by a

configuration, that reside in a design library

3.1.4 Package Declaration
A package declaration is used to store a set of common declarations like components,
types, procedures, and functions. These declarations can then be imported into other

design units using a context clause.

3.1.5 Package body

A package body is primarily used to store the definitions of functions and procedures that
were declared in the corresponding package declaration, and also the complete constant
declarations for any deferred constants that appear in the package declaration. Therefore,
a package body is always associated with a package declaration; furthermore, a package
declaration can have at most one package body associated with it. Contrast this with an
architecture body and an entity declaration where multiple architecture bodies may be

associated with a single entity declaration.

3.2 Data Objects

A data object holds a value of a specified type. It is created by means of an object

declaration. Every data object belongs to one of the following three classes:

3.2.1 Constant

An object of constant class can hold a single value of a given type. This value is assigned
to the object before simulation starts and the value cannot be changed during the course
of the simulation.

3.2.2. Variable

An-object of variable class can also hold a single value of a given type. However in this
case, different values can be assigned to the object at different times using a variable

assignment statement.

13
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3.2.3 Signal
An object belonging to the signal class has a past history of values, a current value, and a
set of future values. Future values can be assigned to a signal object using a signal

assignment statement,

3.3 Operators
The predefined operators in the language are classified into the following five categories:

1. Logical operators

2. Relational operators

3. Adding operators

4. Multiplying operators

5. Miscellaneous operators

3.3.1 Logical Operators

The six logical operators are

and or nand nor xor not

These operators are defined for the predefined types BIT and BOOLEAN. They are also
defined for one-dimensional arrays of BIT and BOOLEAN. During evaluation, bit values
'0"and 1" are treated as FALSE and TRUE values of the BOOLEAN type, respectively.
3.3.2 Relational Operators

These are .

= /= < <= > =

The result type for all relational operations is always BOOLEAN.
3.3.3 Adding Operators

These are

+ - &

The operands for the + (addition) and - (subtraction) operators must be of the same
numeric type with the result being of the same numeric type

- The operands for the & (concatenation) operator can be either a 1-dirnensional array
type or an element type. The result is always an array type

3.3.4 Multiplying Operators

These are

* / mod rem

14
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The * (multiplication) and / (division) operators are predefined for both operands being
of the same integer or floating point type. The rcsﬁlt is also of the same type.

3.3.5 Miscellaneous Operators

The miscellaneous operators are

abs  **

The abs (absolute) operator is defined for any numeric type.

The ** (exponentiation) operétor is defined for the left operand to be of integer or

floating point type and the right operand (i.e., the exponent) to be of integer type only.

15




CHAPTER 4
BEHAVIORAL MODELING

In this modeling style, the behavior of the entity is expressed using sequentially executed,
procedural code. A process statement is the primary mechanism used to model the
procedural type behavior of an entity. Irrespective of the modeling style used, every
entity is represented using an entity declaration and at least one architecture body.

4.1 Entity Declaration

An entity declaration describes the external interface of the entity. It specifies the name
of the entity, the names of interface ports, their mode (i.e., direction), and the type of

ports. The syntax

entity entity-name is
[port ( list-of-interface-port-names-and-their-types) ; ]
end [ entity-name ];
The entity-name is the name of the entity and the interface ports are the signals through

which the entity passes information to and from its external environment. Each interface

e —

port can have one of the following modes:

L. in: the value of an input port can only be read within the entity model.

2. out: the value of an output port can only be updated within the entity model; it cannot
be read.

§ 3. inout: the value of a bidirectional port can be read and updated within the entity model.
4. buffer: the value of a buffer port can be read and updated within the entity model.
However, it differs from the inout mode in that it cannot have more than one source and
that the only kind of signal that can be connected to it can be another buffer port or a
signal with at most one source.

4.2 Architecture Body
An architecture body describes the internal view of an entity. It describes the

functionality or the structure of the entity. The syntax of an architecture body is

architecture architecture-name of entity-name is

16
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[ architecture-item-declarations ]
begin
concurrent-statements; these are —>
process-statement
block-statement
concurrent-procedure-call
céncurrent-assertion-statement
concurrent-signal-assignment-statement
component-instantiation-statement
end [ architecture-name ] ;

4.3 Process Statement

A process stalement contains sequential statements that describe the functionality of a

portion of an entity in sequential terms, The syntax of a process statement is

process [ ( sensitivity-list ) ]
[process-item-declarations]
begin
sequential-statements; these are ->
variable-assignment-statement
signal-assignment-statement
if-statement
case-statement
loop-statement
end process ;
4.4 Variable, Signal Assignment Statement

Variables can be declared and used inside a process statement. A variable is assigned a
value using the variable assignment statement that typically has the form

variable-object := expression;
The expression is evaluated when the statement is executed and the computed value is
assigned to the variable object instantaneously, that is, at the current simulation time.

Signals are assigned values using a signal assignment statement The simplest form of a

17




signal assignment statement is

signal-object <= expression ;
A signal assignment statement can appear within a process or outside of a process. If it
occurs outside of a process, it is considered to be a concurrent signal assignment
statement.
When a signal assignment statement appears within a process, it is considered to be a
sequential signal assignment statement and is executed in sequence with respect to the
other sequential statements that appear within that process.

4.5 If Statement

If statement selects a sequence of statements for execution based on the value of a
condition. The condition can be any expression that evaluates to a boolean value. The
general form of an if statement is
if boolean-expression then
sequential-statements
[ elsif boolean-expression then
sequential-statements )
[ else
sequential-statements ]
end if;

4.6 Case Statement

‘The format of'a case statement is
tase expression is .

when choices => sequential-statements

when choices => sequential-statements

-- Can have any number of branches.

[ when others => sequential-statements ]

end case;

The case statement selects one of the branches for execution based on the value of the

expression.

18




CHAPTER 5
DATAFLOW AND STRUCTURAL MODELING

5.1 Data Flow Modeling

A dataflow model specifies the functionality of the entity without eXplicitly specifying its
structure. This functionality shows the flow of information through the entity, which is
expressed primarily using concurrent signal assignment statements. The structure of the
entity is not explicitly specified in this modeling style, but it can be implicitly deduced. In
a signal assignment statement, the symbol <= implies an assignment of a value to a
signal. The value of the expression on the right-hand-side of the statement is computed
and is assigned to the signal on the left-hand-side, called the target signal. A concurrent
signal assignment statement is executed only when any signal used in the expression on
the right-hand-side has an event on it, that is, the value for the signal changes. Concurrent
signal assignment statements are concurrent statements, and therefore, the ordering of

these statements in an architecture body is not important.
5.2 Concurrent versus Sequential Signal Assignment

Signal assignment statements can also appear within the body of a process statement.
Such statements are called sequential signal assignment statements, while signal
assignment statements that appear outside of a process are called concurrent signal
assignment statements. Concurrent signal assignment statements are event triggered, that
is, they are executed whenever there is an event on a signal that appears in its expression,
while sequential signal assignment statements are not event triggered and are executed in
sequence in relation to the other sequential statements that appear within the process.

5.3 Structural Modeling

An entity is modeled as a set of components connected by signals. The behavior of the
entity is not explicitly apparent from its model. The component instantiation statement is
the primary mechanism used for describing such a model of an entity.

5.3.1 Component Declaration

A component instantiated in a structural description must first be declared using a

component declaration. A component declaration declares the name and the interface of a

19




component. The interface specifies the mode and the type of ports. The syntax ofa

simple form of component declaration is

component component-name
port ( list-of-interface-ports ) ;

end component;
5.3.2 Component Instantiation
A component instantiation statement defines a subcomponent of the entity in which it
appears. It associates the signals in the entity with the ports of that subcomponent.
component-label: component-name port map ( association-list) ;
5.3.3 Configuration
It is convenient to specify multiple views for a single entity and use any one of these for
simulation. This can be easily done by specifying one architecture body for each view
and using a configuration to bind the entity to the desired architecture body also it is
desirable to associate a component with any one of a set of entities. The component
declaration may have its name and the names, types, and number of ports different from
those of its entities.
A configuration is, therefore, used to bind
1. An architecture body to its entity declaration,
2. A component with an entity.
The language provides two ways of performing this binding:
1. By using a configuration specification,
2. By using a configuration declaration.
5.3.3.1 Configuration Specification
A configuration specification is used to bind component instantiations to specific entities
that are stored in design libraries. The specification appears in the declarations part of the
architecture,
The syntax of a configuration specification is

for list-of-comp-labels: component-name binding-indication;

20
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The binding-indication specifies the entity represented by the entity-architecture pair, and
the generic and port bindings, its forms is

use entity entity-name [ ( architecture-name ) ] ;
5.3.3.2 Configuration Declaration ‘
A configuration declaration is a separate design unit, therefore, it allows for late binding
of components, that is, the binding can be performed after the architecture body has been
written, It is also possible to have more than one configuration declaration for an entity,
each of which defines a different set of bindings for components in a single architecture
body, or possibly specifies a unique entity-architecture pair
Format of a configuration declaration is

configuration configuration-name of entity-name is

block-configuration

end [ configuration-name J;

e —— e —
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CHAPTER 6
VHDL FUNCTIONS, PACKAGES AND LIBRARIES

6.1 Functions

Functions are used to describe frequently used sequential algorithms that return a single
value. This value is returned to the callinngrogram using a return statement. The general
form of a function declaration is
function function-name (formal-parameter-list)
return return-type is
[declaration]
begin
sequential statements

end function —name
6.2 Packages
A package provides a convenient mechanism to store and share declarations that are
common across many design units. A package is represented by

I. a package declaration, and optionally,

e —

2. a package body.
6.2.1 Package Declaration
A package declaration contains a set of declarations that may possibly be shared by many
design units. It defines the interface to the package, that is, it defines items that can be
made visible to other design units. |
package package-name is
package-item-declarations
end [ package-name ] ;
6.2.2 Package Body
A package body primarily contains the behavior of the subprograms and the values of the
deferred constants declared in a package declaration, It may contain other declarations as
well, as shown by the following syntax of a package body. The package name must be

the same as the name of its corresponding package declaration,
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package body package-name is
package-body-item-declarations "
end [ package-name J;

6.3 Libraries

Each design unit — entity architecture, configuration, package declaration and package
body is analyzed (compiled) and placed in design library. Libraries are generally
implemented as directories and are referenced by logical names. In the implementation of
VHDL environment, this logical name maps to a physical path to the corresponding

directory and this mapping is maintained by the host implementation,

In VHDL, the libraries STD and WORK are implicitly declared therefore the user

programs do not need to declare these libraries. The STD contains standard package
provided with VHDL distributions. The WORK contains the working directory that can
be set within the VHDL environment you are using. However if a program were to access
functions in a design unit that was stored in a library with a logical name IEEE .Then this

library must be declared at the start of the program.
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CHAPTER 7

ALU
Addition
a(31:0)
- Subtraction
Left Shift
b(31:0)
Right Shift
Left Rotate
cin
Right Rotate
clk
And, Nand
Or, Nor
SEly e |

Sel(1) Sel (3)

Figure 7.1 Block Diagram of ALU

result (31:0)

1
cout 0
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ALU as shown in figure 7.1 consists of eight functions
1. Addition

2. Subtractions

3. Left Shift

4. Right Shift

5. Left Rotate

6. Right Rotate

7. And, Nand

8. Or, Nor

ALU consists of two 32 bit inputs and 1 bit cin (carry input). It consists of three select

pins through which different functions are implemented. The output of ALU is result

which is 32 bit and 1 bit cout which is carry out.




CHAPTER 8
ADDER

To understand how this adder works we have to think of the inputs not as true or false but
as 'l" or'0". The output of this adder is the sum of the inputs with a carry bit. If the inputs
are 'l1" and '1' we are adding 1 plus 1. The output labeled 'SUM' is just an "XOR' of the
inputs which will be '0'. The output labeled 'CARRY" is an AND gate which of course
will be 'I'. The addition answer therefore is 10 which is the binary addition of '1' and '1".
If the inputs are '1' and '0" the 'SUM' will be '1" and the 'CARRY" will be '0', giving
answer of 01 or just 1,

In order to add binary numbers greater than two bits we need the adder to be able to take

- ina carry bit along with the two input bits. This full-adder is shown in Figure 8.1. You

can see that the full-adder is two half-adders with one additional 'OR’ gate. To use a full-
adder to add two binary numbers of arbitrary size you will begin with the right most bit,
called the least significant bit (LSB) of each number with a carry in bit of '0', You would
then add the two bits, record the sum, and use the carry out bit as the carry in bit when
adding the next two bits and moving towards the most significant bits (MSB). By
repeating this process you can add two binary numbers of any arbitrary length. This

process is known as a ripple carry.

Figure 8.1: Full adder
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A B Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 | 1 0
1 0 0 0 1
| 0 1 1 0
1 1 0 1 0
1 1 1 | 1

Table 8.1 Truth table of full adder
8.1 Full Adder

library IEEE;

use [EEE.STD LOGIC_1164.ALL:
use [EEE.STD_LOGIC_ARITH.ALL;
use [EEE.STD_LOGIC UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity full adder is
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
cin:in STD_LOGIC;
cout : out STD LOGIC;
sum : out STD_LOGIC);
end full_adder;

architecture Behavioral of full_adder is

begin
process(a,b,cin)
begin
sum <= a xor b xor cin;
cout <= (a and b) or (b and cin) or (a and cin);
end process;
end Behavioral;
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8.2 4 bit adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use [IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity adder4bit is
Port (a:in STD_LOGIC_vector(3 downto 0);
b:in STD_LOGIC_vector(3 downto 0);
cin:in STD_LOGIC;
cout : out STD_LOGIC;
sum : out STD_LOGIC_vector(3 downto 0));
end adder4bit;

architecture Behavioral of adder4bit is
component full _adder
port (a:in STD_LOGIC;
b:in STD LOGIC;
cin:in STD_LOGIC;
cout : out STD LOGIC;
sum :out STD_LOGIC);
end component ;
for ul,u2,u3,ud : full _adder
use entity work.full_adder(Behavioral);
signal t: STD_LOGIC_vector(2 downto 0);
begin
ul : full_adder port map (a=>a(0),b=>b(0),cin=>cin,cout=>t(0),sum=>sum(0));
u2 : full_adder port map (a=>a( 1),b=>b(1),cin=>t(0),cout=>t(1),sum=>sum(1));
u3 : full_adder port map (a=>a(2),b=>b(2),cin=>t(1),cout=>t(2),sum=>sum(2));
‘%34 : full_adder port map (a=>a(3),b=>b(3),cin=>t(2),cout:>c0ut,sum=>sum(3));

end Behavioral;
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8.3 32 bit adder

library IEEE;

use [IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use [EEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--use UNISIM.VComponents.all;

entity adder32bit is
Port (a:in STD_LOGIC_VECTOR(31 downto 0);
b:in STD_LOGIC_VECTOR(31 downto 0);
cin:in STD LOGIC;
sum : out STD_LOGIC_VECTOR(31 downto 0);
cout : out STD LOGIC);
end adder32bit;
architecture Behavioral of adder32bit is
component adderdbit
port (a:in STD_LOGIC_vector(3 downto 0);
b:in STD_LOGIC_vector(3 downto 0); I
cin:in STD_LOGIC;
cout : out STD_LOGIC;
sum : out STD_LOGIC_vector(3 downto 0));
end component; |
for ul,u2,u3,u4,us,u6,u7,u8 : adderdbit ‘
use entity work.adder4bit(Behavioral);
signal t: STD_LOGIC_vector(6 downto 0);
begin
ul : adder4bit port map (a=>a(3 downto 0),b=>b(3 downto 0),
cin=>cin,cout=>t(0),sum=>sum(3 downto 0));
u2 : adder4bit port map (a=>a(7 downto 4),b=>b(7 downto 4),
cin=>t(0),cout=>t(1),sum=>sum(7 downto 4));
u3 : adder4bit port map (a=>a(11 downto 8),b=>b(11 downto 8),
cin=>t(1),cout=>t(2),sum=>sum(11 downto 8));
u4 : adder4bit port map (a=>a(15 downto 12),b=>b(15 downto 12),
cin=>t(2),cout=>t(3),sum=>sum(15 downto 12));
us @ adder4bit port map (a=>a(19 downto 16),b=>b(19 downto 16),
cin=>{(3),cout=>t(4),sum=>sum(19 downto 16));
u6 : adder4bit port map (a=>a(23 downto 20),b=>b(23 downto 20),
cin=>t(4),cout=>t(5),sum=>sum(23 downto 20));
u7 : adder4bit port map (a=>a(27 downto 24),b=>b(27 downto 24),
cin=>t(3),cout=>t(6),sum=>sum(27 downto 24));
u8 : adderdbit port map (a=>a(31 downto 28),b=>b(31 downto 28),
cin=>t(6),cout=>cout,sum=>sum(31 downto 28));
end Behavioral;
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CHAPTER 9
SUBTRACTOR

Subtractor consists of two inputs and two outputs. The outputs in subtractor are
difference bit and a borrow bit. The difference bit is the subtraction of the bits and
borrow is what we have

borrowed from the previous bit.

Like the half-adder, the half-sub can be used to implement a full-sub, shown in Figure 9.1

BOR s

by
E=D

'I BOR -
Figure 9.1 Full subtractor

A B Borin Diff Borrow

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 | 1 1 1

Table 9.1 Truth table of full subtractor
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9.1 Full Subtractor

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity full_subt is
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
cin:in STD LOGIC;
diff : out STD_LOGIC;
bor : out STD_LOGIC);
end full_subt;

architecture Behavioral of full_subt is

begin
process(a,b,cin)

begin

diff <= a xor b xor cin;

bor <= ((not a) and b) or (b and cin) or ((not a) and cin);
end process;

end Behavioral;
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9.2 4 Bit Subtractor

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use [IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity subtdbit is
Port (a:in STD_LOGIC_vector(3 downto 0);
b:in STD_LOGIC_vector(3 downto 0);
cin:in STD_LOGIC;
diff : out STD_LOGIC_vector(3 downto 0);
bor : out STD_LOGIC);
end subt4bit;

architecture Behavioral of subt4bit is
component full _subt
Port (a:in STD LOGIC;
b:in STD LOGIC;
cin:in STD _LOGIC;
diff : out STD_LOGIC;
bor : out STD_LOGIC);
end component ;
for ul,u2,u3,u4 : full_subt
use entity work.full_subt(Behavioral);
signal t: STD_LOGIC_vector(2 downto 0);
begin
ul @ full_subt port map (a=>a(0),b=>b(0),cin=>cin,bor=>t(0),diff=>diff(0));
u2 : full_subt port map (a=>a(1),b=>b(1),cin=>t(0),bor=>t(1),diff=>diff(1));
u3 : full_subt port map (a=>a(2),b=>b(2),cin=>t(1),bor=>t(2),diff=>diff(2));
ud : full_subt port map (a=>a(3),b=>b(3),cin=>t(2),bor=>bor,diff=>diff(3));
end Behavioral;
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9.3 32 Bit Subtractor

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--+- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity subt32bit is -

Port (a:in STD_LOGIC_VECTOR(31 downto 0);
b:in STD_LOGIC_VECTOR(31 downto 0);
cin:in STD LOGIC;
diff : out STD_LOGIC_VECTOR(31 downto 0);
bor : out STD_LOGIC);

end subt32bit;
architecture Behavioral of subt32bit is
component subt4bit "
Port (a:in STD_LOGIC vector(3 downto 0); 'E
b:in STD_LOGIC_vector(3 downto 0); g!

cin:in STD LOGIC;
diff : out STD_LOGIC_vector(3 downto 0); !
bor : out STD LOGIC);
end component;
for ul,u2,u3,u4,u5,u6,u7,u8 : subt4bit
use entity work.subt4bit(Behavioral);
signal t: STD_LOGIC_vector(6 downto 0);
begin
ul :subtdbit port map (a=>a(3 downto 0),b=>b(3 downto 0),
cin=>cin,bor=>t(0),diff=>diff(3 downto 0));
u2 :subtdbit port map (a=>a(7 downto 4),b=>b(7 downto 4),
cin=>t(0),bor=>t(1),diff=>diff(7 downto 4));
u3 :subt4bit port map (a=>a(11 downto 8),b=>b(11 downto 8),
cin=>t(1),bor=>t(2),diff=>diff(11 downto 8));
u4 :subtdbit port map (a=>a(15 downto 12),b=>b(15 downto 12),
cin=>1(2),bor=>1(3),diff=>diff(15 downto 12));
u5 :subt4bit port map (a=>a(19 downto 16),b=>b(19 downto 16),
cin=>t(3),bor=>1(4),diff=>diff(19 downto 16));
u6 :subt4bit port map (a=>a(23 downto 20),b=>b(23 downto 20),
cin=>t(4),bor=>1(5),diff=>diff(23 downto 20));
u7 :subtdbit port map (a=>a(27 downto 24),b=>b(27 downto 24),
cin=>t(5),bor=>t(6),diff=>diff(27 downto 24));
u8 :subtdbit port map (a=>a(31 downto 28),b=>b(31 downto 28),
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cin=>t(6),bor=>bor,dif=>diff(31 downto 28));

end Behavioral;
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CHAPTER 10
LEFT SHIFTER

Shifter consists of one input and it consists of one output. In left shift the output is shifted

to one bit left as compared to the input. After shifting the LSB of the output gets a NULL

value,

For eg. we consider eight bit input

Input is

1 1 0 0 0 1 1
Output is

1 0 0 0 1 1 0

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC UNSIGNED.ALL;

entity Ishift32bit is
Port(a :in std_logic_vector (31 DOWNTO 0);
cin :in std_logic;
b :out std_logic_vector (31 DOWNTO 0));

end Ishift32bit;
architecture Behavioral of Ishift32bit is
begin
process(a,cin)
begin
b(0) <= cin;
b(1) <= a(0);
b(2)<=a(1);
b(3)<=a(2);
b(4)<=a(3);
b(5)<=a(4);
b(6)<=a(5);
b(7)<=a(6);
b(8)<=a(7);
b(9)<=a(8);
b(10)<=a(9);
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b(11)<=a(10);
b(12)<=a(11);
b(13)<=a(12);
b(14)<=a(13);
b(15)<=a(14);
b(16)<=a(15);
b(17)<=a(16);
b(18)<=a(17);
b(19)<=a(18);
b(20)<=a(19);
b(21)<=a(20);
b(22)<=a(21);
b(23)<=a(22);
b(24)<=a(23);
b(25)<=a(24);
b(26)<=a(25);
b(27)<=a(26);
b(28)<=a(27);
b(29)<=a(28);
b(30)<=a(29);
b(31)<=a(30);
end process;
end Behavioral; [
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CHAPTER 11
RIGHT SHIFTER

Shifter consists of one input and it consists of one output. In right shift the output is
shifted to one bit left as compared to the input. After shifiing the MSB of the output gets

a NULL value. For eg we consider eight bit input

Input is

1 1 0 0 0 1 1 0
Output is

0 1 1 0 0 0 1 1
library IEEE;

use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC_ARITH.ALL;

use IEEE.STD LOGIC UNSIGNED.ALL; 0y
entity rshift32bit is i;

Port(a :in std logic vector (31 DOWNTO 0);
cin :in std logic ;
b :out std logic vector (31 DOWNTO 0));

end rshift32bit;
architecture Behavioral of rshift32bit is
begin
process(a,cin)
begin
b(0) <= a(1);
b(1)<=a(2);
b(2)<=a(3);
b(3)<=a(4);
b(4)<=a(5);
b(5)<=a(6);
b(6)<=a(7);
b(7)<=a(8);
b(8)y<=a(9);
b(9)<=a(10);
b(10)<=a(11);
b(11)<=a(12);
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b(12)<=a(13);
b(13)<=a(14);
b(14)<=a(15);
b(15)<=a(16);
b(16)<=a(17);
b(17)<=a(18);
b(18)<=a(19);
b(19)<=a(20);
b(20)<=a(21);
b(21)<=a(22);
b(22)<=a(23);
b(23)<=a(24);
b(24)<=a(25);
b(25)<=a(26);
b(26)<=a(27);
b(27)<=a(28);
b(28)<=a(29);
b(29)<=a(30);
b(30)<=a(31);
b(31)<=cin;
end process;
end Behavioral;
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CHAPTER 12
LEFT ROTATOR

Rotator consists of one input and it consists of one output. In left rotator the output is
shifted to one bit left as compared to the input. The difference between left shift and left
rotate is that in case of left rotator the LSB of the output is equal to the MSB of the input.

For eg we consider eight bit input

Input is
| 1 1 0 0 0 1 1 10
{ Output is
|
1 0 0 0 1 1 0 1
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL; "
use IEEE.STD_LOGIC_UNSIGNED.ALL; i
entity Irot32bit is i

Port(a :in std_logic_vector (31 DOWNTO 0); !
b :out std_logic_vector (31 DOWNTO 0)); , i

end Irot32bit;

architecture Behavioral of Irot32bit is

begin

process(a)
begin
b(0) <=a(31);
b(1) <= a(0);
b(2)<=a(l);
b(3)<=a(2);
b(4)<=a(3);
b(5)<=a(4);
b(6)<=a(5);
b(7)<=a(6);
b(8)<=a(7);
b(9)<=a(8);
b(10)<=a(9);

. b(11)<=a(10);

b(12)<=a(11),
b(13)<=a(12);
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b(14)<=a(13);
b(15)<=a(14);
b(16)<=a(15);
b(17)<=a(16);
b(18)<=a(17);
b(19)<=a(18);
b(20)<=a(19);
b(21)<=a(20);
b(22)<=a(21);
b(23)<=a(22);
b(24)<=a(23);
b(25)<=a(24);
b(26)<=a(25);
b(27)<=a(26),
b(28)<=a(27);
b(29)<=a(28);
b(30)<=a(29),
b(31)<=a(30);
end process;
end Behavioral;
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CHAPTER 13
RIGHT ROTATOR

Rotator consists of one input and it consists of one output. In right rotator the output is

shifted to one bit left as compared to the input. The difference between right shift and

right rotate is that in case of right rotator the MSB of the output is equal to the LSB of the

input. For eg we consider eight bit input

Input is
| 1 1 0 0 0 1 1 0
Output is
0 1 1 0 0 0 1 1
library IEEE;

use [EEE.STD_LOGIC_1164.ALL;
use [EEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD LOGIC_UNSIGNED.ALL;

entity rrot32bit is ﬂ‘
Port(a :in std_logic_vector (31 DOWNTO 0);
b :out std_logic_vector (31 DOWNTO 0));

end rrot32bit;

architecture Behavioral of rrot32bit is

begin

process(a)

begin
b(0) <= a(l);
b(1)<=a(2);
b(2)<=a(3);
b(3)<=a(4);
b(4)<=a(5);
b(5)<=a(6);
b(6)<=a(7);
b(7)<=a(8);
b(8)<=a(9);
b(9)<=a(10);
b(10)<=a(11);
b(11)<=a(12),
b(12)<=a(13);
b(13)<=a(14);
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b(14)<=a(15);
b(15)<=a(16);
b(16)<=a(17);
b(17)<=a(18);
b(18)<=a(19);
b(19)<=a(20);
b(20)<=a(21);
b(21)<=a(22);
b(22)<=a(23);
b(23)<=a(24);
b(24)<=a(25);
b(25)<=a(26);
b(26)<=a(27);
b(27)<=a(28);
b(28)<=a(29);
b(29)<=a(30);
b(30)<=a(31);

b(31)<=a(0);

end process;

end Behavioral;
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CHAPTER 14
AND NAND

A Simple AND and NAND consist of two inputs and one output. NAND can also be
taken as complement of the output of AND.

A B OuUTPUT
0 0 0
| 0 ! 0
1 0 0
! ! I A

Table 14.1: Truth table of AND., ' ’

A B OouTPUT
| 0 0 1
0 1 1
1 0 1
1 1 0

Table 14.2: Truth table of NAND

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use [IEEE.STD_LOGIC_UNSIGNED.ALL;
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entity andnand is
Port (a:in STD LOGIC vector(31 downto 0);
b:in STD LOGIC vector(31 downto 0);
cin:in STD LOGIC;
c:out STD _LOGIC vector(31 downto 0));
end andnand;
architecture Behavioral of andnand is

begin ‘
process(a,b,cin)
begin
if (cin ='0")
then c<=a and b;
else
c<=anandb;
end if;
end process;
end Behavioral;
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; CHAPTER 15
| OR NOR

| A Simple OR and NOR consist of two inputs and one output. NOR can also be taken as
complement of the output of OR.

A B OUTPUT
0 0 0
0 I 1
1 0 1
1 1 1

Table 15.1: Truth table of OR i

A B OUTPUT
0 0 1
0 | 1 0
1 0 0
1 1 0

Table 15.2: Truth table of NOR
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library 1IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD LOGIC UNSIGNED.ALL;

entity ornor is
Port (a:in STD LOGIC vector(31 downto 0);
b:in STD LOGIC vector(31 downto 0);
cin:in STD LOGIC;
c:out STD LOGIC vector(31 downto 0));
end ornor;
architecture Behavioral of ornor is
begin
process(a,b,cin)
begin
if (cin ='0")
thenc<=aorb;
else
c<=anorb;
end if}
end process;
end Behavioral;
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CHAPTER 16
32 BIT ALU

ALU consist of eight functions. The functions which are to be implemented are sclected

by 8:1 multiplexer. The order of the select pins defines the function to be implemented.

Sel(2) Sel(1) Sel(0) Result

0 0 (0 Addition

0 0 1 Subtraction

0 1 0 Left shift

0 | 1 Right shift

1 0 0 Left rotate

1 0 | Right rotate
! I 1 0 If ¢cin=0 and

If cin=1 nand %

| 1 1 1 If ¢in =0 or
If cin=1 nor ff#

Table 16.1: Function table of §:1 multiplexer,

52




library IEEE,

use [IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL,;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM,;

--use UNISIM.VComponents.all;

entity alu is
Port(a :in STD LOGIC_VECTOR(31 downto 0);
b :in STD_LOGIC_VECTOR(31 downto 0);
sel :instd_logic_vector(2 downto 0);
cin : in STD LOGIC;
result : out STD_LOGIC VECTOR(31 downto 0);
cout : out STD_LOGIC;
clk: in STD_LOGIC);
end alu;

architecture Behavioral of alu is

component adder32bit 1
Port(a:in STD LOGIC VECTOR(31 downto 0);
b:in STD LOGIC VECTOR(31 downto 0);
cin :in STD LOGIC;
sum : out STD_LOGIC VECTOR(31 downto 0);
cout : out STD LOGIC);
end component;

for ul : adder32bit
use entity work.adder32bit(Behavioral);

component subt32bit
Port(a:in STD LOGIC VECTOR(31 downto 0);
b:in STD_LOGIC VECTOR(31 downto 0);
cin:in STD LOGIC;
diff : out STD_LOGIC _VECTOR(31 downto 0);
bor: out STD LOGIC);,
end component;

for u2 : subt32bit
use entity work.subt32bit(Behavioral);

component Ishift32bit
Port (a :in std logic_vector (31 DOWNTO 0);
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cin  :in std_logic;
b :out std_logic_vector (31 DOWNTO 0));
end component;

for u3 : Ishift32bit
use entity work.Ishift32bit{(Behavioral);

component rshift32bit
Port(a :in std_logic_vector (31 DOWNTO 0);
cin :in std_logic;
b :out std_logic_vector (31 DOWNTO 0));
end component;

for u4 : rshift32bit
use entity work.rshift32bit(Behavioral);

component lrot32bit
Port(a :in std_logic_vector (31 DOWNTO 0);
b :out std_logic_vector ( 31 DOWNTO 0));
end component;

for u5s : Irot32bit *
use entity work.Irot32bit(Behavioral); Q'H

component rrot32bit | I
Port(a :in std logic vector (31 DOWNTO 0); i
b :out std_logic_vector (31 DOWNTO 0));
end component;

for u6 : rrot32bit
use entity work.rrot32bit(Behavioral),

compenent andnand '
Port(a:in STD_LOGIC_vector(31 downto 0);
b:in STD_LOGIC_vector(31 downto 0);
cin:in STD LOGIC;
¢:out STD_LOGIC vector(31 downto 0));
end component;

for u7 : andnand
use entity work.andnand(Behavioral);

component ormor
Port{a:in STD_LOGIC vector(31 downto 0);

b:in STD_LOGIC vector(31 downto 0);
cin:in STD LOGIC;
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¢ :out STD_LOGIC_vector(31 downto 0));
end component;

for u8 : ornor
use entity work.ornor(Behavioral);

signal ta,tb : std_logic ;
signal t1,12,t3,t4,15,t6,t7,t8: STD_LOGIC_vector(31 downto 0);
begin
ul : adder32bit port map (a=>a,b=>b,cin=>cin,cout=>ta,sum=>t1);
u2 : subt32bit port map (a=>a,b=>b,cin=>cin,bor=>tb,diff=>12);
u3 : Ishift32bit port map (a=>a,cin=>cin,b=>t3);
u4 : 1shift32bit port map (a=>a,cin=>cin,b=>t4);
u5 : Irot32bit port map (a=>a,b=>t5);
u6 : rrot32bit port map (a=>a,b=>t6);
u7 : andnand port map (a=>a,b=>b,cin=>cin,c=>t7);
u8 ! ornor port map (a=>a,b=>b,cin=>cin,c=>t8);

process(sel,clk)

begin
ifclk ="'I"' then
case sel is "
when "000" =>result<=t]; “
cout<=ta; )
when "001" =>result<=t2; _,J’
cout<=tb; '

when "010" =>result<=t3;
when "011" =>result<=t4;
when "100" =>result<=t5;
when "101" =>result<=t6;
when "110" =>result<=t7,
when "111" =>result<=t8;
when others -
=>result<="00000000000000000000000000000000";
end case;
end if;
end process;
end Behavioral;
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Figure 16.17: Schematic view of And Nand
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Figure 16.18: Single unit of And Nand.

cin

[\ r\ﬁ\j}
_—/ U__/ c(3)
xor0000(3) AND2B! OR?

T

)
AND2B1

Figure 16.19: Schematic view of Or Nor
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CONCLUSION

The results of the simulation matched the required criteria, and, in fact, the output of the
“32 BIT ALU”. Project was consistent with the expected output; in other words, “32 BIT
ALU” project worked properly. All of the possible input and output combinations were
simulated and tested, and no error was encountered; therefore the “32 BIT ALU” project

is ready for a further implementation,
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