## JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

M.Tech-I Semester (ECE)

COURSE CODE (CREDITS): 21M1WEC137 (3)

MAX. MARKS: 25

COURSE NAME: Advanced Cognitive Radio

COURSE INSTRUCTORS: Dr. Shweta Pandit

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

| Q.No | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO | Marks |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|
| Q1   | Describe the various functions of Cognitive Radio. Organize these functions inside the cognitive cycle to demonstrate the components of cognitive cycle along with cognitive radio functionalities.                                                                                                                                                                                                                                                                                        | 1  | 3     |
| Q2   | Assess how setting an interference temperature limit (IL) impacts both licensed and unlicensed spectrum users. What is the unit of interference temperature? Assume a receiver experiences interference from multiple unlicensed sources. The interference power from each source is given as 10 $\mu$ W, 15 $\mu$ W, and 20 $\mu$ W. Using Boltzmann's constant (1.38 × 10 <sup>-23</sup> J/K) and unit bandwidth, calculate the total interference temperature observed by the receiver. | 2  | 2+3   |
| Q3   | <ul> <li>a) Describe situations where cooperative spectrum sensing would be more beneficial than non-cooperative sensing and vice-versa.</li> <li>b) Evaluate the effectiveness of cyclostationary detection in low signal-to-noise ratio (SNR) environments compared to energy detection. Discuss the impact of noise uncertainty on the performance of energy detection techniques in spectrum sensing.</li> </ul>                                                                       | 2  | 2+3   |
| Q4   | Analyze the trade-offs between spectrum sensing accuracy and throughput maximization in cognitive radios.                                                                                                                                                                                                                                                                                                                                                                                  | 4  | 2     |
| Q5   | Design a solution for handling spectrum scarcity issue in urban environments using cognitive radio technology.                                                                                                                                                                                                                                                                                                                                                                             | 4  | 3     |
| Q6   | Explain the spectrum sensing mechanism in IEEE 802.22 WRAN standard. You are asked to build and deploy WRAN in a 50 km radius area using omnidirectional antennas. If the propagation loss exponent is 3.5, calculate the estimated received signal strength at the edge of the coverage area for a transmitter power of 20 dBm.                                                                                                                                                           | 3  | 2+3   |
| Q7   | A Dynamic Spectrum Access (DSA) system can allocate 15 MHz of unused spectrum in a 100 MHz band, calculate the percentage of spectrum utilization before and after DSA implementation if only 60 MHz of the band was being used initially.                                                                                                                                                                                                                                                 | 1  | 2     |