JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

M.Sc-III Semester (Physics)

COURSE CODE (CREDITS):18MS1PH313

MAX. MARKS: 25

COURSE NAME: Advance Solid state-II

COURSE INSTRUCTORS: SKT

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	Prove that the stationary states of the orbital Schrodinger equation for		5
	a two electron system with a symmetric potential $V(r_1,r_2)=V(r_2,r_1)$		on market someth
	can be chosen to be either symmetric or anti-symmetric. Also, show		
	that it quite analogous to the first proof of Bloch's theorem.		
Q2	(a) For $l=2,1,0,-1,-2$ the spin arrangement of the two atoms are		3+2
	$\downarrow,\downarrow,\downarrow,\downarrow,\downarrow$ and $\downarrow\uparrow,\downarrow\uparrow,\downarrow\uparrow,\downarrow\uparrow$ respectively. Calculate the ground state		
	of specific ions.		
	(b) Systematically show the precession of L, S and J vector around		
	magnetic field B.		
Q3	Define electronic, ionic, and dipolar polarizability. Derive tha		5
	Clausius-Mossotti equation. Also explain in which special case we can		
	consider negative refractive intex of materials.		
Q4	An atom can be modeled as a simple harmonic oscillator with natural	Resignation (5
	frequency ω_0 . An A.C field ($E_0 e^{i\omega t}$) is applied on atom with damping		
	constant γ. Derive the expression for complex electronic polarizability		
	and frequency dependent dielectric constant.		
Q5	(a) Two parallel plates having equal and opposite charges are separated by a 2 cm thick slab that has dielectric constant 3. If the		3+2
	electric field inside is 10^6 V/m. Calculate the polarization and displacement vector. (given ε_0 =8.85 x 10^{-12} C ² N ⁻¹ m ⁻²).		o management
	(b) Show that dipolar relaxation is analogous to the charging and discharging of the capacitor.		