JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

B.Tech-V Semester (BT & BI)

COURSE CODE (CREDITS): 18B11BT511 (04)

MAX. MARKS: 25

COURSE NAME: Bioprocess Engineering

COURSE INSTRUCTORS: Dr. Saurabh Bansal

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) The candidate is allowed to bring a formula sheet signed by me during the exams.

Q. No.	Question	СО	Marks
Q1	Differentiate Between the following:	CO-1	4
	a) Axial Flow Impeller & Radial Flow Impeller		
	b) Quasi Steady State & Steady State		
Q2	The equation for aerobic production of acetic acid from ethanol is:	CO-1	2
	$C_2H_5OH + O_2$ CH ₃ COOH + H_2O .		
	$C_2H_5OH + O_{23-5}$ $EH_3EOOH + H_2O$. (Ethanol) (Acetic acid)		
	Acetobacter aceti bacteria are added to a vigorously aerated medium containing 10 g l ⁻¹ ethanol. After some time, the ethanol concentration is 2 g l ⁻¹ and 7.5 g l ⁻¹ acetic acid is produced. How does the overall yield of acetic acid from ethanol compare with the theoretical yield?		
Q3	In an animal cell culture, which type of impeller (Rushton or Marine propeller) should be used and why?	CO-2	2
Q4 4	How do you explain the difference between the amount of electrical power consumed by the motor and the power dissipated by the stirrer?	CO-2	2
Q5	Which mode of fermentation will you prefer for the following cases? Also, give the justification for your answer.	CO-2	2
	a) During a fermentation process, an unwanted toxic metabolite is produced along with desired products.		
	b) A high concentration of growth-limiting substrates inhibits product production.		

Q6	Lactobacilus casei is propagated under essentially anaerobic conditions to provide a starter culture for manufacture of Swiss cheese. The culture produces lactic acid as a by-product of energy metabolism. The system has the following characteristics:	CO-3	2
	$Y_{x/s} = 0.23 \text{ kg kg}^{-1}, K_s = 0.15 \text{ kg m}^{-3}, \mu_{max} = 0.35 \text{ h}^{-1}$		
	A stirred fermenter is operated in fed-batch mode at quasi steady state with a feed flow rate of 4 m ³ h ⁻¹ and feed substrate concentration of 80 kg m ⁻³ . After 6 h, the liquid volume is 40 m ³ . What was the initial culture volume?		X
Q7 (a)	A strain of <i>Escherichia coli</i> has been genetically engineered to produce human protein. A batch culture is started by inoculating 12 g cells into a 100-1itre bubble-column fermenter containing 10 g l ⁻¹ glucose. The maximum specific growth rate of the culture is 0.9 h ⁻¹ ; the biomass yield from glucose is 0.575 g g ⁻¹ . Estimate the time required to reach the stationary phase.	СО-3	2
Q7 (b)	What will be the final cell density if the fermentation is stopped after only 70% of the substrate is consumed?	CO-3	2
Q8	An industrial fermenter containing 1000 L of medium needs to be sterilized. The initial spore concentration in the medium is 10 ⁵ spores mL ⁻¹ . The desired probability of contamination after sterilization is 10 ⁻³ . The death rate of spores at 121 °C is 5 min ⁻¹ . Assume that there is no cell death during the heating and cooling phases. Estimate the holding time of the sterilization process in min.	CO-4	2
Q9	Laboratory-scale fermenters are usually mixed using small stirrers with electric motors rated between 100 and 500 W. One such motor is used to drive a 7-cm turbine impeller ($N_p = 5$) in a small reactor containing fluid having a viscosity and density of 1 g/cm ³ . The stirrer speed is 900 rpm.	CO-4	3
Q10,	Estimate the power requirements for this process.	Q =	
- 30	A fermentation broth with a viscosity of 10^{-2} Pa.s and density of 1000 kg m ⁻³ is agitated in a 3 m ³ baffled tank using a Rushton turbine with a diameter of 0.5 m and stirrer speed of 1 s ⁻¹ . Estimate the mixing time.	CO-4	2