Livray copy

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-2 EXAMINATION-2024

B.Tech-VII Semester (ECE)

COURSE CODE (CREDITS): 19B1WEC732 (03)

MAX. MARKS: 25

COURSE NAME: Pattern Analysis in Machine Intelligence

COURSE INSTRUCTORS: Dr. Vikas Baghel

MAX. TIME: 1 Hour 30 Minutes

Note:

(a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

Q.No	Question	СО	Marks
Q1	a) Given a dataset with the feature values [10, 20, 30, 40, 50] for a single feature.	CO-1	[1]
	Apply Min-Max scaling to normalize the values to the range [0, 1]. b) If a dataset is divided into 5 folds for cross-validation, and a model achieved an		[2]
	accuracy of 80%, 85%, 78%, 90%, and 83% in each fold, calculate the average accuracy across all folds.		
	c) Describe the differences between global and local feature extraction techniques in image processing. Provide examples of each type of feature extraction method.		[2]
Q2	a) Explain the assumption of feature independence in the context of the Naive Bayes Classifier. Why is this assumption made, and what are its implications?	CO-2	[2]
	b) Given a dataset with two features and two classes, calculate the posterior		[3]
	probabilities using Bayes' Theorem. Use hypothetical probabilities:		
	P(Class A) = 0.6 $P(Class B) = 0.4$		
	P(Feature1 Class A) = 0.7		
	P(Feature1 Class B) = 0.2		
	P(Feature2 Class A) = 0.9		
	P(Feature2 Class B) = 0.1		