JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

M.Tech.-I Semester (CSE-IS)

COURSE CODE (CREDITS): 10M11CI111(3)

MAX. MARKS: 25

COURSE NAME: Advanced Data Structures

COURSE INSTRUCTORS: Ekta Gandotra

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

(c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

Q.No.	Question	CO	Marks
Q1.	Apply cuckoo hashing technique using the dataset {15, 25, 30, 42, 56, 78, 100} and	CO5	[5]
	the hash functions $h1(key) = key \mod 13$ and $h2(key) = \lfloor \frac{key}{13} \rfloor \mod 13$. Illustrate		
	the steps involved and show the final state of the hash table. Also discuss the benefits		
	and drawbacks of this approach.		
Q2.	a. Construct the red-black trees after successively inserting the keys 41, 38, 31, 12,	CO4	[4]
	19, 8 into and initially empty red-black tree. Also discuss time-complexity of		
	inserting an element in the red-black tree.		
	b. Identify the step-wise actions that should be performed if the sibling of the double-black node is red while deleting an element from the red-black tree. Justify your		[3]
	answer with the help of an example.		
		le de la constant	
Q3.	Design a method to find the postorder traversal from a preorder traversal of a binary	CO3	[4]
	search tree. Use the given traversal 15, 10, 12, 11, 20, 18, 16, 19 to demonstrate your		*
	approach.		
Q4.	Insert the following integer keys into an initially empty AVL tree in the order 9, 27,	CO3	[5]
	50, 15, 2, 21, and 36. After each insertion, clearly show the resulting AVL tree, and		
	apply any necessary rotations to maintain its balance. Next, delete the key 2 from the	A Phillips	
	final tree, and rebalance it if required.		
Q5	For a given binary tree of height h, compute the following and provide the	CO2	[4]
	justification for your answer:		
	a. Maximum number of leaves	Reversions	
	b. Minimum number of leaves		
	c. Maximum number of nodes		
	d. Minimum number of nodes		