
 

 

Enhancing Ad Relevance using Data Mining and Ad 

Profiling 

 

 

A major project report submitted in partial fulfilment of therequirementfor 

the award of degree of 

 

Bachelor of Technology 

in 

Computer Science & Engineering / Information Technology 

       

Submitted by 

Akshit Kumar (201569) 

 

Under the guidance & supervision of 

Dr. Pankaj Dhiman 

 

 

 

 

 

 

 

Department of Computer Science & Engineering and 

Information Technology 

 



 
 

 

Jaypee University of Information Technology, Waknaghat, 

Solan - 173234 (India) 

Candidate’s Declaration 

We hereby declare that the work presented in this report entitled ‘Enhancing Ad Relevance 

using Data Mining and Ad Profiling’ in partial fulfillment of the requirements for the award 

of the degree of Bachelor of Technology in Computer Science & Engineering/Information 

Technology submitted in the Department of Computer Science & Engineering and 

Information Technology, Jaypee University of Information Technology, Waknaghat is an 

authentic record of my own work under the supervision of Dr. Pankaj Dhiman (Assistant 

Professor(SG), Department of Computer Science & Engineering and Information 

Technology). 

 

The matter embodied in the report has not been submitted for the award of any other degree or 

diploma. 

 

 

(Student Signature with Date)     

Student Name: Akshit Kumar      

Roll No.: 201569       

 

This is to certify that the above statement made by the candidate is true to the best of my 

knowledge. 

 

(Supervisor Signature with Date) 

Supervisor Name: Dr. Pankaj Dhiman 

Designation: Assistant Professor(SG)  

Department: Computer Science & Engineering and Information Technology 

Dated: 

  



 
 

 

Acknowledgment 

 

First and foremost, I want to express my profound thanks and admiration to the all-powerful 

God for the heavenly gift that has allowed us to continue the project work successfully. My 

sincere appreciation and responsibilities are owed to Dr.Shubham Goel, my Computer Science 

and Engineering Department supervisor at Jaypee University of Information Technology in 

Wakhnaghat. My supervisor has extensive expertise and a strong interest in deep learning, 

which will be invaluable as we conduct this research. We owe the completion of this project to 

his boundless patience, intellectual direction, encouragement, vigorous supervision, 

constructive criticism, helpful counsel, reading of several mediocre draughts and corrections at 

every level, and so on. In addition, I express my deepest gratitude to everyone who has helped 

me in any way, whether directly or indirectly, to ensure the success of our project. Considering 

the specifics of the case, I want to express my gratitude to the numerous members of the staff, 

both teaching and non-teaching, who have provided me with helpful assistance and made my 

pursuit possible. Lastly, thank our parents for their ongoing assistance and patience.  

 

Akshit Kumar(201596) 

  



 
 

 

Table of Content 

 

Title                                                                                                            

 

i. Cover Page 

 

ii. Certificate 

 

iii. Declaration 

 

iv. Acknowledgement 

 

vi. List of Tables 

 

vii. List of Figures 

 

viii. List of Abbreviations, Symbols or Nomenclature 

 

ix. Abstract 

 

 

 

 

 

 

 



 
 

 

x. Chapter 1: Introduction                                                                         Page No. 

1.1 INTRODUCTION                                                                                      1. 

1.2 PROBLEM STATEMENT                                                                         3. 

1.3 OBJECTIVES                                                                                             3. 

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT WORK       5. 

 

xi. Chapter 2: Literature Survey 

2.1 OVERVIEW OF LITERATURE REVIEW                                                6. 

2.2 KEY GAPS OF LITERATURE SURVEY 

 

xii. Chapter 3: System Development                                                                 9. 

4.1 Existing system 

4.1.1 Disadvantages of existing system 

4.2 Proposed system                                                                                          10. 

4.2.1 Advantages of proposed system 

4.3 Functional requirements                                                                              11. 

4.4 Non-Functional requirements System design 

5.1 System architecture                                                                                     12. 

5.2 UML diagrams Implementation                                                                  14. 

6.1 Modules 

6.2 Sample code                                                                                                 26. 

 

 

 

 

 

 



 
 

 

xiii. Chapter 4: Testing 

4.1 TESTING STRATEGY                                                                            45. 

4.2 TEST CASES AND OUTCOMES                                                           46. 

 

xiv. Chapter 5: Results and Evaluation                                                           47. 

5.1 RESULTS 

 

xv. Chapter 6: Conclusions and Future Scope                                                 53. 

6.1 CONCLUSION                                                                                           

6.2 FUTURE SCOPE 

 

xvi. References                                                                                                54. 

 

xviii.Appendix 

List of Tables 

 

Sr No.                             Title                       Page  no. 

 

1.                    Literature Review                         6. 

 

 

 

 

 

 

 

 



 
 

 

List of Figures 

 

Sr No.                             Title                       Page  no. 
 

1.                    System Architecture                      12. 
 

2.                    Use Case Diagram                         15. 
 

3.                    Class Diagram                               16. 
 

4.                    Activity Diagram                           17. 
 

5.                    Sequence Diagram                        18. 
 

6.                    Collaboration Diagram                  19. 
 

7.                    Component Diagram                     20. 
 

8.                    Deployment Diagram                    21. 
  



 
 

 

Abstract 

 

Digital advertising is a dynamic landscape, and despite this fact, ensuring ad 

relevance to the user remains a challenge. The online web industry relies on the 

keywords the advertisers assign to find the target audience for the ads; however, 

while efficient enough, this technique has limitations, particularly concerning ad 

relevance to the content and the user targeted. 

 

 This project deals with the problem of keyword mismatching, exploring the 

impact of broad match keywords, negative keywords and keyword synonyms on 

the overall relevance of ads on the internet. The project aimed to address these 

challenges with the help of web content mining, Optical Character Recognition 

(OCR) and image classification. Using these techniques, the project aims to get 

ads related to the content on the web page, generating tags for ads and assigning 

them to the web page according to the content’s relevance to the topic presented . 

 

For ads and digital marketing leaders, this project aims to improve the average 

click rate (CR) on the ads, leading towards growth of the digital marketing 

industry and free content available on the internet. For those in the ad world, we 

wrap things up with practical tips to make ads more spot-on. The goal isn’t just 

quick fixes but also encouraging more research and progress in the digital 

advertising game. Advertisers can create a stronger bond with the right audience 

in the always-changing online scene by trying these methods and refining 

strategies.  



 
 

1 

 

Chapter 1:Introduction 

 
1.1 INTRODUCTION 

 

 

The online landscape is an ever-expansive realm of information and connectivity 

in the digital age. As the internet continues evolving, so does how advertisers 

strive to reach their audiences effectively. In this era of ubiquitous online content 

and digital advertising, the challenge remains: how can advertisers ensure their 

messages resonate with and engage their intended viewers in a meaningful and 

relevant manner? Advertising can be broadly categorized into two primary types: 

textual advertising, which features text snippets that resemble the content of a 

web page, and graphical advertising, where ads are visually presented in various 

formats and sizes. The classification of graphic ads often relies on keyword 

targeting, where advertisers choose relevant keywords for their image ads. The 

ad is presented when a user’s search query or web page content aligns with these 

keywords.  

 

However, this approach can be problematic as a single keyword mismatch can 

lead to the display of irrelevant ads. Several common errors that can lead to such 

situations include Overly Broad Keywords. As Mayer et al. (2018) highlighted, 

comprehensive keywords can lead to ads appearing in contexts that are only 

loosely related to the advertiser’s intended topic. The classic example is the 

keyword “apple,” which, when used broadly, might result in ad placements in 

fruit and technology-related searches. This practice risks ad irrelevance and 

inefficient resource allocation. Lack of Negative Keywords, Chen and Gao 

(2015) emphasized the significance of specifying negative keywords to exclude 

terms or phrases that shouldn’t trigger an ad. The absence of negative keywords 

can result in ad displays in unrelated searches or content, diminishing the 

precision of ad targeting and relevance to the audience. Match Type Variations, 

the choice of match types explored by Smith and Johnson (2019), play a critical 

role in determining the relevance of ad displays. The difference between exact 

match and phrase match can lead to overly narrow or overly broad ad 

placements, impacting the accuracy of ad relevance. Keyword synonyms, as 

discussed by the same authors, introduce complexities in ad targeting. Ad 

networks may interpret synonymous or closely related terms as matching 

keywords. 

 

 



 
 

2 

 

This can lead to ad displays in unexpected contexts, potentially causing 

confusion and ad irrelevance. Misspellings and Typos In the case of 

misspellingsand typos, Kovacs and Smith (2017) demonstrated that failing to 

include common variations of keywords may lead to missed opportunities for 

relevant ad displays. Conversely, ads may be shown for unrelated searches due to 

incorrectly spelt keywords. Homographs and Polysemous Words Homographs 

and polysemous words pose another challenge, as different meanings in various 

contexts can trigger ad displays that lack relevance due to their failure to 

consider the context.  

 

The user’s intent is often ambiguous, making the interpretation of keywords 

difficult. Keyword Overload Keyword overload, characterized by an excess of 

keywords in a single ad group, can overwhelm ad platforms, as highlighted by 

Zhang et al. (2018). When there are too many keywords, it becomes challenging 

to match them effectively with relevant content, leading to ad displays in 

contexts unrelated to any of the keywords. Lack of Location Targeting, failure to 

include location-specific modifiers or targeting, as discussed by Li and Wang 

(2020), can result in ad displays in locations that are not relevant to the 

advertiser’s target audience. Location-specific ad targeting is crucial for ensuring 

ad relevance and efficiency. Language Mismatches: using keywords in a 

language different from the targeted audience or content language can lead to 

irrelevant ad displays.  

 

The alignment of keywords with the audience’s language and content is vital for 

ad relevance and engagement. Irrelevant Broad Keywords, using overly general 

or irrelevant keywords to capture a broad audience, as observed by Chen and 

Gao (2015), can result in ad displays in contexts that are not directly related to 

the advertiser’s offerings, diminishing the quality of ad relevance. 

  



 
 

3 

 

1.2 PROBLEM STATEMENT 

 

1.2.1 Online advertisements often lack relevance due to limited 

integration of user behavior and content features, resulting in 

inefficient targeting and reduced user engagement. 

1.2.2 Existing models for ad personalization are limited in capturing 

complex relationships between user preferences and ad content, 

leading to suboptimal recommendations. 

1.2.3 Irrelevant advertisements affect users by causing frustration and 

disengagement, while advertisers face reduced click-through rates 

and diminished returns on investment. 

1.2.4 Poor ad relevance leads to decreased user trust, reduced brand 

visibility, and wasted advertising resources, ultimately impacting 

digital marketing effectiveness. 

1.2.5 We propose leveraging Web Content Mining and User Profiling 

with machine learning techniques to build a robust predictive model 

for improving ad relevance and user engagement. 

 

1.3 OBJECTIVES 

 

The successful implementation of this project is anticipated to yield the 

following outcomes:  

 

1.3.1 Improved User Experience: 

 

 Users will be presented with ads that resonate with their preferences 

and the content they are engaging with, resulting in a more positive 

browsing experience.  

 

1.3.2 Enhanced Brand Perception:  

 

Brands benefit from increased relevance and alignment, avoiding 

uncomfortable situations and potential user backlash.  



 
 

4 

 

 

1.3.3 Higher Engagement:  

 

Contextually relevant Advertisements are more likely to be clicked on, 

leading to higher engagement rates and improved campaign 

performance.  

 

1.3.4 To Develop a Robust Web Page Classification Model  

 

1.3.5 To Implement Advertisement Profiling using Machine Learning  

 

1.3.5 Devise Advanced Matching Algorithms The primary objective of 

this project is to enhance the relevance of digital advertisements by 

developing a comprehensive system that leverages advanced web page 

classification techniques and ad profiling. 

 

 

  



 
 

5 

 

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT WORK 

 

In this ever-evolving digital marketing landscape, the primary goal is 

clear: crafting ads that authentically resonate with users. Success in the 

online arena often hinges on advertisers strategically utilizing keywords 

to target their desired audience. However, this method faces obstacles 

despite its efficiency, particularly in seamlessly aligning ads with 

content and user preferences. 

 

 Enter our project—a purpose-driven journey to unravel the intricacies 

of keyword mismatches. We delve into the repercussions of employing 

broad match keywords, capitalizing on negative keywords, and 

exploring synonymous alternatives. For the leaders in advertising and 

the architects of digital marketing, imagine a rise in the average click 

rate (CR).  

 

A surge that not only propels the digital marketing industry forward but 

also strengthens the foundation of free content available on the internet. 

This project serves as a catalyst for change, a spark igniting 

transformation in the vast online cosmos. To our colleagues in the 

advertising world, we offer not just quick fixes but an invitation to 

embark on an innovative journey. Envision a landscape where 

advertisers forge unbreakable connections with precisely the right 

audience, a realm where strategies evolve and refine with each passing 

moment in the online narrative. 

  



 
 

6 

 

Chapter 2: Literature Survey 

 

 
S. 

No. 

Paper Title Journal/ 

Confere

nce  

Year 

Tools/ 

Techniques/ 

Dataset 

Results Limitations      

 

 

 

1. Comparing 

Image 

Captioning 

Techniques 

Using 

Deep 

Learning 

Models, 

 

Mat 

Journals 

2023 

CNN, RNN, 

ResNet, LSTM 

Work more 

Efficiently when 

running the model 

using GPU, CNN 

for encoding and 

RNN for decoding. 

It requires a 

lot of 

storage for 

download. 

2. Effective Web 

Scraping for 

Data Science 

by Victor 

Ashioya 

Data 

Science 

andArtifi

cial 

Intellige

nce 

Conferen

ce 

2023 

Beautiful Soup, 

Scrappy, and 

Selenium 

Dataextracted: 

country, 

name, energy source, 

population 

No other 

methodolog

ies were 

compared, 

direct 

approach. 

 

 

 

  



 
 

7 

 

3. Scrapping 

Relevant Images 

from WebPages 

Without 

download, 

by Erdin 

c Uzun,1559 

1131/2023/88 

ART, 

https://doi.org 

/10.1145/361 

6849 

 

ACM 

2023 

TC Approach, 

SVM, KNN, 

Decision Trees, 

Random 

Forest, 

Ada Boost. 

A semi-

automatic 

approach for 

web data 

extraction. 

The 

complex 

algorithm 

requires a 

bit 

extra run 

time 

4. Machine learning 

and artificial 

intelligence use in 

marketing: a 

general taxonomy 

2022:439457 

https://doi.org/10.1 

007/s43039022 

00057 w 

Italian Journal 

of 

Marketing 

(2022) 

Various ML 

and 

AI algorithms, 

Description of 

the 

effect of the 

use 

of ML and AI 

in marketing 

Improve 

shopping 

fundamentals, 

improve 

consumption 

experience, 

Improved 

decision 

making 

No 

practical 

data, all 

theoretical 

knowledge. 

5. Lotfi, Chaimaa Sr 

Srinivasan,Swetha 

Ertz,Myriam Latr 

ousImen.(2021) 

Web Scraping 

Techniques and 

Applications. 

10.52458/978 

93 91842 086 38 

SCRS 

CONFERENC 

E 

PROCEEDIN 

GS ON 

INTELLIGEN 

T SYSTEMS 

2021 

Web Crawlers, 

Web scraping 

parsers, Hidden 

crawlers, 

Simple 

HTML parsers, 

in-built parsers 

like inChrome 

and Firefox 

By comparing 

the 

performance, 

Scrappy 

provided 

better 

results. 

Cannot by 

pass 

Security 

measures 

that 

prevent 

web 

scrapping. 

 

 

  



 
 

8 

 

6. Website 

categorization: A 

formal approach 

and robustness 

analysis in the 

case of 

e-commerce 

detection, 

https://doi.org 

/10.1016/j.e 

swa.2019.11 

3001 

ELSE

VIER 

2020 

Decision trees, 

Support vector, 

neural networks, 

and more 

advanced 

techniques like 

convolution 

neural networks 

(CNNs)or 

Recurrent neural 

networks 

(RNNs). 

Scalability, 

Deployment and 

ethical 

considerations 

are also vital 

aspects of a 

website 

categorization 

system. 

Categorization

only done 

fore-commerce 

websites, 

which 

are limited in 

number. 

7. Phishing Website 

Classification and 

Detection Using 

Machine 

Learning, 

10.1109/ICC 

CI48352.202 

0.9104161 

IEEE 

Xplore 

2020 

Lexical analysis 

of URL malicious 

URL 

classification and 

detection 

Phishing website 

Classification. 

Created a 

model 

that detects 

phishing 

websites 

accurately. 

Need access 

to hardware 

settings, which 

is 

considered a 

security breach 

8. Identifying 

machine earning 

Techniques for 

Classification of 

target advertising, 

https://doi.or 

g/10.1016/j.icte.01

2 

ICT 

Expres

s 

journal 

2020 

Behavioral 

targeting, User 

profiling, 

Contextual 

advertising, 

Real-time 

bidding, 

Click fraud 

Targeted 

online 

advertising 

strategies 

are identified 

and classified into 

two broad 

categories, user-

centric 

and  content-

centric 

approaches. 

No Data to 

justify the 

statement. 

 

 

  

https://doi.org/


 
 

9 

 

  

Chapter 3: System Development 
 

3.EXISTING SYSTEM: 

 

The existing system for ad relevance prediction primarily relies on traditional 

machine learning algorithms, such as Logistic Regression, Decision Tree, K-

Nearest Neighbors (KNN), Support Vector Machine (SVM), and Gaussian Naive 

Bayes (NB). These algorithms work by analyzing user behavior data, such as 

demographics, browsing patterns, and past interactions, to predict the likelihood 

of ad clicks. However, these models are often limited in their ability to capture 

complex, non-linear relationships in large and diverse datasets, and they may 

struggle to provide highly accurate predictions for dynamic user behavior. 

Furthermore, the lack of ensemble methods in the existing system results in less 

robust performance and reduced accuracy. While these algorithms can still offer 

basic predictions, the existing system lacks advanced techniques like boosting 

and voting classifiers, which could significantly improve model performance by 

combining multiple weak learners for more accurate and generalized predictions, 

leading to better ad relevance and user engagement. 

 

 

3.1.1 DISADVANTAGES OF EXISTING SYSTEM: 

1. The existing system primarily relies on basic machine learning algorithms, 

which struggle to model complex, non-linear relationships within large 

and diverse datasets, limiting its ability to provide highly accurate 

predictions for dynamic user behavior. 

2. Traditional algorithms like Logistic Regression and Decision Trees may 

fail to capture intricate patterns in user interactions with ads, resulting in 

reduced ad relevance and engagement, especially in cases with complex or 

evolving user behavior. 

3. The absence of ensemble techniques in the existing system means it lacks 

the robustness of combined model predictions, which can lead to reduced 

accuracy and lower reliability when predicting user preferences for ad 

clicks. 

4. Existing methods often underperform when handling real-world data with 

diverse features, making it difficult to accurately target ads, impacting user 

satisfaction and diminishing the effectiveness of ad delivery strategies. 

 

 



 
 

10 

 

 

3.2 Proposed System: 

 

 

proposed system aims to enhance advertisement relevance by leveraging Web 

Content Mining and User Profiling to predict user preferences accurately. The 

Clicked Ads Dataset is utilized to analyze user behavior and ad interaction 

patterns. The system implements multiple machine learning algorithms, 

including Logistic Regression, Decision Tree, Multi-Layer Perceptron (MLP), 

Random Forest, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), 

and Gaussian Naïve Bayes (NB). To further improve performance, an ensemble 

approach is applied, combining the strengths of individual models. Specifically, a 

Voting Classifier is employed, integrating Adaboost and ExtraTree classifiers to 

produce a robust and accurate final prediction. By capturing complex 

relationships between user behavior and ad content, the system ensures better 

personalization, higher engagement, and improved targeting accuracy. This 

comprehensive approach leverages advanced predictive techniques to optimize 

ad delivery, ultimately enhancing user satisfaction and maximizing advertising 

effectiveness. 

 

3.2.1 Advantages of proposed system: 

1. The proposed system utilizes Web Content Mining and User Profiling to 

capture complex patterns, improving prediction accuracy by analyzing 

user behavior and ad interaction, thus providing more personalized and 

relevant ad targeting. 

2. By implementing multiple advanced machine learning algorithms and 

ensemble techniques, the system is capable of generating more robust, 

generalized predictions, enhancing the accuracy and effectiveness of ad 

relevance predictions. 

3. The use of a Voting Classifier combining Adaboost and ExtraTree 

classifiers improves model performance by leveraging the strengths of 

individual models, leading to a more precise and reliable final prediction. 

4. The system’s ability to capture intricate relationships between user 

behavior and ad content ensures better targeting, higher user engagement, 

and ultimately enhances the efficiency of ad delivery, maximizing overall 

advertising effectiveness. 

 

 

 

 



 
 

11 

 

 

3.3 FUNCTIONAL REQUIREMENTS 

 

1. Data Collection 

2. Pre-processing 

3. Training and Testing 

4. Modelling  

5. Predicting 

 

3.4 NON FUNCTIONALREQUIREMENTS 

 

Scalability 

 

The system should be capable of handling large-scale datasets, ensuring seamless 

operation and quick processing times as the volume of data, such as user 

interactions and ad clicks, increases over time. 

 

Performance 

 

The system must provide fast prediction times for ad relevance, ensuring 

minimal latency when delivering personalized ads, even with complex models 

and large datasets, to enhance the user experience. 

 

Accuracy 

 

The system should consistently produce highly accurate predictions regarding ad 

relevance, ensuring that personalized ads align closely with user preferences, 

improving user engagement and satisfaction. 

 

Usability 

 

The system should be user-friendly, with an intuitive interface for stakeholders to 

easily interact with the ad personalization engine, monitor model performance, 

and adjust parameters without technical expertise. 

 

Security 

 

The system must ensure the confidentiality and integrity of user data, including 

behavioral and demographic information, adhering to privacy regulations and 

best practices to protect sensitive information from unauthorized access. 



 
 

12 

 

 

 

4.      SYSTEM ARCHITECTURE 

 

 
 

Fig.4.1.1 System architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

13 

 

 

DATA FLOW DIAGRAM: 

 

The Data Flow Diagram (DFD) for the ad relevance system begins with the input 

of user data, including behavioral patterns, demographics, and ad interaction 

details. This data is processed by the user profiling module, which analyzes and 

categorizes user preferences. Simultaneously, content-based features from 

advertisements are extracted and mapped to the user profiles to identify potential 

relevance. The system then employs a set of predictive models that process this 

integrated data to generate ad relevance predictions. These predictions are sent to 

the ad delivery engine, which selects the most relevant advertisements for the 

user based on the output. The feedback loop collects user interaction data (e.g., 

clicks, views) to continuously refine and optimize the models. This entire process 

is monitored and managed by the control module, ensuring the smooth flow of 

data and system operations. Data storage handles the collected datasets and user 

profiles, supporting continuous learning and model improvements over time. 

 

Goals: 

5. To collect and preprocess user data, including behavioral patterns and 

demographic information, ensuring the system has accurate and up-to-date 

information for ad relevance prediction. 

6. To integrate content-based features of advertisements with user profiles, 

enabling the system to match ads to individual user preferences 

effectively. 

7. To generate accurate ad relevance predictions using advanced machine 

learning models, ensuring that personalized ads are aligned with user 

interests. 

8. To deliver the most relevant ads to users in real-time, ensuring high 

engagement rates and a seamless user experience with minimal latency. 

9. To continuously improve the ad relevance prediction models by collecting 

feedback data from user interactions, enabling the system to adapt and 

optimize over time. 

 

 

 

 

 

 

 

 



 
 

14 

 

 

4.2 UML DIAGRAMS 

 

The UML diagram for the ad relevance system represents the interactions 

between key components. The user interacts with the system, providing 

behavioral and demographic data, which is processed by the User Profiling 

module. This module analyzes the user data and creates a profile. 

Simultaneously, advertisements' content features are extracted by the Ad Content 

module and mapped to the user profile. The Ad Prediction Engine then processes 

this integrated data and generates ad relevance scores. These scores are passed to 

the Ad Delivery module, which selects and delivers the most relevant ads to the 

user. Feedback from user interactions, such as clicks or views, is sent back to the 

system, allowing the prediction models to adapt and improve. All data is stored 

in a centralized database for continuous learning and optimization. The system is 

controlled and monitored by a central Management module, ensuring smooth 

operations and data flow throughout the process. 

 

Goals of UML: 

 

To visually represent the system’s components, including user profiles, ad 

content, and prediction modules, providing a clear understanding of their 

interactions and relationships. 

To model the flow of data between modules, ensuring accurate and efficient ad 

relevance prediction and delivery to users. 

To define the role of the feedback loop, enabling continuous learning and model 

optimization based on user interactions, improving ad relevance over time. 

To ensure system scalability by outlining how new modules or features can be 

integrated into the existing architecture without disrupting overall functionality. 

To provide a blueprint for developers and stakeholders to understand the 

structure of the system, facilitating collaboration and ensuring proper 

implementation. 

To aid in the identification of potential bottlenecks or inefficiencies in the 

system’s data flow, helping improve performance and user experience. 

 

 

 

 

 

 

 



 
 

15 

 

 

Use Case Diagram 

 

The use case diagram illustrates the interactions between users and the system 

components. Key actors, such as the user and the system administrator, are 

depicted, with use cases such as providing data, receiving ad recommendations, 

and updating profiles. These use cases reflect how users interact with the ad 

relevance system, including data input, feedback, and ad delivery, ensuring 

seamless personalization of advertisements. 

 

 
 

 

 

 

 

 

 

 



 
 

16 

 

 

Class Diagram 

 

The class diagram defines the structure of the system by showing the classes and 

their relationships. Core classes include User Profile, Ad Content, Prediction 

Engine, and Feedback Loop. Each class has attributes and methods relevant to its 

function, with associations indicating data flow and interactions between them. 

The diagram helps visualize how data is organized and processed within the 

system. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

17 

 

 

Activity Diagram 

 

The activity diagram illustrates the flow of actions from data collection to ad 

delivery. It shows the process from gathering user data, integrating it with ad 

content, predicting relevance, and delivering personalized ads. Feedback is 

collected for system improvement. Each activity is represented sequentially, 

highlighting decision points and flow control. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

18 

 

 

Sequence Diagram 

 

The sequence diagram outlines the order of interactions between system 

components during ad delivery. It tracks the sequence from user data input, 

profile creation, ad relevance prediction, to the final delivery of ads. The diagram 

shows the time-based flow and message exchanges between modules, ensuring 

an efficient process. 

 
 

 

 

 

 

 

 

 

 

 



 
 

19 

 

 

Collaboration Diagram 

 

The collaboration diagram represents the system's components and their 

interactions in terms of messages. It highlights how the User Profile, Ad Content, 

and Prediction Engine modules collaborate to process data and deliver 

personalized ads. The diagram visualizes how components work together in an 

efficient, coordinated manner to achieve the system’s objectives. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

20 

 

 

Component Diagram 

 

The component diagram depicts the system's modular structure, showing the 

major components and their dependencies. Components such as User Profile 

Manager, Ad Prediction Module, and Feedback Handler are displayed along with 

their interfaces, indicating how they interact to produce the final ad relevance 

predictions and ensure continuous model optimization. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

21 

 

 

Deployment Diagram 

 

The deployment diagram illustrates the physical distribution of system 

components across servers and devices. It shows how the database, application 

server, and user interface interact in the cloud or on-premise environment. This 

diagram ensures proper configuration of hardware resources to support efficient 

ad relevance processing and delivery. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

22 

 

 

5. IMPLEMENTATION MODULES: 

 

Dataset loading: The Clicked Ads Dataset is loaded into the system, ensuring 

that all necessary features such as user interactions, demographics, and ad 

content are properly imported for further analysis and processing. 

 

Data Processing: Duplicate entries in the dataset are identified and removed 

to ensure data integrity, maintaining only unique user interactions and ad 

clicks, which helps in improving model accuracy and performance. 

 

Visualization: The dataset is visualized using various charts and graphs to 

better understand patterns in user behavior, ad interactions, and key features. 

This helps identify trends and relationships for model development. 

 

Split the Data into Train & Test:The dataset is split into training and testing 

sets, with a predefined ratio (e.g., 80/20), ensuring that the model is trained on 

one portion while being evaluated on another to assess performance. 

 

Model generation:Model building - Logistic Regression - Decision Tree - 

MLP - Random Forest - KNN - SVM - Gaussian NB - Voting Classifier ( 

Adaboost + Extra Tree classifier). Performance evaluation metrics for each 

algorithm is calculated. 

 

User signup & login: Using this module will get registration and login 

 

User input: Using this module will give input for prediction 

 

Prediction: final predicted displayed 

 

Extension: 

Extension involves applying ensemble methods like Voting Classifier (Adaboost 

+ Extra Tree) for improved accuracy, and building a front-end using Flask for 

user testing and authentication. 

 

 

 

 

 

 



 
 

23 

 

 

Advantages: 

 

1. The ensemble method combines multiple models, leveraging their 

strengths to produce a more robust and accurate prediction, enhancing the 

overall ad relevance performance. 

2. Voting Classifier improves model accuracy by integrating the outputs of 

different classifiers, ensuring better generalization across diverse user 

behavior patterns and ad content types. 

3. Building a front-end using Flask allows real-time user testing, providing 

an intuitive interface for interaction with the system, enabling immediate 

feedback and engagement for continuous improvement. 

4. User authentication ensures secure access to the system, protecting 

sensitive user data and enhancing the trustworthiness of the ad relevance 

platform, ensuring privacy compliance and user confidence. 

 

Algorithms: 

 

Logistic Regression: 

 

Logistic Regression is a statistical method used for binary classification. It 

models the probability of a binary outcome based on input features using a 

logistic function. In this context, it predicts whether a user will click on an ad or 

not based on their profile and behavior. It’s efficient for linear relationships and 

provides probability scores, making it useful for classification tasks where a 

decision threshold can be applied. 

 

Decision Tree: 

 

A Decision Tree is a tree-like model used for classification and regression tasks. 

It splits data into subsets based on feature values, creating a series of decision 

rules. In this context, it classifies user interactions by evaluating features such as 

demographics and ad type. The model's interpretability is its main advantage, as 

it visualizes decision-making steps, making it easy to understand and debug the 

ad relevance prediction process. 

 

 

 

 

 



 
 

24 

 

 

MLP (Multilayer Perceptron): 

 

Multilayer Perceptron (MLP) is a type of neural network consisting of multiple 

layers of neurons, each layer fully connected to the next. It can capture non-

linear relationships and complex patterns in data. In this context, MLP is used to 

predict ad relevance by processing features through its layers, learning intricate 

patterns from user interaction data. Its ability to handle non-linear data 

relationships enhances the accuracy of the ad relevance predictions. 

 

Random Forest: 

 

Random Forest is an ensemble learning method that constructs multiple decision 

trees and merges their outputs to improve prediction accuracy. It reduces 

overfitting by averaging the results from many trees. In this context, Random 

Forest is used to predict ad relevance by aggregating decisions from several 

trees, each trained on different data subsets. It handles both numerical and 

categorical data effectively, providing high accuracy and robustness in real-time 

ad delivery. 

 

KNN (K-Nearest Neighbors): 

 

K-Nearest Neighbors (KNN) is a simple, instance-based learning algorithm that 

classifies a data point based on the majority class of its k-nearest neighbors in the 

feature space. In this context, KNN is used to classify ad relevance by comparing 

a user's behavior and preferences with similar users. It is effective for high-

dimensional data and provides intuitive predictions, but its performance can 

degrade with large datasets due to its reliance on distance calculations. 

 

SVM (Support Vector Machine): 

 

Support Vector Machine (SVM) is a supervised machine learning algorithm used 

for classification and regression tasks. It constructs hyperplanes in a high-

dimensional space to separate classes of data. In this context, SVM is employed 

to classify whether a user will interact with a given ad based on features like 

demographics and behavior. SVM is effective in handling high-dimensional 

spaces and is particularly useful for complex decision boundaries between 

classes, such as ad relevance. 

 

 



 
 

25 

 

 

Gaussian NB (Naive Bayes): 

 

Gaussian Naive Bayes (Gaussian NB) is a probabilistic classifier based on Bayes' 

theorem and assumes features are conditionally independent given the class. It 

uses Gaussian distributions for continuous features. In this context, Gaussian NB 

is applied to predict the probability of ad relevance, where each feature (like user 

behavior or ad type) follows a Gaussian distribution. It is fast and efficient, 

especially with large datasets, though it may not capture complex relationships 

between features. 

 

 

 

 

 

Voting Classifier (Adaboost + Extra Tree): 

 

Voting Classifier is an ensemble method that combines the predictions of 

multiple classifiers to make a final decision based on majority voting or weighted 

votes. In this case, Adaboost and Extra Tree classifiers are combined. Adaboost 

increases weak classifier performance by focusing on misclassified instances, 

while Extra Tree is an unpruned decision tree model. Together, they provide a 

robust prediction for ad relevance by leveraging their diverse strengths, 

improving accuracy and reducing bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 SAMPLE CODE: 

 

# Data Processing 

import numpy as np 

import pandas as pd 

import datetime as dt 

 

# Data Visualizing 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

import matplotlib.gridspec as gridspec 

from matplotlib.ticker import MaxNLocator 

from IPython.display import display, HTML 

import plotly.express as px 

import plotly.graph_objs as go 

from IPython.display import display, HTML 

from IPython.display import Image 

 

# Data Clustering 

from mlxtend.frequent_patterns import apriori# Data pattern exploration 

from mlxtend.frequent_patterns import association_rules# Association rules 

conversion 

 

# Data Modeling 



 
 

27 

 

from sklearn.ensemble import RandomForestRegressor 

 

# Math 

from scipy import stats  # Computing the t and p values using scipy 

from statsmodels.stats import weightstats 

 

# Warning Removal 

import warnings 

def ignore_warn(*args, **kwargs): 

    pass 

warnings.warn = ignore_warn#ignore annoying warning (from sklearn and 

seaborn) 

# https://stackoverflow.com/questions/22216076/unicodedecodeerror-utf8-

codec-cant-decode-byte-0xa5-in-position-0-invalid-s/50538501#50538501 

df = pd.read_csv('../input/ecommerce-data/data.csv', encoding= 'unicode_escape') 

In [100]: 

linkcode 

df 

df.describe() 

df.info() 

df.columns 

print(df.duplicated().sum()) 

df.drop_duplicates(inplace = True) 

# https://stackoverflow.com/questions/574730/python-how-to-ignore-an-

exception-and-proceed/575711#575711 

# https://stackoverflow.com/questions/59127458/pandas-fillna-using-groupby-

and-mode 

def cleaning_description(df): 

    try:  

        return df.mode()[0] # df.mode().iloc[0] 

    except Exception: 

        return 'unknown' 

 

df[['StockCode', 'Description']] = df[['StockCode', 

'Description']].fillna(df[['StockCode', 

'Description']].groupby('StockCode').transform(cleaning_description)) 

 

# Cleaning Description field for proper aggregation 

df['Description'] = df['Description'].str.strip().copy() 

def clean_InvoiceNo(InvoiceNo):     



 
 

28 

 

    if InvoiceNo[0] == 'C': 

        return InvoiceNo.replace(InvoiceNo[0], '') 

    else: 

        return InvoiceNo 

df['InvoiceNo'] = df['InvoiceNo'].apply(clean_InvoiceNo) 

# Plot Quantity 

plt.figure(constrained_layout=True, figsize=(12, 5)) 

sns.boxplot(df['Quantity']) 

 

# remove outliers for Quantity 

df = df[(df['Quantity'] < 15000) & (df['Quantity'] > -15000)] 

# Change datatype of InvoiceDate as datetime type 

df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate']) 

# df['date'] = pd.to_datetime(df['InvoiceDate'], utc=False) 

# df['date'].dtypes 

 

# Create new features 

df['date'] = df['InvoiceDate'].dt.date# df['date'].dt.normalize()  # Show only date 

df['day'] = df['InvoiceDate'].dt.day 

df['month'] = df['InvoiceDate'].dt.month 

df['year'] = df['InvoiceDate'].dt.year 

df['hour'] = df['InvoiceDate'].dt.hour 

df['dayofweek'] = df['InvoiceDate'].dt.dayofweek 

df['dayofweek'] = df['dayofweek'].map( {0: '1_Mon', 1: '2_Tue', 2: '3_Wed', 3: 

'4_Thur', 4: '5_Fri', 5: '6_Sat', 6: '7_Sun'}) 

# Clean UnitPrice 

'''  

Steps to clean Unit Price 

df['UnitPrice'].describe() 

df[df['UnitPrice'] < 0] 

sns.boxplot(df['UnitPrice']) 

sns.distplot(df['UnitPrice']) 

df[df['StockCode'] == 'M'] 

df[df['UnitPrice'] > 15000] 

''' 

df = df[df['UnitPrice'] >= 0] 

# Fill CustomerID with unknown 

df['CustomerID'].dropna(inplace=True) 

# Create a new feature Revenue 

df['Revenue'] = df['UnitPrice'] * df['Quantity'] 



 
 

29 

 

CustomerID_Rev = df.groupby('CustomerID')[['Revenue', 

                          'Quantity', 

                          'UnitPrice']].agg(['sum', 

                                             'mean', 

                                             'median']).sort_values(by=[('Revenue', 'sum')], 

ascending=False) 

display(CustomerID_Rev.reset_index()) 

 

display(pd.DataFrame(CustomerID_Rev.iloc[1:][('Revenue','sum')].describe())) 

 

# Remove the unknown CustomerID 

sns.distplot(CustomerID_Rev.iloc[1:][('Revenue','sum')], kde=False) 

Item_retured = df[df['Quantity'] < 0].groupby('CustomerID')[['Revenue', 

                                              'Quantity']].agg(['sum']).sort_values(by=[('Quantity', 

'sum')], ascending=True).head(10) 

 

sns.barplot(x=Item_retured.index, y=abs(Item_retured[('Quantity','sum')])) 

plt.ylabel('A number of Quantity returned') 

plt.xticks(rotation=90) 

plt.show() 

 

Item_retured 

most_prefered_items = df.groupby(['StockCode', 

'UnitPrice'])[['Quantity']].sum().sort_values(by=['Quantity'],ascending=False).he

ad(10) 

 

most_prefered_items 

most_prefered_items1 = 

df.groupby(['StockCode'])[['Quantity']].sum().sort_values(by=['Quantity'],ascend

ing=False).head(10) 

 

most_prefered_items2 = df.groupby(['StockCode', 

'UnitPrice'])[['Quantity']].sum().sort_values(by=['Quantity'],ascending=False).he

ad(10) 

 

sns.barplot(x=most_prefered_items1.index, y=most_prefered_items1['Quantity']) 

plt.ylabel('A number of Quantity returned') 

plt.xticks(rotation=90) 

plt.show() 

 



 
 

30 

 

display(most_prefered_items1) 

display(most_prefered_items2) 

least_prefered_items = 

df.groupby(['StockCode'])[['Quantity']].sum().sort_values(by=['Quantity'],ascend

ing=False) 

least_prefered_items = 

least_prefered_items[least_prefered_items['Quantity']==0] 

print('A list of least preferred items: ', len(least_prefered_items)) 

least_prefered_items 

InvoiceNumber_Country = 

pd.DataFrame(df.groupby(['Country'])['InvoiceNo'].count()) 

 

fig = go.Figure(data=go.Choropleth( 

                locations=InvoiceNumber_Country.index, # Spatial coordinates 

                z = InvoiceNumber_Country['InvoiceNo'].astype(float), # Data to be 

color-coded 

locationmode = 'country names', # set of locations match entries in `locations` 

colorscale = 'Reds', 

colorbar_title = "Order number", 

            )) 

 

fig.update_layout( 

title_text = 'Order number per country', 

    geo = dict(showframe = True, projection={'type':'mercator'}) 

) 

fig.layout.template = None 

fig.show() 

# Source: https://stackoverflow.com/questions/36220829/fine-control-over-the-

font-size-in-seaborn-plots-for-academic-papers/36222162#36222162 

country_revenue = df.groupby('Country')[['Revenue']].agg(['sum', 

                                        'mean', 

                                        'median']).sort_values(by=[('Revenue', 'sum')], 

ascending=False) 

display(country_revenue) 

 

fig = plt.figure(constrained_layout=True, figsize=(20, 6)) 

a = sns.barplot(y=country_revenue.index, x=country_revenue[('Revenue', 

'sum')]) 

plt.xlabel('Total Revenue from all country', fontsize=18) 

plt.ylabel('Country', fontsize=18) 



 
 

31 

 

 

 

fig = plt.figure(constrained_layout=True, figsize=(20, 6)) 

country_revenue = country_revenue.drop('United Kingdom') 

sns.barplot(y=country_revenue.index, x=country_revenue[('Revenue', 'sum')]) 

plt.xlabel('Total Revenue from all country but UK', fontsize=18) 

plt.ylabel('Country', fontsize=18) 

plt.show() 

country_quantity = df.groupby('Country')[['Quantity']].agg(['sum', 

                                        'mean', 

                                        'median']).sort_values(by=[('Quantity', 'sum')], 

ascending=False) 

 

display(country_quantity) 

 

fig = plt.figure(constrained_layout=True, figsize=(20, 6)) 

a = sns.barplot(y=country_quantity.index, x=country_quantity[('Quantity', 

'sum')]) 

plt.xlabel('Total Quantity from all country', fontsize=18) 

plt.ylabel('Country', fontsize=18) 

 

 

fig = plt.figure(constrained_layout=True, figsize=(20, 6)) 

country_quantity = country_quantity.drop('United Kingdom') 

sns.barplot(y=country_quantity.index, x=country_quantity[('Quantity', 'sum')]) 

plt.xlabel('Total Quantity from all country but UK', fontsize=18) 

plt.ylabel('Country', fontsize=18) 

plt.show() 

unitprice_average = df.groupby('Country')[['UnitPrice']].agg(['sum', 

                                        'mean']).sort_values(by=[('UnitPrice', 'mean')], 

ascending=False) 

display(unitprice_average) 

 

fig = plt.figure(constrained_layout=True, figsize=(20, 6)) 

a = sns.barplot(y=unitprice_average.index, x=unitprice_average[('UnitPrice', 

'mean')]) 

plt.xlabel('Total Quantity from all country', fontsize=18) 

plt.ylabel('Country', fontsize=18) 

 

 



 
 

32 

 

fig = plt.figure(constrained_layout=True, figsize=(20, 6)) 

unitprice_average = unitprice_average.drop('United Kingdom') 

sns.barplot(y=country_quantity.index, x=unitprice_average[('UnitPrice', 

'mean')]) 

plt.xlabel('Total Quantity from all country but UK', fontsize=18) 

plt.ylabel('Country', fontsize=18) 

plt.show() 

month_sales = df.groupby(['month'])['Revenue'].agg(['sum','mean']) 

 

fig, axes = plt.subplots(1, 2, figsize=(18, 5)) 

axes = axes.flatten() 

 

sns.barplot(x=month_sales.index, y=month_sales['sum'], 

ax=axes[0]).set_title("Total Revenue over a year") 

plt.ylabel('a') 

plt.xticks(rotation=90) 

 

sns.barplot(x=month_sales.index, y=month_sales['mean'], 

ax=axes[1]).set_title("Average Revenue over a year") 

plt.xticks(rotation=90) 

plt.show() 

 

month_sales 

hour_sales = df.groupby(['hour'])['Revenue'].agg(['sum','mean']) 

 

fig, axes = plt.subplots(1, 2, figsize=(18, 5)) 

axes = axes.flatten() 

 

sns.barplot(x=hour_sales.index, y=hour_sales['sum'], ax=axes[0]).set_title("Total 

Revenue in a day") 

plt.ylabel('a') 

plt.xticks(rotation=90) 

 

sns.barplot(x=hour_sales.index, y=hour_sales['mean'], 

ax=axes[1]).set_title("Average Revenue per Invoice in a day") 

plt.xticks(rotation=90) 

plt.show() 

 

hour_sales 

dayofweek_sales = df.groupby(['dayofweek'])['Revenue'].agg(['sum','mean',]) 



 
 

33 

 

 

fig, axes = plt.subplots(1, 2, figsize=(18, 5)) 

axes = axes.flatten() 

 

sns.barplot(x=dayofweek_sales.index, y=dayofweek_sales['sum'], 

ax=axes[0]).set_title("Total Revenue over a week") 

plt.ylabel('a') 

plt.xticks(rotation=90) 

 

sns.barplot(x=dayofweek_sales.index, y=dayofweek_sales['mean'], 

ax=axes[1]).set_title("Average Revenue over a week") 

plt.xticks(rotation=90) 

plt.show() 

 

dayofweek_sales 

# Get our date range for our data 

print('Date Range: %s to %s' % (df['InvoiceDate'].min(), 

df['InvoiceDate'].max())) 

 

# We're taking all of the transactions that occurred before December 01, 2011  

df = df[df['InvoiceDate'] < '2011-12-01'] 

# Get total amount spent per invoice and associate it with CustomerID and 

Country 

invoice_customer_df = df.groupby(by=['InvoiceNo', 

'InvoiceDate']).agg({'Revenue': sum,'CustomerID': max,'Country': 

max,}).reset_index() 

invoice_customer_df 

# Source: https://pandas.pydata.org/pandas-

docs/stable/user_guide/timeseries.html#dateoffset-objects 

# We set our index to our invoice date 

# And use Grouper(freq='M') groups data by the index 'InvoiceDate' by Month 

# We then group this data by CustomerID and count the number of unique repeat 

customers for that month (data is the month end date) 

# The filter fucntion allows us to subselect data by the rule in our lambda 

function i.e. those greater than 1 (repeat customers) 

 

monthly_repeat_customers_df = 

invoice_customer_df.set_index('InvoiceDate').groupby([ 

pd.Grouper(freq='M'), 'CustomerID']).filter(lambda x: len(x) > 

1).resample('M').nunique()['CustomerID'] 



 
 

34 

 

 

monthly_repeat_customers_df 

# Number of Unique customers per month 

monthly_unique_customers_df = 

df.set_index('InvoiceDate')['CustomerID'].resample('M').nunique() 

monthly_unique_customers_df 

# Ratio of Repeat to Unique customers 

monthly_repeat_percentage = 

monthly_repeat_customers_df/monthly_unique_customers_df*100.0 

monthly_repeat_percentage 

fig = plt.figure(constrained_layout=True, figsize=(20, 6)) 

grid = gridspec.GridSpec(nrows=1, ncols=1,  figure=fig) 

 

ax = fig.add_subplot(grid[0, 0]) 

 

pd.DataFrame(monthly_repeat_customers_df.values).plot(ax=ax, figsize=(12,8)) 

 

pd.DataFrame(monthly_unique_customers_df.values).plot(ax=ax,grid=True) 

 

ax.set_xlabel('Date') 

ax.set_ylabel('Number of Customers') 

ax.set_title('Number of Unique vs. Repeat Customers Over Time') 

plt.xticks(range(len(monthly_repeat_customers_df.index)), [x.strftime('%m.%Y') 

for x inmonthly_repeat_customers_df.index], rotation=45) 

ax.legend(['Repeat Customers', 'All Customers']) 

# Let's investigate the relationship between revenue and repeat customers 

monthly_revenue_df = 

df.set_index('InvoiceDate')['Revenue'].resample('M').sum() 

 

monthly_rev_repeat_customers_df = 

invoice_customer_df.set_index('InvoiceDate').groupby([ 

pd.Grouper(freq='M'), 'CustomerID']).filter(lambda x: len(x) > 

1).resample('M').sum()['Revenue'] 

 

# Let's get a percentage of the revenue from repeat customers to the overall 

monthly revenue 

monthly_rev_perc_repeat_customers_df = 

monthly_rev_repeat_customers_df/monthly_revenue_df * 100.0 

monthly_rev_perc_repeat_customers_df 

fig = plt.figure(constrained_layout=True, figsize=(20, 6)) 



 
 

35 

 

grid = gridspec.GridSpec(nrows=1, ncols=1,  figure=fig) 

 

ax = fig.add_subplot(grid[0, 0]) 

pd.DataFrame(monthly_rev_repeat_customers_df.values).plot(ax=ax, 

figsize=(12,8)) 

 

pd.DataFrame(monthly_revenue_df.values).plot(ax=ax,grid=True) 

 

ax.set_xlabel('Date') 

ax.set_ylabel('Number of Customers') 

ax.set_title('Number of Unique vs. Repeat Customers Over Time') 

plt.xticks(range(len(monthly_repeat_customers_df.index)), [x.strftime('%m.%Y') 

for x inmonthly_repeat_customers_df.index], rotation=45) 

ax.legend(['Repeat Customers', 'All Customers']) 

# Now let's get quantity of each item sold per month 

date_item_df = df.set_index('InvoiceDate').groupby([pd.Grouper(freq='M'), 

'StockCode'])['Quantity'].sum() 

date_item_df.head(15) 

# Rank items by the last month's sales 

last_month_sorted_df = date_item_df.loc['2011-11-30'] 

last_month_sorted_df = last_month_sorted_df.reset_index() 

last_month_sorted_df.sort_values(by='Quantity', ascending=False).head(10) 

# Let's look at the top 5 items sale over a year 

date_item_df = df.loc[df['StockCode'].isin(['23084', '84826', '22197', '22086', 

'85099B'])].set_index('InvoiceDate').groupby([ 

pd.Grouper(freq='M'), 'StockCode','Description'])['Quantity'].sum().reset_index() 

 

date_item_df 

date_item_df = date_item_df.reset_index() 

 

sns.set(style='whitegrid') 

plt.figure(constrained_layout=True, figsize=(12, 5)) 

sns.lineplot(x=date_item_df['InvoiceDate'], y=date_item_df['Quantity'], 

hue=date_item_df['StockCode']) 

df.groupby(['StockCode', 

'Description'])['InvoiceNo'].count().sort_values(ascending = False).head(10) 

Num_Canceled_Orders = df[df['Quantity']<0]['InvoiceNo'].nunique() 

Total_Orders = df['InvoiceNo'].nunique() 

print('Cancellation Rate: 

{:.2f}%'.format(Num_Canceled_Orders/Total_Orders*100 )) 



 
 

36 

 

Monthly_Reorder_Items_Revenue = df.set_index('InvoiceDate').groupby([ 

pd.Grouper(freq='M'), 'StockCode']).filter(lambda x: len(x) > 

1).resample('M').sum()['Revenue'] 

Monthly_One_Items_Revenue = df.set_index('InvoiceDate').groupby([ 

pd.Grouper(freq='M'), 'StockCode']).filter(lambda x: len(x) == 

1).resample('M').sum()['Revenue'] 

#Monthly_Revenue = df.groupby(['year','month']).sum()['Revenue']  # Generate 

the same Result 

Monthly_Revenue = 

df.set_index('InvoiceDate').groupby([pd.Grouper(freq='M')]).sum()['Revenue'] 

fig = plt.figure(constrained_layout=True, figsize=(20, 6)) 

 

ax = fig.add_subplot() 

pd.DataFrame(Monthly_Reorder_Items_Revenue.values).plot(ax=ax, 

figsize=(12,8)) 

pd.DataFrame(Monthly_Revenue.values).plot(ax=ax,grid=True) 

pd.DataFrame(Monthly_One_Items_Revenue.values).plot(ax=ax,grid=True) 

 

ax.set_xlabel('Date') 

ax.set_ylabel('Number of Customers') 

ax.set_title('Number of Unique vs. Repeat vs Total Items Over Time') 

plt.xticks(range(len(monthly_repeat_customers_df.index)), [x.strftime('%m.%Y') 

for x inmonthly_repeat_customers_df.index], rotation=45) 

ax.legend(['Repeat Items', 'All Items', 'One Item']) 

Sample_df = df[:50] 

Sample_df = Sample_df[['InvoiceNo', 'Description']] 

In [141]: 

Sample_df.set_index('InvoiceNo', inplace=True) 

In [142]: 

linkcode 

# Note that the quantity bought is not considered, only if the item was present or 

not in the basket 

basket = pd.get_dummies(Sample_df) 

basket_sets = pd.pivot_table(basket, index='InvoiceNo', aggfunc='sum') 

basket_sets 

# Aprioriaplication: frequent_itemsets 

# Note that min_support parameter was set to a very low value, this is the 

Spurious limitation, more on conclusion section 

frequent_itemsets = apriori(basket_sets, min_support=0.22, use_colnames=True) 



 
 

37 

 

frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x: 

len(x)) 

frequent_itemsets 

# Advanced and strategical data frequent set selection 

frequent_itemsets[ (frequent_itemsets['length'] > 1) & 

                   (frequent_itemsets['support'] >= 0.02)] 

# Generating the association_rules: rules 

# Selecting the important parameters for analysis 

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1) 

rules 

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1) 

rules[['antecedents', 'consequents', 'support', 'confidence', 

'lift']].sort_values('support', ascending=False).head() 

# Visualizing the rules distribution color mapped by Lift 

plt.figure(figsize=(14, 8)) 

plt.scatter(rules['support'], rules['confidence'], c=rules['lift'], alpha=0.9, 

cmap='YlOrRd'); 

plt.title('Rules distribution color mapped by lift'); 

plt.xlabel('Support') 

plt.ylabel('Confidence') 

plt.colorbar(); 

# df.InvoiceDate = pd.to_datetime(df.InvoiceDate, format="%m/%d/%Y 

%H:%M") 

df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate']) 

 

df['Revenue'] = df['Quantity']*df['UnitPrice'] 

linkcode 

invoice_ct = df.groupby(by='CustomerID', as_index=False)['InvoiceNo'].count() 

invoice_ct.columns = ['CustomerID', 'NumberOrders'] 

invoice_ct 

unitprice = df.groupby(by='CustomerID', as_index=False)['UnitPrice'].mean() 

unitprice.columns = ['CustomerID', 'Unitprice'] 

unitprice 

revenue = df.groupby(by='CustomerID', as_index=False)['Revenue'].sum() 

revenue.columns = ['CustomerID', 'Revenue'] 

revenue 

total_items = df.groupby(by='CustomerID', as_index=False)['Quantity'].sum() 

total_items.columns = ['CustomerID', 'NumberItems'] 

total_items 



 
 

38 

 

earliest_order = df.groupby(by='CustomerID', 

as_index=False)['InvoiceDate'].min() 

earliest_order 

earliest_order.columns = ['CustomerID', 'EarliestInvoice'] 

earliest_order['now'] = pd.to_datetime((df['InvoiceDate']).max()) 

linkcode 

earliest_order 

# == earliest_order['days_as_customer'] = 1 + (earliest_order.now-

earliest_order.EarliestInvoice).dt.days 

# Source: 

https://kite.com/python/docs/pandas.core.indexes.accessors.TimedeltaProperties 

earliest_order['days_as_customer'] = 1 + (earliest_order['now']-

earliest_order['EarliestInvoice']).dt.days 

linkcode 

earliest_order.drop('now', axis=1, inplace=True) 

earliest_order 

# when was their last order and how long ago was that from the last date in file 

(presumably 

# when the data were pulled) 

last_order = df.groupby(by='CustomerID', as_index=False)['InvoiceDate'].max() 

last_order.columns = ['CustomerID', 'last_purchase'] 

last_order['now'] = pd.to_datetime((df['InvoiceDate']).max()) 

last_order['days_since_last_purchase'] = 1 + (last_order.now-

last_order.last_purchase).astype('timedelta64[D]') 

last_order.drop('now', axis=1, inplace=True) 

last_order 

#combine all the dataframes into one 

import functools 

dfs = [invoice_ct,unitprice,revenue,earliest_order,last_order,total_items] 

CustomerTable = functools.reduce(lambda left,right: 

pd.merge(left,right,on='CustomerID', how='outer'), dfs) 

CustomerTable['OrderFrequency'] = 

CustomerTable['NumberOrders']/CustomerTable['days_as_customer'] 

CustomerTable 

CustomerTable.corr()['Revenue'].sort_values(ascending = False) 

x = CustomerTable[['NumberOrders','Unitprice', 'days_as_customer', 

'days_since_last_purchase', 'NumberItems', 'OrderFrequency']] 

y = CustomerTable['Revenue'] 

reg = RandomForestRegressor() 

reg.fit(x.values, y) 



 
 

39 

 

 

#list(zip(x, reg.feature_importances_)) 

coef = pd.Series(reg.feature_importances_, index = x.columns) 

 

imp_coef = coef.sort_values() 

imp_coef.plot(kind = "barh") 

plt.title("Feature importance using Linear Model") 

recency = df.groupby(by='CustomerID', as_index=False)['InvoiceDate'].max() 

recency.columns = ['CustomerID', 'last_purchase'] 

recency['now'] = pd.to_datetime((df['InvoiceDate']).max()) 

recency['Recency'] = 1 + (recency.now-

recency['last_purchase']).astype('timedelta64[D]') 

recency.drop(['now','last_purchase'], axis=1, inplace=True) 

recency.head() 

#check frequency of customer means how many transaction has been done.. 

 

frequency = df.copy() 

frequency.drop_duplicates(subset=['CustomerID','InvoiceNo'], keep="first", 

inplace=True)  

frequency = 

frequency.groupby('CustomerID',as_index=False)['InvoiceNo'].count() 

frequency.columns = ['CustomerID','Frequency'] 

frequency.head() 

monetary=df.groupby('CustomerID',as_index=False)['Revenue'].sum() 

monetary.columns = ['CustomerID','Monetary'] 

monetary.head() 

dfs = [recency, frequency, monetary] 

rfm = functools.reduce(lambda left,right: pd.merge(left,right,on='CustomerID', 

how='outer'), dfs) 

rfm 

#bring all the quartile value in a single dataframe 

rfm_segmentation = rfm.copy() 

rfm_segmentation 

from sklearn.cluster import KMeans 

SSE_to_nearest_centroid = [] 

 

for kinrange(1,15): 

kmeans = KMeans(n_clusters=k) 

kmeans.fit(rfm_segmentation) 

SSE_to_nearest_centroid.append(kmeans.inertia_) 



 
 

40 

 

 

plt.figure(figsize=(20,8)) 

plt.plot(range(1,15),SSE_to_nearest_centroid,"-o") 

plt.title("SSE / K Chart", fontsize=18) 

plt.xlabel("Amount of Clusters",fontsize=14) 

plt.ylabel("Inertia (Mean Distance)",fontsize=14) 

plt.xticks(range(1,20)) 

plt.grid(True) 

plt.show() 

#fitting data in Kmeans theorem. 

kmeans = KMeans(n_clusters=3, random_state=0).fit(rfm_segmentation) 

 

# this creates a new column called cluster which has cluster number for each 

row respectively. 

rfm_segmentation['cluster'] = kmeans.labels_ 

rfm_segmentation.head() 

plt.figure(figsize=(8,5)) 

sns.boxplot(rfm_segmentation['cluster'],rfm_segmentation.Recency) 

 

plt.figure(figsize=(8,5)) 

sns.boxplot(rfm_segmentation['cluster'],rfm_segmentation.Frequency) 

 

plt.figure(figsize=(8,5)) 

sns.boxplot(rfm_segmentation['cluster'],rfm_segmentation.Frequency) 

quantile = rfm.quantile(q=[0.25,0.5,0.75]) 

quantile 

# lower the recency, good for store.. 

def RScore(x): 

    if x <= quantile['Recency'][0.25]: 

        return 1 

elif x <= quantile['Recency'][0.50]: 

        return 2 

elif x <= quantile['Recency'][0.75]:  

        return 3 

    else: 

        return 4 

 

# higher value of frequency and monetary lead to a good consumer. 

def FScore(x): 

    if x <= quantile['Frequency'][0.25]: 



 
 

41 

 

        return 4 

elif x <= quantile['Frequency'][0.50]: 

        return 3 

elif x <= quantile['Frequency'][0.75]:  

        return 2 

    else: 

        return 1 

 

def MScore(x): 

    if x <= quantile['Monetary'][0.25]: 

        return 4 

elif x <= quantile['Monetary'][0.50]: 

        return 3 

elif x <= quantile['Monetary'][0.75]:  

        return 2 

    else: 

        return 1 

rfm_segmentation 

rfm_segmentation['R_quartile'] = rfm_segmentation['Recency'].apply(RScore) 

rfm_segmentation['F_quartile'] = rfm_segmentation['Frequency'].apply(FScore) 

rfm_segmentation['M_quartile'] = rfm_segmentation['Monetary'].apply(MScore) 

rfm_segmentation 

# Approach 1: group customer's attributes, leading to detail customer's profile 

# for example 121 and 112 are different. 

rfm_segmentation['RFMScore'] = rfm_segmentation['R_quartile'].astype(str) \ 

                               + rfm_segmentation['F_quartile'].astype(str) \ 

                               + rfm_segmentation['M_quartile'].astype(str) 

# Approach 2: group customer's attributes, leading to more general customers' 

profile 

# for example 121 and 112 are the same. 

rfm_segmentation['TotalScore'] = rfm_segmentation['R_quartile'] \ 

                               + rfm_segmentation['F_quartile'] \ 

                               + rfm_segmentation['M_quartile'] 

print("Best Customers: 

",len(rfm_segmentation[rfm_segmentation['RFMScore']=='111'])) 

print('Loyal Customers: 

',len(rfm_segmentation[rfm_segmentation['F_quartile']==1])) 

print("Big Spenders: 

",len(rfm_segmentation[rfm_segmentation['M_quartile']==1])) 



 
 

42 

 

print('Almost Lost: ', 

len(rfm_segmentation[rfm_segmentation['RFMScore']=='134'])) 

print('Lost Customers: 

',len(rfm_segmentation[rfm_segmentation['RFMScore']=='344'])) 

print('Lost Cheap Customers: 

',len(rfm_segmentation[rfm_segmentation['RFMScore']=='444'])) 

 

Image(url= "https://i.imgur.com/YmItbbm.png?") 

rfm_segmentation.sort_values(by=['RFMScore', 'Monetary'], ascending=[True, 

False]) 

rfm_segmentation.groupby('RFMScore')['Monetary'].mean() 

Score_Recency = 

rfm_segmentation.groupby('TotalScore')['Recency'].mean().reset_index() 

Score_Monetatry = 

rfm_segmentation.groupby('TotalScore')['Monetary'].mean().reset_index() 

Score_Frequency = 

rfm_segmentation.groupby('TotalScore')['Frequency'].mean().reset_index() 

sns.barplot(x=Score_Recency['TotalScore'],y=Score_Recency['Recency']) 

 

plt.figure(constrained_layout=True, figsize=(12, 4)) 

 

plt.subplot(1,2,1) 

sns.barplot(x=Score_Frequency['TotalScore'],y=Score_Frequency['Frequency']) 

 

plt.subplot(1,2,2) 

sns.barplot(x=Score_Monetatry['TotalScore'],y=Score_Monetatry['Monetary']) 

plt.subplots_adjust(wspace = 0.2) 

def get_month(x):  

    return dt.datetime(x.year, x.month, 1) 

df['InvoiceMonth'] = df['InvoiceDate'].apply(get_month) 

# https://stackoverflow.com/questions/27517425/apply-vs-transform-on-a-group-

object 

# explain the difference between   apply - transform. In this case, use transform 

for CohortMonth. 

# CohortMonth: the first time a customer came to our retail store. 

df['CohortMonth'] = df.groupby('CustomerID')['InvoiceMonth'].transform('min') 

def get_date_int(df, column): 

    year = df[column].dt.year 

    month = df[column].dt.month 

    day = df[column].dt.day 



 
 

43 

 

    return year, month, day 

invoice_year, invoice_month, _ = get_date_int(df, 'InvoiceMonth') 

cohort_year, cohort_month, _ = get_date_int(df, 'CohortMonth') 

 

years_diff = invoice_year - cohort_year 

months_diff = invoice_month - cohort_month 

 

df['CohortIndex'] = years_diff * 12 + months_diff + 1 

 

df.head() 

## grouping customer berdasarkan masing masing cohort 

cohort_data = df.groupby(['CohortMonth', 

'CohortIndex'])['CustomerID'].nunique().reset_index() 

# To solve the problem when ploting heatmap diagram below. 

cohort_data['CohortMonth'] = cohort_data['CohortMonth'].dt.date 

cohort_counts = cohort_data.pivot(index='CohortMonth', 

columns='CohortIndex', values='CustomerID') 

cohort_counts 

cohort_sizes = cohort_counts.iloc[:,0] 

retention = cohort_counts.divide(cohort_sizes, axis=0) 

retention.round(2) * 100 

plt.figure(figsize=(15, 8)) 

plt.title('Retention rates') 

sns.heatmap(data = retention, 

annot = True, 

fmt = '.0%', 

vmin = 0.0, vmax = 0.5, 

cmap = 'BuGn') 

plt.show() 

 

 

 

 

 

 

 

 

  



 
 

44 

 

Chapter 4: Testing  
 

The software system testing is done to check every feature and performance of 

the software after all its components have been integrated. It tests if the software 

is working properly as per the requirements and it is able to solve the customers’ 

needs. 

The software system testing is performed to detect any issues occurring after 

integration of multiple units of the software. It finds defects in the integrated 

software as well as in the complete software as a whole. 

The software system testing is conducted on the complete software with the 

perspective of the system requirements, functional requirements, or both. It 

verifies the design and characteristics of the software, and how well it satisfies 

the end user requirements. 

Sometimes the system testing validates the software beyond the requirements 

mentioned in System Requirement Specification(SRS). It is conducted by a 

testing team who is not a part of the development process, and hence have an 

unbiased testing mindset. It is a part of both functional and non-functional testing 

and is performed with the help of the black box testing techniques. 

Process of Software System Testing 

The process of the the software system testing are listed below – 

 

Step 1 − Configure the test environment where the software system testing is to 

be performed. 

 

Step 2 − Develop the software system test cases. 

 

Step 3 − Generate the test data for running the software system test cases. 

 

Step 4 − Execute the software system test cases and analyze the results. 

 

Step 5 − In case of failure of the software system test cases, the defects are 

reported. 

 

Step 6 − The entire regression test cases are executed to check if the existing 

functionalities of the software are working as expected. 

Step 7 − Report all the regression related defects. 

 

Step 8 − Retest all the fixed defects. 

 



 
 

45 

 

4.1 Testing Strategy: 

 

The types of the software system testing are listed below – 

 

 
 

Performance Testing 

 

Performance Testing is performed to verify the performance, stability, reliability 

etc of the software. 

 

Load Testing 

 

Load Testing is performed to verify the amount of load or traffic that the 

software can accommodate before it crashes. It finds the threshold limit of the 

maximum count of users that the software can bear at a time after its software 

undergoes a breakdown. 

 

 



 
 

46 

 

 

Stress Testing 

 

Stress Testing is performed to verify if there exists any security problems leading 

to the potential scope of hacking, and other vulnerabilities. It ensures that the 

safety of data is maintained while it is being exchanged between multiple units of 

the software. The stress testing is done along with the Penetration Testing and 

user access control testing techniques. 

Scalability Testing 

Scalability Testing is performed to verify the performance of the software with 

respect to its capacity to scale up or down the count of the user request loads. 

 

 

 

4.2 TEST CASES: 

 

 

S.NO 

 

INPUT 

 

If available 

 

If not available 

1 User signup User get registered 

into the application 

There is no 

process 

2 User signin User get login into the 

application 

There is no 

process 

3 Enter input for prediction Prediction result 

displayed 

There is no 

process 

 

 

  



 
 

47 

 

Chapter 5: Results and Evaluation 

 
SCREENS: 

 
 

 
 



 
 

48 

 

 
 

 



 
 

49 

 

 
 

 
 



 
 

50 

 

 
 



 
 

51 

 

 
 

 
 



 
 

52 

 

 
 

 

   



 
 

53 

 

Chapter 6: Conclusion and Future Scopes 

 
This study successfully demonstrated the effectiveness of leveraging Web 

Content Mining and User Profiling to enhance advertisement relevance. By 

analyzing user behavior and ad interaction patterns from the Clicked Ads 

Dataset, a robust framework was developed, incorporating multiple machine 

learning algorithms to predict user preferences accurately. Among the 

implemented approaches, the Voting Classifier, integrating Adaboost and 

ExtraTree classifiers, achieved the highest performance, showcasing its ability to 

capture complex relationships within the data. This ensemble method effectively 

combined the strengths of individual models, delivering superior prediction 

accuracy and optimizing ad personalization. The results underscore the 

importance of advanced predictive techniques in improving ad targeting, 

ensuring higher user engagement, and maximizing advertising efficiency. By 

addressing the challenges of ad irrelevance and inefficiency, the proposed system 

provides a scalable solution for creating more meaningful and impactful digital 

marketing strategies. The findings highlight the potential of ensemble learning to 

transform user-centric advertisement delivery. 

 

Future Scope: 
Future work can explore incorporating additional advanced ensemble techniques 

and deep learning models to further enhance prediction accuracy and system 

robustness. Techniques such as stacking or gradient boosting could be 

investigated to capture even more complex patterns in user behavior and ad 

interactions. Enhancing feature engineering processes, including deriving higher-

order features from existing data, can also improve model performance. 

Expanding the evaluation metrics and datasets will help refine the system, 

ensuring a more comprehensive approach to optimizing advertisement relevance. 

 

 

 

 

 

 

 



 
 

54 

 

References 

 
[1]Barbosa, B., Saura, J. R., Zekan, S. B., & Ribeiro-Soriano, D. (2024). 

RETRACTED ARTICLE: Defining content marketing and its influence on 

online user behavior: a data-driven prescriptive analytics method. Annals of 

Operations Research, 337(Suppl 1), 17-17. 

 

[2] Wei, W., Ren, X., Tang, J., Wang, Q., Su, L., Cheng, S., ... & Huang, C. 

(2024, March). Llmrec: Large language models with graph augmentation for 

recommendation. In Proceedings of the 17th ACM International Conference on 

Web Search and Data Mining (pp. 806-815). 

 

[3] Liao, S. H., Widowati, R., & Hsieh, Y. C. (2021). Investigating online social 

media users’ behaviors for social commerce recommendations. Technology in 

Society, 66, 101655. 

 

[4] Samanta, D., Dutta, S., Galety, M. G., & Pramanik, S. (2022). A novel 

approach for web mining taxonomy for high-performance computing. In Cyber 

Intelligence and Information Retrieval: Proceedings of CIIR 2021 (pp. 425-432). 

Springer Singapore. 

 

[5] Hasan, M. K., Ghazal, T. M., Alkhalifah, A., Abu Bakar, K. A., Omidvar, A., 

Nafi, N. S., &Agbinya, J. I. (2021). Fischer linear discrimination and quadratic 

discrimination analysis–based data mining technique for internet of things 

framework for Healthcare. Frontiers in Public Health, 9, 737149. 

 

[6] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and 

Xiangnan He. 2023. TALLRec: An Effective and Efficient Tuning Framework to 

Align Large Language Model with Recommendation. arXiv preprint 

arXiv:2305.00447 (2023). 

 

[7] Chong Chen, Weizhi Ma, Min Zhang, et al. 2023. Revisiting negative 

sampling vs. non-sampling in implicit recommendation. TOIS 41, 1 (2023), 1--

25. 

 

[8] Chong Chen, Min Zhang, Yongfeng Zhang, et al. 2020. Efficient neural 

matrix factorization without sampling for recommendation. TOIS 38, 2 (2020), 

1--28. 

 



 
 

55 

 

[9]Mengru Chen, Chao Huang, Lianghao Xia, Wei Wei, et al. 2023. 

Heterogeneous graph contrastive learning for recommendation. In Proceedings of 

the Sixteenth ACM International Conference on Web Search and Data Mining. 

544--552. 

 

[10] Zheng Chen. 2023. PALR: Personalization Aware LLMs for 

Recommendation. arXiv preprint arXiv:2305.07622 (2023). 

 

[11]Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, 

Zhongxiang Sun, Xiao Zhang, and Jun Xu. 2023. Uncovering ChatGPT's 

Capabilities in Recommender Systems. arXiv preprint arXiv:2305.02182 (2023). 

[12]Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei 

Yin. 2019. Graph neural networks for social recommendation. In ACM 

International World Wide Web Conference. 417--426. 

 

[13] Xinyu Fu, Jiani Zhang, et al. 2020. Magnn: Metapath aggregated graph 

neural network for heterogeneous graph embedding. In ACM International 

World Wide Web Conference. 2331--2341. 

 

[14]  He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. 

2022. Masked autoencoders are scalable vision learners. In CVPR. 16000--

16009. 

 

[15] Ruining He and Julian McAuley. 2016. VBPR: visual bayesian personalized 

ranking from implicit feedback. In AAAI, Vol. 30. 

 

[16] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and 

Meng Wang. 2020. Lightgcn: Simplifying and powering graph convolution 

network for recommendation. In ACM SIGIR Conference on Research and 

Development in Information Retrieval. 639--648. 

 

[17] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The 

curious case of neural text degeneration. arXiv preprint arXiv:1904.09751 

(2019). 

 

[18] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, 

Xinyu Wang, and Jie Tang. 2021. MixGCF: An Improved Training Method for 

Graph Neural Network-based Recommender Systems. In ACM SIGKDD 

Conference on Knowledge Discovery and Data Mining. 



 
 

56 

 

[19] Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, 

Lichan Hong, et al. 2023. Do LLMs Understand User Preferences? Evaluating 

LLMs On User Rating Prediction. arXiv preprint arXiv:2305.06474 (2023). 

 

[20] Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. 2022. A survey 

of recommendation systems: recommendation models, techniques, and 

application fields. Electronics 11, 1 (2022), 141. 

 

 

 


