s & = ¥ = .. . — v — o FRN T Pt i e y— = -~ —_ —— —— —— - 3 = ¥ £

WEB SECURITY

Project report submitted in partial fulfilment of the
Requirement for the of degree of

Bachelor of Technology
In

' Computer Science Engineering

By:
Rahul Tiwari 091233
Surbhi Jain 091242
Nikita Gupta 091253
Sweta Singhal 091288

Under the supervision of

Mrs. Rajni Mohana

Jaypee University Of Information Technology

Waknaghat , Solan-173234, Himachal Pradesh

CERTIFICATE

This is to certify that the work titled “WEB SECURITY” submitted by “Rahul Tiwari,
Surbhi Jain, and Nikita Gupta” in partial fulfillment for the award of degree of B.Tech. of
Jaypee University of Information Technology, Waknaghat has been carried out under my |
supervision. This work has not been submitted partially or wholly to any other University or |

Institute for the award of this or any other degree or diploma. i

Signature of Supervisor ...
Name of Supervisor(s) Prof.,Brig(Retd) D raXHOD - CSEMT Dept.) 1
iniMohana.(Senior Lecturer)

Date r2012

Certified that this work has not been submitted partially or fully to any other 4

University or Institute for the award of this or any other degree or diploma.

1. Rahul Tiwari
(091233)

2. Surbhi Jain
(091242)

3. Nikita Gupta
(091253)

ACKNOWLEDGEMENT

We thank our project guide Mrs. Rajni Mohana for providing us with the
opportunity of undertaking our final year project under her. We thank her for her
guidance, careful supervision, critical suggestions and encouragement that has

proved to be a source of immense help and supervision.

We also wish to thank our H.O.D. Dr.Prof.S.P. Ghrera for making us competent in c,

c++ that we were able to make our project.

fst ,2013%

Date: Rahul Tiwari
Surbhi Jain
Nikita Gupta

_— E——

CONTENTS

ADSEIACE ..ottt st s 5
L INtroduction ..ot 6
L1 HISEOIY .1 erriveeirestee ettt et eb e et bt b e st 6
[.2 OBJECHIVE .ovieiiiecriiictitcir et e e 8
1.3 Software specifications and requirements..........ocoeiiiiicncincn s 8

1.3.1 Non functional reqUiremMents.covvereereecrscrseinscrreerreeseseesesessenaenne 8

1.3.2 Software ReqUIrements.........ccccovaieinennnniienice et caeseens 9

1.3.3 Hardware REQUIFEIMNLS......c.ccereierirenearinernrse e serneseeese e e eseseenennes 9

2. Literatlre SUIVEY ..c.ccccooiiieiirceeceensnerorersernernesrnesssnessnesensasssasesssresssases sesessassarenses 10
2.1 Web SECUTILY SUTVEY....eeriirieiiiiir st s it sn s st s ssasbs s e s s s aae 10
2.2 Existing threats to internet USAZEvvviviirimiiiin s e siissssesses 11
2.3 Existing Algorithms — Password Protectioncoevvvvvrnninnvnnecennennns 14
2.4 Existing Algorithms- Ur]l Filtering ... 25

3. Design and analysis ... 28
3.1 ER diagram

.. 28
3.2 Use €ase dIABIAIM ...vvvvveerrererrtiiecis ettt bes sa s s st s s srasstassa oo 29
3.3 Data flow diagram{DFD) — 0 leVel. .ccoovvvinirrciirrerrrennerree e araene s 30
3.4 Data flow diagram(DFD) — 1 level. ..o 31
4. Programming and algorithm ... 32
4.1 AlZOIIIMS...oeivviiiiciiini s 33
5. ApplicationsS...eciviiiis i s 36
5.1 Digital SIZNAtUIES.......coceeireeeririii s s s 36
5.2 Message Authentication ... saesinen 37
5.3 ULl fIEEINZ...eeceeereecrirrerrererrerv s st s s s cn bbb s anenasnsssuses 38
6. IMplementation ..o s 40
To RESUI Lot 61
ToLTNPUL ettt e s b bbb e s e b 61
T2 OUIPUL ..ottt e s s e e b e g s s ss s s s s cassassaaasasabetasabede s 63
8. Conclusion and Future SCope...........ccoooiiiiiiiiiinininr s 65
REFEFEICES ... b e bbb 69

t
P

ABSTRACT

The World Wide Web is widely used by businesses, government agencies, and many
individuals. But the Internet and the Web are extremely vulnerable to compromises of various
sorts, with a range of threats as shown. These can be described as passive attacks including
eavesdropping on network traffic between browser and server and gaining access to information
on a Web site that is supposed to be restricted, and active attacks including impersonating
another user, altering messages in transit between client and server, and altering information on

a Web site. The web needs added security mechanisms to address these threats.

el

T e DT

T EPH IR AT T TR T |F

1. INTRODUCTION

1.1 History

The World Wide Web is widely used by businesses, government agencies, and many
individuals. But the Internet and the Web are extremely vulnerable to compromises of various
sorts, with a range of threats as shown. These can be described as passive attacks including
eavesdropping on network traffic between browser and server and gaining access to information
on a Web site that is supposed to be restricted, and active attacks including impersonating
another user, altering messages in transit between client and server, and altering information on

a Web site. The web needs added security mechanisms to address these threats.

Possible threats to-

1. Integrity:

[t provides the guarantee that data is protected from accidental or deliberate {malicious)
modification. Integrity is a key concern, particularly for data passed across networks.
This involves the threat to the user data or the valuable content of the person or the
organization. ‘

This threat has very serious consequences like loss of valuable information, compromise
of the machine secrecy, thus increasing the vulnerability of the web security.

TR A T T T T TR Ty e S aTT e o

Countermeasures:
Integrity for data in transit is typically provided by using hashing techniques and
message authentication codes using the cryptographic checksums.

Confidentiality:

Confidentiality, also referred to as privacy, is the process of making sure that data
remains private and confidential, and that it cannot be viewed by
unauthorized/illegitimate users .it involves the eavesdropping on the net, theft of info
from the net, theft of the data from the client, and the information about the network
configuration.

This threat has very serious consequences like loss of information, loss of privacy.

Countermeasures:
Encryption is frequently used to enforce confidentiality. Access control lists are another
means of enforcing confidentiality.

Authentication:

It is the process of uniquely identifying the clients or the legitimate user of the web
applications and services. These might be end users, other services, processes, or
computers.

In this only certain users have the right to control the process like sending, receiving or
modification of the data.

It has serious consequences like misinterpretation of the user which leads to the belief
that false information is valid.

Countermeasures:
Cryptographic techniques are frequently used, concept of digital signature is also widely
used to provide the authenticity.

Authorization:

It is the process that governs the web data, applications, resources and various
operations involved.in this only authenticated client is permitted to access. Resources
include files, databases, tables, rows, etc., together with system-level resources such as
registry keys and configuration data. Operations include performing transactions like
purchasing a product, transferring money from one account to another etc.

s

E
E
|

It has serious consequences like some unauthorized user may access or control the data
or account leading to mishandling of accounts.

Countermeasures:
Cryptographic techniques and the access control list are widely used.

5. Availability:

From a security perspective, availability means that systems remain available for
legitimate users. Otherwise the illegitimate or the unauthorized user may flood the
system with bogus requests by killing the user threads and leading to filling up the disk
or memory space.

It has consequences like it becomes very annoying and disruptive for the legitimate
users, preventing them from getting their work done.

Countermeasures:
This type of attack is very difficult to prevent but techniques like tracking of the source

[P addresses and use of special routers can be helpful.

N

1.2. Project Objective

e To study the present web security concerns and threats.

A T

¢ To study and analyze the working and algorithms of security solutions currently

available.

* To implement the security solutions in an application that assures safe and productive

web use.

1.3. Software specifications and requirements

1.3.1 Non Functional Requirements

e Efficiency (resource consumption for given load)

e Effectiveness (resulting performance in relation to effort)

8

_
s
if ' ¢ Robustness ”

¢ Security or Factor of safety

e Stability

e Testability 1

i

{ el
!

1

1. JAVA compatible running platform — Java EE Eclipse. i
Database — MySQL
Jre 1.6 or above

Web compatible server.

Bl

!
%
: f
‘ 1.3.2 Software requirements g
I

1.3.3 Hardware requirements |

1. Switches/Hubs

2. Wires to establish connectivity.

ot

s e - ———
. o
o

B

2.LITERATURE REVIEW

2.1. A Survey of Web Security

With no insult intended to the early Web designers, security was an afierthought.

At the outset, the Web’s highest goal was seamless availability. Today, with an
internationally connected user network and rapidly expanding Web functionality, reliability
and security are critical. Vendors engaged in retrofitting security must contend with the
Web environment’s peculiarities, which include location irrelevance, statelessness, code and
user mobility, and stranger-to-stranger communication. In this article, we present a survey
of Web-specific security issues. Given the Web’s rapid ascent, our offering is necessarily a
mix of short-lived techniques and long-lived principles. Our focus is on security in the
server and host environments, mobile code, data transport, and anonymity and privacy. We
do not delve into cryptography, electronic commerce, or intrusion detection because they
are not Web-specific, and they are well covered elsewhere.

1

SERVER SECURITY i
In the client-server environment, we focus on the server side because the server is the

central system and the repository of information resources. The server is thus the locus of {

b |

threats, whereas the client is largely out of sight. Protecting the client side from the server
side is generally not an issue, except where client privacy is a concern, as we discuss below.
We describe security issues using a Unix-based Apache server as an exemplar. The Apache
server is based on the server at the National Center for Supercomputing Applications
(NCSA) and is the most widely deployed server (for more on Apache, see
http://apache.org). CERN’s server is almost parallel to the Apache server and is well
documented. Sadly, many commercial servers have diverged from each other and from the
Internet’s de facto standards. There is no way for us to cover them all. However, regardless
of what Web-server software is running, some things are common, such as security
configuration, authentication and access issues, and methods of dealing with active content.

Configuration basics

The biggest cause of security problems is bad management. In distributed systems, the first
place management affects security is in the system’s configuration.

A bad system configuration can mean disaster. If configuration is not controlled, it is
difficult to express management policy in the system’s operational characteristics. As
system complexity increases, the problem becomes acute: The inability to make systems
conform to policy ensures increasing disarray and the exploitable holes that result. The *
Web-server configuration file lives in the server root. Configuration files are composed
entirely of directives and explanatory comments. A directive is just a keyword that the
HTTP daemon recognizes, followed by arguments. Directives are insensitive to case and
white space. They control which file contains user names and passwords and which file

10

contains group namesand passwords, as well as access to the files in the document tree,
including default permissions and how to override them locally.

2.2.Existing attacks to web security:

Types of attacks:

F
E
¥
f
i
IL]

1. Denial of service attack:

i

The function of a denial of service attack is fundamentally to flood its target
machine with so much traffic that it prevents it from being accessible to any other
requests or providing services. The target machine is kept so busy responding to the
traffic it is receiving from its attacker that it has insufficient resources to respond to
legitimate traffic on the network.

Denial of service attack attempt to consume all of system resources like-
CPU,memory space etc. when any of the resource reaches it limit the system stop
responding and web site become inaccessible and usually a message like “web page
not responding” or “web page not available” is shown to the users.

Example - Tatkal ticket booking service of indian railways.

2. Cross-site scripting

Also known as XSS, is the most common attack on the web sites.it involves the :
injection or the introduction of the client-side script iean attacker can send .
malicious content from an end-user and collect some type of data from the victim ;
site.

The main reason for such kind of attack is the breach of the browsers security.

In XSS attack, the hacker infects a legitimate web page with his malicious client-
side script. When a user visits this web page the script is downloaded to his browser
and executed allowing the hacker to intrude.

mprTRTeW U Py

kil O pe

3. SQL injection:

This attack involves the introduction of SQL statements in a web form entry field in '
an attempt to get the website to pass a newly formed false SQI. command to the H
database.
This type of attack is also known as ector attack. i
Example- Introduction of false dataentry table in credit card and banking systems. w

11 |

TP R T TR 17T T g Ty e } RS

4, Man- in- the- middle:

Also known as the bucket brigade attack, this type of attack involves the active
eavesdropping, in which the attacker makes independent connections in between the
two parties and relays messages between them, making them believe that the
messages are coming from each other. all the cryptographic systems are secure to
this attack. ;
Example.- person A sends the message to B “meet me at 10 am”, a person C intrude '
3 in between the network and modifies to “meet me at 10 pm”.

5. Smurf attack:

This is a type of denial of service attack, involving the respond to various ICMP
requests by the various host system, Thus multiplying the traffic on the network.

6. Buffer overflow:
This attack involves the introduction of malicious code to the victim’s machine

without having any bound checking, which results in the uninterrupted execution of
the code leading to filling of system memory and finally resulting in a system crash.

7. Spoofing:

in this attack a person or program successfully pretends as another by falsifying data
and thereby gaining an illegitimate advantage of the system. This is done by using
the source IP address of any system and sending message to other victim IP
addresses.

4 8. Brute Force

In cryptography, a brute-force attack, or exhaustive key search, is a cryptanalytic

attack that can, in theory, be used against any encrypted data (except for data encrypted
in an information-theoretically secure manner). Such an attack might be utilized when it
is not possible to take advantage of other weaknesses in an encryption system (if any
exist) that would make the task easier. It consists of systematically checking all

possible keys until the correct key is found. In the worst case, this would involve i

traversing the entire search space.

The key length used in the cipher determines the practical feasibility of performing a
brute-force attack, with longer keys exponentially more difficult to crack than shorter
ones. A cipher with a key length of Nbits can be broken in a worst-case time
proportional to 2 and an average time of half that. Brute-force attacks can be made less
effective by obfuscating the data to be encoded, something that makes it more difficult
for an attacker to recognise when he/she has cracked the code. One of the measures of
the strength of an encryption system is how long it would theoretically take an attacker [5

to mount a successful brute-force attack against it. i

Brute-force attacks are an application of brute-force search, the general problem-solving

technique of enumerating all candidates and checking each one. i

9. Birthday Attacks

As the name suggest Birthday attack a collision or clash is a unique situation that occurs when ;
I
two distinct pieces of data have the same hash value , checksum , fingerprint, or cryptographic ;

digest. This attack can be used to abuse communication between sender and receiver.The attack

depends on the higher likelihood of collisions (as specified earlier) found between random
attack attempts and a fixed degree of permutations (pigeonholes), as described in the birthday 1

paradox. i

10.Preimage Attack

In cryptography, the preimage attack is a classification of attacks based on cryptographic hash
functions for finding a message that has a specific hash value as defined. A cryptographic hash 1;

function should resist attacks on its preimage (message). ;

In the context of attack, there are two types of preimage resistance:

» Preimage resistance: for essentially all pre-specified outputs, it is computationally ,
infeasible to find any input which hashes to that output, i.e., to find any preimage x’ such ;
that h(x') = y when given any y for which a corresponding input is not known. '

: » second-preimage resistance: it is computationally infeasible to find any second input which

has the same output as any specified input, i.e., given X, to find a 2nd-preimage x' != x such ;

that h(x) = h(x').

These can be compared with a collision resistance, in which it is computationally infeasible to

find any two distinct inputs x, x’ which hash to the same output, i.e., such that h(x) = h(x").

Collision resistance implies 2nd-preimage resistance of hash functions; and collision resistance

does not guarantee preimage resistance.

2.3 Existing Algorithms - Password Protection/Verification

Server Side Client Side

Server Sends Challenge to Client
Generates Challenge '* inn l* * Receives Challenge

+

The server side generates a challenge and sends it to
the client. The client combines and encrypts the
inputted username, password and server challenge. It
sends the result back to the server.

I.OGIN

storage At the same time, the server retrieves the actual
username and password from storage. It combines
these with challenge and encrypts the resuit, If the
client's response matches the server's result, the login

- .
- -
- oy
‘ is successfut. ’

Encrypt & \
Hash / / »

The diagram as you can see tells the server as well as client side function to provide basic

functionality like authentication, integrity, non repudiation, as well as confidentiality.
Server;

Server generates challenge also know as key and sends the same to client. Server already has
Username as well as password saved in its storage it simply retrieves the data and encrypt it

with challenge (Key).

14

N L

.

R B ey e ul Y

Server also verifies whether the encrypted message from both server as well as client side is

same if verified then only the login is successful.
Client:

Client receives the challenge (Key) generated by server and encrypt it along with username as

well as password. Also client sends the encrypted message to server.

Cryptographic hash function:

+ An algorithm that takes an arbitrary or variable block of data and returns a fixed-

size bit string (in SHA-1 fixed length of 128 bit), the (cryptographic hash value), such

that an accidental (natural) or intentional (malicious) change to the data or rather the

message will (with very high probability) change the hash value H.
+ Message: data to be encoded or encrypted.

* Message digest: hash value(encoded or encrypted data).

Hash Algorithms

15

B R (Gl =~ ol Sk

256 266 | 266 | 286 3@ | 266
“ioRE224N92MB0N28] 256 (1024) B4 | 32 1BOAZBEE
128 /4 128 - 12 B64
128 128 512 B4 @ 43
128 128 512 B4 | 3 64
TTUPANAMA 256 %6 | - k7]
o Up to 608/1 216 (19 3
RadioGatin words) 58 words words - 1-64 -
T T T R T R
" RIPEMD-128/256 128/256 128256 1 512 | B4 | 3 64
RIPEMD-160 160 160 ! 612 { B4 | 32 80
- T we
160 B0 @ 512 ¢ B4 | 32
SHA1 160 180 | 512 | B4 | 32 80
SHA.256224 256224 26 512 B4 | 32 B4
SHAS512/364 £12/384 512 1024 128 | B4 80
Tiger2)-192/160:128° 19241601129 192 812 B4 | B4 24
WHIRLPOOL 512 512 | 512 26 8 10 .
-
. breppyud
el | gise | erxe | ejxe CONRION | pgegyg | bIotmads
Vo Ombryaze (puel | 060 Lok rening | porq | BOMUNE L et a2he 5

A Comparison of MDS5, SHA-1, and RIPEMD-160

i ugeLwng)

" RE24 KHOMD UfYCKE

16

2 W e -

MDb35 SHA-1 RIPEMD-160
Digest fength 128 bits 160 bits 160 bits
Basic unit of processing 512 bits 512 bits 512 bits
Number of steps 64 (4 rounds of 16) 80 (4 rounds of 20} 160 (5 paired rounds of 16)
Maximum message size o 264, 1 hils 264 . 1 bitg
Primitive logica! functions 4 4 5
Additive constants nsed o4 4 9
Endianness Litile-endign Big-endian Little-endian
Algorithm Mbps
MD3 324
SHA-1 14.4
RIPEMD-160 13.6

Note: Coded by Wei Dai; results are posted at http:/fwww.eskimo.com/~weidai/benchmarks. txt

Secure Hash Algorithm (SHA)

In this section the first topic we will cover is secure hash algorithms (SHA) and we will deal
with, what is SHA, Howwe can be design and use it to provide message authentication and

digital signature.

I. MOTIVATION

As we know so far, without any method that provides a hint, it is very difficult for the receiver
as well as cryptanalyst to identify the legitimate plaintext automatically. And various modes of
operation provide no data integrity protection any case. Besides, the whole message has to be
encrypted, which causes unnecessary overhead for message authentication and integrity.Error-
detection code (non-cryptographic checksum) provides redundant data for automatically

checking data integrity. However,

17

(1) Using the code directly can only provide integrity protection for modifications made due to

natural causes, but not malicious changes;

FerTerTEre e N

g (2) Simply encrypting the error detection code is not applicableas the attacker is able to identify

the messages that can generate the same error detection code. This means that without knowing

the value of the code, the attacker can still change the message without being detected;

(3) Encrypting the entire message still suffers fromvarious attacks.Message authentication code i
consists of a cryptographic checksum which uses a key in generating the encrypted code.
However, the use of MAC (Message authentication code) requires a shared secret key between

the communicating parties. It does not provide digital signature.

Now let’s start the study of Hash algorithms, which provide a solution for the above problems.
Let’s first see the non-cryptographic checksum. Their main drawback is that an attacker is able
to build a message that matches the non-cryptographic checksum. Based on these observations, i
we would like to design a “special code” where the original message cannot be regenerated on

the basis of its “checksum”. This thinking results in the design of hash algorithms.

II. REQUIREMENT FOR HASH FUNCTIONS

A hash functioni.eff takes a message i.eM of variable length and transforms it into a fixed-

length hash value A, as mathematically shown below.

h=H(M) (1)

The hash function /4 must have the following specified properties:

* One-way property: for any given value A, it is computationally infeasible as well as
impossible to find msuch that H(m) = h.

* Weak collision resistance: for any specified message m, it is computationally infeasible to
formulatey/=xi.e H(y) = H(x)

* Strong collision resistance: it is computationally infeasible to find any such existing pair (x,

»), such that H(x) =H(y).

18

111. HASH FUNCTION DESIGN

There are several point able similarities in the evolution of both hash functions as well as
symmetric block ciphers. Just likesymmetric block ciphers utilizes the various rounds of
substitution-permutation network (some ciphers like DES useFeistel cipher, a special case of S-
P network) to encrypt each data block of the message, most hash function designs(such that
SHA)share the same design structure where multiple rounds of compression functions (which
further consist of Round Functions) are applied to each basicprocessing unit (block accordingly

64 bit or 124 bit or 256/ 512 bit).

MD5 (Message Digest) and SHA-1 are two most widely and acceptable secure hash algorithms.

In particular, the MD5 messagedigest algorithm was developed and coded by Ron Rivest. The
algorithm consumes the variable-length input messagein512-bit blocks each, and instead
produces a 128-bit fixed length message digest as output. The Secure Hash Algorithm(SHA)
originated and was developed by National Institute of Standards and Technology (NIST). It is
based on theMDS5 algorithm. Based on different digest lengths (the block size), SHA includes
algorithms such as SHA-1, SHA-256,SHA-384, and SHA-512 (being the latest).

IV. HASH FUNCTION USAGE

A hash function is basically a function of the input message. It does not use any sort of key.
Thus, hash functionsthemselves do not provide security of any kind. However, hash functions
can be used along with either of symmetric or asymmetric key (algorithms) to achieve various

security goals.

A. HMAC

Note that in Fig. 1, no encryption is required for one of the major security concern message
authentication. As we saw in the last section hash functions are generally used along with
symmetric or asymmetric encryption algorithms for security but hash function generally
aremuch faster than symmetric encryption algorithms such as DES and alone provide
authentication, this observation shows that hash functionalone can be used to design fast
message authentication mechanisms. HMAC is such a message authenticationcode known as

Hash message authentication code or HMAC.

19

+— Source A

4—————-Destination B ———»

M

H———

/
) H(M)

......... X MAC Compare
H EAH(M)]
(b) Symmetnic key encryption: authentication
L H
g o Kt, Compare
s
/ TIVRR—
Exp[H(M)]

(c) Asymmetric key encryption: authentication and digital signatuge

Explanation;

Fig (a):
Sender:

As we see in figure (a) we have a message M which is passed through hash function H and then

Encrypt using a key K to generate an encrypted messageEK[M || H(M)]
Receiver:

Receives EXTM || H(M)] and decrypt it using D function forming M the message and H (M) the
hashed message now the receiver already posses the hash function H so it passes the decrypted
message M from the Hash function H and if the H (M) obtained now is same as the one

received then the message is validated.

Similarly in other figures the encryption and Hashing along with Private key is introduced to
fulfil other functionalities like digital signature as we can see the figure given below it provides

confidentiality, authentication and digital signature all together just by introducing two keys(K ,

20

e R T it by

g s

KRa , KRb) for encrypting message , private key to encrypt hashed message , public key to
decrypt hashed message respectively.

=R —m

+—— Source A————» 4+—Destination B——»
EuM ¥ Egp[H(AD]] , /

af | i
KR,
FmE E o [HM]

{d) Symumetric and asymmetric key encryption: confidentiality, authentication and digitlal signature

<0 Tl e —,
MAC L—t # Compare
- ,
sil—= HMLS

{2) No encryption algorithm is used: authentication

Ex M| HQA 5] /

HMY S
{f) Symmetric key encrypiion: authentication and confidentiality

Fig. 1. Basic Usages of Hash Funciions.

VI. DESIGN
Secure Hash Algorithm

+ SHA is based on the hash function M4 and its design closely models MD4.

* There are three versions of SHA, with hash value lengths of 256, 384, and 512 bits,
known as SHA-256, SHA-384, and SHA-512.

+ designed for compatibility with increased security provided by the AES cipher

SHA-512 LOGIC

* The algorithm takes as input a message with a maximum length of less than 2128 bits

and produces as output a 512-bit message digest.

21

» The input is processed in 1024-bit blocks. Figure 12.1 depicts the overall processing of a

message to produce a digest.

SHA-512 Overview

- N X 1024 bits =
1 . L bite

108 bitg-.-

3

of ko A

-]
AR A e
- -t 7]
o o .

e L0024 bikt e tpreee [G24 it eeeped b {124 bits ——nd

LA L)

B Ry

LA L

' + = wond-by-wond nldition mod 74 ’

Explanation:

.

As we can see in the above figure we have a message of variable length L and along with this

we have two padding bits one comprises of the length of the message 128 bits whereas other

consist of parity bits like all bits 0" only the MSB being 1’. As we know the main function of '
hash function is to take in variable length message and produce fixed length bits like in case of |
SHA-1 1024 bits each. The function F is Round function discussed later. |

In detail.... |

Now examine the structure of SHA-512, noting that the other versions are quite similar. The

procéssing consists of the following steps:
* Step 1: Append padding bits

* Step 2: Append length

22

+ Step 3: Initialize hash buffer

» Step 4: Process the message in 1024-bit (128-word) blocks, which forms the heart of the

algorithm
« Step 5: Output the final state value as the resulting hash
SHA-512 Compression Function
* heart of the algorithm
* processing message in 1024~bit blocks
* consists of 80 rounds
* updating a 512-bit buffer
* using a 64-bit value Wt derived from the current message block

* and a round constant Kt that represents the first 64 bits of the fractional parts of

the cube root of first 80 prime numbers

SHA-512 Compression Function (explanation)The SHA-512 Compression Function is the heart
of the algorithm. In this Step 4, it processes the message in 1024-bit (128-word) blocks, using a
module that consists of 80 rounds, labeled F in Stallings Figure 12, as shown in Figure 12.2.
Each round takes as input the 512-bit buffer value, and updates the contents of the buffer. Each
round t makes use of a 64-bit value Wt derived using a message schedule from the current
1024-bit block being processed. Each round also makes use of an additive constant Kt, based on
the fractional parts of the cube roots of the first eighty prime numbers. The output of the
eightieth round is added to the input to the first round to produce the final hash value for this
message block, which forms the input to the next iteration of this compression function, as

shown on the previous slide
SHA-512 Round Function

These a,b,c,d,e,f,g,h are the registers used to save the data after each round of permutation and

combination. As we can see in the figure itself there are many functions like summation,

majority, xoring,oring etc.

b

R V. ol I B

-t 512 bits o

The structure of each of the 80 rounds is shown in Stallings Figure 12.3. Each 64-bit word
shuffled along one place, and in some cases manipulated using a series of simple logical
functions (ANDs, NOTs, ORs, XORs, ROTates), in order to provide the avalanche &

completeness properties of the hash function. The elements are:
Ch(e,f,g) = (e AND f) XOR (NOT ¢ AND g)

Maj(a,b,c) = (a AND b) XOR (a AND ¢) XOR (b AND ¢)

Y (a) = ROTR(a,28) XOR ROTR(a,34) XOR ROTR(a,39)

¥(e) = ROTR(e,14) XOR ROTR(e,18) XOR ROTR(e,41)

+ = addition modulo 264

Kt = a 64-bit additive constant

Wt = a 64-bit word derived from the current 512-bit input block.

24

s | (034 Bty e W W Wy Wy W aWeasWiaWen W Wes Wi Wig

i
&4 hiis

the 64-bit word values Wt are derived from the 1024-bit message. The first 16 values of Wt are
taken directly from the 16 words of the current block. The remaining values are defined as a 1
function of the earlier values using ROTates, SHIFTs and XORs as shown. The function |

elements are:

80(x) = ROTR(x,1) XOR ROTR(x,8) XOR SHR(x,7)31(x) = ROTR(x,19) XOR ROTR(x,61)
XOR SHR(x,6)

2.4 Existing algorithms -URL Filtering

Algorithm/ Logic

Several service and device providers like Cisco, Websense, Surfcontrol, Blue Coat, and
Gemtek provide network-based URL filtering (NUF) as a solution to classity, monitor,

and control web traffic.

25

Gateway of network=bascd PC host
URL f' ltering :

.H @urTe rcquest (D UTTP request
Internet X »h -
“(4) 1ITTP response "

Web server

< Interna

(3 HTTP response “ct“'ﬂ‘_"k

URL analysis request @ @ URL analysis result

URL filtering E

network scrvcr

Fig. 1. The general overview of network-based URL filtering.

SPS: a simple filtering algorithm to thwart phishing attacks

Daisuke Miyamoto, Hiroaki Hazeyama, and YoukiKadobayashi

Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan D
fdaisu-mi, hiroa-ha, youki-kg{@jis.naist.jp 'W:
Abstract.

In this paper, we explain that by only applying a simple filtering :,

algorithm into various proxy systems, almost all phishing attacks

can be blocked without loss of convenience to the user. We propose a
system based on a simple filtering algorithm which we call the Sanitizing
Proxy System (SPS). The key idea of SPS is that Web phishing attack

can be immunized by removing part of the content that traps novice

users into entering their personal information. Also, since SPS sanitizes
all HTTP responses from suspicious URLs with warning messages, novice
users will realize that they are browsing phishing sites. The SPS filtering
algorithm is very simple and can be described in roughly 20 steps, i
and can also be built in any proxy system, such as a server solution, a
personal firewall or a browser plug-in. By using SPS with a transparent
proxy server, novice users will be protected from almost all Web phishing

attacks even if novice users misbehave. With a deployment model,

26

robustness and evaluation, we discuss the feasibility of SPS in today’s network operations.

P i ™
trustworthy third parties
check check g y
_) request / ¥ request/
. not verified sites check report
“
maintainer
—v[verified sites)/
request/ p -
chedk T
& rule-set update
update
response
SPS SPS
. t
application firewaill reaues browser
| ISP/ SSP) 5 __EndNode |

Fig. 4. Deployment Model of SPS

\ AL ow e

27

3. DESIGN AND ANALYSIS

The objective of the system design is to deliever the requirements as specified in the
feasibility report.

System design goes through two phases:

- Logical design

- Physical design.

Logical design includes data flow diagram,use case diagram and defines the
boundaries of the system.

Physical design defines the structure of the system.

3.1 E-R Diagram

This E-R diagram clearly shows the various attributes of the entities and the relation among
them.Here,the Admin having his own unique user id and password can access the web
server(cyberoam) and provide security to many users each aiso having unique user id and
password at a time.Apart from that many user can access the server at the same time and server
can handle the many request too.

URL
filbering

password
protection

firewali
rodification

provide
security
to

antivirks
il

accossfo
antrol

1
1
|
1

.
io@w !

4
i
'
u
|
)
)

tybernam

28

VAT S 2/

3.2 Use Case diagram

Provide password to
log-in

Web user Ty Web server

authentication

access to the web site

Controls the webpage

Password reset

VAL S 2 S

Block the webpages

admin

Provide security
certificate

In this Use Case Diagram we have three Actors involved in the process of providing web
security. Here, web user provide the login password to access the network or the web page and
can also request for the password reset. Admin has control over the server and the network and
allow the user to access server and provide other services. similarly web server play its role by
allowing to access those pages having security certificate.

29

3.3 Data Flow Diagram : 0 level

admin

web user

web security

7 f
provides .
>
web server

This DFD(0-level) shows flow of data or info and the role each among the user,admin and the
web server play in providing web security.

30 !

3.4 Data Flow Diagram: 1 level

admmn

web user

1.1

log-in to system

provides access

A T N T

web server

This DFD (1-level) provides more information than the 0-level and explains the role of each in
a more broad way,like a user has to log in to acess the server ,and the role of Admin is to check
the authenticity by providing certain unique ids and securing password of each,similarly the
web server provides acess when the authenticity is checked.

31 .

4. PROGRAMMING AND ALGORITHMS

Password Protection

AIM

To provide secure login by multiple client to a centralized server.

Algorithm :

At Client End:

1. Initialize hostname (host), port address (port). ;\
2. Establish a connection to the previously initialized host using Socket class "i';
object. Emi

3. Retrieve the user name (user) and password (password) from the html document o
using parameters else initialize them.

4. Define a time stamp (t1) and set it to current time, large random number (q1).

5. Form a message digest using username , password , time stamp random number

and send it to the server for authentication.

At Server End:

1. Bind the server that is create a server socket to accept the connection from client.

2. Accept the connection with the client.

3. Receive and read the username (user), time stamp(tl) , random number (ql) ,
length of message digest (length) , and message digest(p1).

4. Look up for the associated password with the received username in the
passwords database.

5. Create a new message digest to verify the authenticity of received message

digest using username ,password,time stamp , random number.

32

: .

6. Verify whether the received digest is equalto the system generated message
digest.

7. Continue with the established connection if the condition in step 6 is satisfied

else disconnect the connection.

Creating Message Digest in JAVA:

1. Declare and define a message digest class object in java using getlnstance
method.

2. Feed the data to be digested that is message to the object in binary form using
update method.

3. Create the digest and store it in a binary array using digest method through
message digest class object.
Flowchart :
Class for Client

33

NS S

Class for MessageDigest Creation

Class for Server

5. APPLICATIONS

Applications of hash functions are abundant in cryptography and programming practice. We
describe several scenarios, which can be used as models for assessing security of real-life
applications.

5.1 Digital signatures

Historically, digital signatures were the first application of cryptographically secure hash
functions. Hash functions serve a dual role in practical signature schemes: they expand the
domain of messages that can be signed by a scheme and they are an essential element of the
scheme’s security. The first role arises from the fact that it is much easier to design a signature
scheme which is secure for signing messages of a fixed length. Consider, for example, the RSA
scheme, where the signature of a message 0 <M < N is (M) = MD mod N. Notice that the
restriction that 0 < M < N is necessary, since o(M) = o(M+N). A collision resistant hash
function that hashes arbitrary-length strings into numbers between 0 and N lets the signer sign
any message M by exponentiation (raising to a secret power) the hash of the message o(H(M))
= H(M)d mod N.

This is a generic mechanism that transforms any signature scheme
good for signing messages of a fixed length and a collision-resistant hash function into a
signature scheme that can handle arbitrary-length messages. The mechanism is called the hash-
and-sign paradigm and is the basis for all modern practical signature schemes. It is also quite
remarkable that virtually all practical signature schemes are either outright insecure or lack
proof of security in any reasonable model for signing even fixed-length messages if the
message is not hashed. For instance, there is a trivial attack against the RSA signature scheme
without a hash: any valid signature C =MD mod N enables the attacker to compute a signature
on M2 mod N, which is C2 mod N = (M2)d mod N. The second role of hash functions is to
prevent this or similar attacks. It is not well understood which properties of the hash function
(akin to one-way or collision-resistance) are sufficient to fulfil this role.

A rare example of a signature scheme that uses a hash function
only for domain extension (i.e., it does not require a hash function for signing short messages)
is the Cramer-Shoup signature scheme [CS00].

For any hash-and-sign signature scheme, such as FIPS-approved RSA, DSA, and

ECDSA [NISTO00], a practical collision-finding attack on the underlying hash function is
devastating. Indeed, if the attacker can prepare two documents M1 and M2, whose hashes are
identical, then a hash-and-sign signature on M1 is also a valid signature on M2: o(H(M1)) =
o(H(M2)). It means that if the attacker can obtain a signature on

M1, he automatically gets a signature on M2, which the signer has never examined and
certainly did not expect to sign. H The hash-and-sign paradigm can be symbolically represented
as-o- (H(M)), where H-is-a-hash-function and o(*) is the output of a signature scheme. It is
imperative that the hash function be collision-resistant if we are to stay within this paradigm.
Alternatively, we may combine a signature scheme with a keyed hash function satisfying the
following definition:

Definition We say that the keyed function H: {0, 1}x {0, 1}£ 7— {0, 1}n is target-collision
resistant (TCR) if it is hard for the attacker to win the following game:

1. The attacker chooses x € {0, 1}.

2. A random key k is chosen from {0, 1} £.

36

3. The attacker outputs y € {0, 1}. The game is won if and only if Hk(x) = Hk(y).

H Consider the following signature scheme, symbolically represented by (k,o(k||[Hk(M)).

To sign a message M, the signer generates a random key k and signs the concatenation of
k|[Hk(M). The signature is then constructed as a pair that consists of k and o(k||Hk(M)). It is
casy to verify that such a signature scheme is secure as long as the hash function is TCR and o
(*) is unforgeable for messages of length n.

H There is compelling theoretical evidence that TCR hash functions might be easier to
construct than keyless collision-resistant hash functions in the mold of MDS or SHA-1,
although no standard TCR functions currently exist.

5.2 MAC

Message-authentication code (MAC), introduced in Section 4.2, is a keyed hash function
satisfying certain cryptographic properties. Not surprisingly, a MAC can be based on a
collision-resistant keyless hash function (although a na"ive way of doing so can be easily
broken, as described in Section 4.2). In fact, the most commonly used MAC construction,
called HMAC, falls into this category. Both TLS and IPSec standards suggest using HMAC
based on either MD5 or SHA-1. Assuming that H is a collision resistant hash function, HMAC
with secret key k € {0, 1}€ is defined as follows: HMACk(M) = H(k ®cl|H(k @Dc2|M)),
where ¢l and c2 are two (-bit constants.

HMAC is provably secure under the assumption that H is collision-resistant
and the compression function C(h, x) is pseudo-random if h is unknown. None of the existing
attacks on hash functions works if the initial part of the hash function’s input is unknown,
although such attacks are impossible to rule out in the future. It is important to note that MAC
can be based on other primitives than collision resistant hashes. One recently standardized
construction, CMAC, proposes to use a block cipher, such as AES, in the CBC mode [NIST05].
Another construction, which can be as fast as 1.5 cycles/byte (cf. Table 3), is called UMAC and
currently exists in the form of an Internet draft; its RFC is forthcoming [B+05].

37

&

IMPLEMENTATION

Interface designing of login page

//this is the program for creating the interface of the login form,written in Java using servlets
and //the swing package ‘

importjava.awt.*;
importjava.awt.event.*;
importjavax.swing.*;
public class loginpage extends JFrame
{
privateJLabel tagl;

private)Label tag2;

privateJ TextlFielduserarea;

privateJPasswordFieldPasswordarea;

privateJButtonloginbutton;

privateJPanelcontentPane;

publicloginpage()
{

create();

this.setVisible(true);

private void create()

39

et

tagl = new JLabel();

tag2 = new JLabel();

userarea = new JTextField();

Passwordarea = new JPasswordField();

loginbutton = new JButton();

contentPane = (JPanel)this.getContentPane(};
tagl.setHorizontalAlignment(SwingConstants,RIGHT);

tagl.setText("user_id:");
tag2.setHorizontal Alignment(SwingConstants.RIGHT);

tag2.setText("user password:");

userarea.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

userarea_response(e);

|35

Passwordarea.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

Passwordarea_response(e);

D

40

loginbutton.setText("LOGIN™);
loginbutton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ¢)

loginbutton_response(e);

1
contentPane.setLayout(null),
contentPane.setBorder(BorderFactory.createEtchedBorder());
contentPane.setBackground(new Color(150, 150,150));
additems(contentPane, tagl, 5,20,106,20);
additems(contentPane, tag2, 5,57,106,20);
additems(contentPane, userarea, 120,10,200,25);

additems(contentPane, Passwordarea, 120,45,200,25);

N -

additems(contentPane, loginbutton, 130,80,80,30);
this.setTitle("Login for Registered Users™);
this.sctLocation(new Point(76, 182));
this.setSize(new Dimension(335, 141));
this.setDefault CloseOperation(WindowConstants. EXIT_ON_CLOSE);

this.setResizable(false);

private void additems{Container containér,Component cl,int a,intb,intwidth, int
height)

c¢l.setBounds(a,b,width,height);

41

|

container.add(cl),

private void userarea_response{ActionEvent ¢)

{
}

private void Passwordarea_response(ActionEvent ¢)

{

private void loginbutton response{ActionEvent e)

{

System,out.println("\nloginbutt@n_response(ActionEvent e) called.");

String username = new String(userarca.getText());

NN e o ¥

String password = new String(Passwordarea.getText());

iflusername.equals("") || password.equals(""))
{
loginbutton.setEnabled(false);

JLabelerrorFields = new JLabel("please enter the
username/password to login.");

J OptionPane.showMessagerDialo g(null,errorFields);
userarea.setText("");

Passwordarea.setText("");

loginbutton.setEnabled(true);

this.setVisible(true);

42

.

else

public static void main(String[] args)

{
JFrame.setDefauitLookAndFeclDecorated(true);
JDialog.setDefaultl.ookAndFeelDecorated(true);
newloginpage(); N
IH | '}
} ‘
/
Codes:
MESSAGE DIGEST
f’*

defines two static methods. The makeDigest()} method creates a message digest
from its

input data. It uses a helper method, makeBytes(), whose purpose is to convert a
long and a double

into an array of bytes.

*/

// importing the necessary packages into the java project

import java.io.*;

import java.security.®;

43

// main class function

public class PasswordProtection |

{

public static byte[] makeDigest(string user,Stringpassword,long t1,double ql)
throws NoSuchAlgorithmException
{
MessageDigest md= MessageDigest.getInstance("SHA");
md.update(user.getBytes());
md.update(password.getBytes());
md.update(makeBytes(t1,ql1));
return md.digest();

}

public static byte[] makeBytes(long t,double q)

throws IOException

{
ByteArrayOutputStreambyteOut = new ByteArrayOutputStream();

DataQutputStreamdataOut = new DataOutputStream(byteOut);
dataQut.writeLong(t);
dataOut.writeDouble(q);

return byteOut.toByteArray();

}

44

CLIENT END CONNECTION
import java.io.*;
import java.net.*;
import java.security.*;

import java.util. Date;

import PasswordProtection

public class PClient
{
public void sendAuthentication(String user,String password,
OutputStreamoutstream)
throws IOException,NoSuchAlgorithmException
{

DataOutputStream out = new DataOutputStream(outStream);

long t1= (new Date()).getTime(),

double q1 = Math.random();

byte[] pl = PasswordProtection.makeDigest(user,password,t1,q1);

out.writeUTF(user);

out.writeLong(t1);
out.writeDouble(ql);
out.writelnt(pl.length);
out.write(pl);
out.flush(};

}

public static void main()

{

String host = new String("localHost™);
int port = 8080;
String user = "surbhi";

45

String password = "project";
Socket s = new Socket(host,port);
pClient client = new Pclient();
client.send Authentication{user,password,s.getOutputStream());

s.close();

}

SERVER END CONNECTION

/fthis program implements the server connection of password verification

import java.io.*;
import java.net.*;

import java.security.*;

//import java.util.Date;

import PasswordProtection;

public class PServer {
public boolean authenticate(InputStreaminStream}
throws IOException, NoSuchAlgorithmException
7 {
- DatalnputStream in = new DatalnputStream(inStreamy);

3 String user= in.readUTF();

long t1 = in.readLong(}; !
double gl = in.readDouble(); |
int length — in.readInt();
byte[] pl= new byte[length];
in.readFULLY{p1);

String password = new String("project");

byte[] check = PasswordProtection.makeDigest(user,password,t1,q1);

; | 46

return MessageDigest.isEqual(p1,check);
}

public static void main() throws Exception
{
int port=8080;
ServerSocket s = new ServerSocket(port);
Socket client=s.accept();
if(s.authenticate(client.getInputStream()))
System.out.println("succesful password"};
else
System.out.printIn("login failed");

s.close();

}

The above code implementing client and server end connection mainly provides a basic
connection between a single client and server, without any database connectivity.

Therefore below is the revised code that provides network connection between multiple clients
and server and uses a database at the server side to retrieve password corresponding to the client
that made the login request.

The environment simulated is depicted by the figure below:

47

Login request

CLIENT END CONNECTION - Client1

import java.io.*;
import java.net.*;
import java.security.*;

import java.util.Date;

publicclass client] {
publicvoid send Authentication(String user,String password,
OutputStream outstream)
throws IOException,NoSuchAlgorithmException
{
DataOutputStream out = new DataOutputStream(outstream);
long t1= (new Date()).getTime();

double q1 = Math.random();

48

._r

byte[] p1 = PasswordProtection.make Digest(user,password,t1,q1); i

out.writeUTF(user); ; .

out.writeLong(t1);

out.writeDouble(q1);
out.writeInt(pl.length);
out.write(pl);

out.flush();

}

publicvoid sendMessage(OutputStream outstream) throws IOException§
PrintWriter pw= new Print Writer(outstream, true);

BufferedReader buf = new BufferedReader(new
InputStreamReader(System.in));

while(true)

{

String msg= buf.readLine();

pw.printin(msg};

publicstaticvoid main(String[] args) throws UnknownHostException, IOException,
NoSuchAlgorithmException {

String host = new String("localHost™);

49

String user = "surbhi”;
Gring password = "project”;

gocket s = new Socket(host,port);

clientl client = new client1(};

client.send Authenticat ion(user,password,s.getOutputStream(}));

client.sendMessage(s. getQutputStream());

s.close();

50

CLIENT END CONNECTION - Client2

import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.lIOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;

import java.net.Socket;

import java.net.UnknownHostException;
import java.security.NoSuchAlgorithmException;

import java.util.Date;

publicclass client2 {

publicvoid sendAuthentication(String user,String password,
OutputStream outstream)
throws IOException,NoSuchAlgorithmException
{
DataOutputStream out = new DataOutputStream(outstream);
long t1= (new Date()).getTime();
double q1 = Math.random();
byte[] pl = PasswordProtection.make Digest(user,password,t1,q1);

out.writeUTF(user);

out.writeLong(t1);

51 1

out.writeDouble(ql);
out.writeInt(pl.length);
out.write(pl);
out.flush();
t
publicvoid sendMessage(OutputStream outstream) throws 10Exception{
PrintWriter pw= new PrintWriter(outstream, true);

BufferedReader buf = new BuffercdReader(new
InputStreamReader(System.in));

while(true)

{

String msg= bufreadl.ine();

pw.printIn{msg);

publicstaticvoid main(String[] args)throws UnknownHostException, IOException,
NoSuchAlgorithmException {

String host = new String("localHost'");
intport = 8080;
String user = "nikita";
String password = "gupta";
Socket s = new Socket(host,port);

client2 client = new client2();

52

client.send Authentication(user,password,s.getOutputStream());
client.sendMessage(s.getOutputStream());

s.close();

}

53

CLIENT END CONNECTION - Client3

import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;

import java.io.PrintWriter;

import java.net.Socket;
import java.net.UnknownHostException;
import java.security.NoSuchAlgorithmException;

import java.util.Date;

publicclass client3 {

publicvoid sendAuthentication(String user,String password,
OutputStream outstream)
throws I0Exception,NoSuchAlgorithmException
{
DataOutputStream out = new DataOutputStream(outstream);
long t1= (new Date()).getTime();
double q1 = Math.random();
byte[] pl = PasswordProtection.makeDigest(user,password,t1,q1);

out.writeUTF(user);

out.writeLong(t1);

out.writeDouble(q1);
out. writeInt(pl.length);
out.write(pl);

out.flush();

publicvoid sendMessage(OutputStream outstream) throws IOException{
PrintWriter pw= new PrintWriter(outstream,true);

BufferedReader buf = new BufferedReader(new
InputStreamReader(System.in));

while(true)

{
String msg= buf.readLine();

pw.printIn(msg);

publicstaticvoid main (String[] args) throws UnknownHostException, IOException,
NoSuchAlgorithmException {

String host = new String("locaiHost™);
int port = 8080;
String user = "sweta";
String password = "projec1t";
Socket s = new Socket(host,port);

client3 client = new client3();

55

client.send Authentication{user,password,s.getOutputStream());
client.sendMessage(s.getOutputStream());
s.close();

}

56

SERVER END CONNECTION

import java.io.*;
import java.net.*;

publicclass mainServer {

publicstaticintpors = 8080;
publicstatievoid main(String[] args) throws [OException {
ServerSocket server = new ServerSocket(porr);
System.out.println("server has been set up and is ready for connection");
while(true)
{
Socket client = server.aceept();

new serverbcho(client).start();

SERVER THREAD CONNECTION

import java.net.*;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.io.*;

import java.sql.*;

public class serverEcho extends Thread {

Socket client;

String user;

serverEcho(Socket client)

}
public String getPassword(String user) throws SQLException, Exception{

|
|
|
|
{
this.client=client;

Class.forName(" com.mysql.jdbc.Driver');

s
Lt
&

String password = new String("""");
int flag=0;

Connection con =null;

Statement stmt=null;

ResultSet rs= null;

con =

DriverManager.gefConnection(" jdbe:mysql://localhost:3306/users", " root"," root")

stmt=con.createStatement();

. . @"""'““‘%"‘-g R

rs=stmt.executeQuery(''Select * from user_info');
while(rs.next() & &flag=—0){
//System.out.println(rs.getString(" username™));

if(user.equals(rs.getString('' username'))){

password = rs.getString(" password");

flag=1;

- } !
} i
if(flag==1)

return password; |
else
{

System.out.printin("USERNAME DOES NOT EXIST");

return password; !

}

public boolean authenticate(InputStream inStream)

throws Exception

{
DataInputStream in = new DatalnputStream(inStream);
user= in.readUTF();
long t1 = in.readLong();
double q1 = in.readDouble();
int length = in.readlInt();
byte[] p1= new byte[length];
in.readFully(p1);
String password = getPassword(user);
byte{] check = PasswordProtection.makeDigest(user,password,tl,ql);

return MessageDigest.isEqual(p1,check);

}
public void run(){
try {
if(authenticate(client.getInputStream()))
{

System.out.println(user +": Login succesful \n");
String msg= null;
BufferedReader buff = new Buffered Reader
(new InputStreamReader(client.getInputStream()));
while((msg=buff.readLine())!=null){
System.out.println("'message from : "+ user + " "+msg+"\n");
}
client.close();
}
else{
System.out.printin(user+": login failed \n");

client.close();

59

e

} catch (NoSuchAlgorithmException e) {

e.printStackTrace();
} catch (IOException ¢) {

e.printStackTrace();
} catch (SQLException e) {

e.printStackTrace():
} catch (Exception ¢) {

e.printStackTrace();

60

PRD Hrilbere Gl

i

5 UY D104 B80-t 880

L Package Eiplarer £ \\,j: Hmrthy 7 0] @cllentljava Ttﬁentljm i Qg_ % 11 mainSee 3] Dumri(ho jii -»]
5 % I 6 v Brintiriter V= new Print mer(uutstream,lrue} s
s = ButferedReader buf = new BufferedReader (new InputStreanReader (System,in)); e —
U pastod shile(true) ol Q)) A Rk,
125 Secune kg clent sever (& G;;U e
Bu String meg= buf.readling(); o
1 tdefaukpackage) pw.print In{msg) ;
[} dientjan }
[} dientljoa
) dienthjia)
[} mainServerjoa
1) PassordPrtectionjava B B
ll msemr&ho.jm g © public static void main (String(] args) throws UnknownHostException, I0Exceptio
Jueih-th i p -
Wi ‘pralioglarkly Ef 3tring host = new String|"iccalfost®); TEE Outine £ -\,Nm bt
" int port, = 8080;] v g};g?
String user = "ugerd®; = -
;?é String passvord = "pwjeclk“; / g JpuA owinn
%3 Socket 3 = new Socket (host,port); @“(hmﬂ e g
f*‘ client3 client = nev clientd|); i & sendduthentication{Sing Sein
’5 client. sendluthenticat ion{user, passvord, s, getOutputsteean|) | 1l ¢ seﬂdeEe(ﬂt@uﬁﬂnm- g
E client. sendlessage |3, gecOutputStrean()) ; | o mantingl) vid }
o 3.close(); i
i |
} v
&,Pmlﬂems 6 Jande E¢ Dedmuon E(nnsole : § K & .E E e 1
<eminated> mainSenverlave Appicaton] CiProgram FiﬂJm\qué‘hm e Nor 1) NDLANAY
at]ava..o Inpus3treanReader, read {Inknown Source) 4
a,BufferzdReader. £1l1 (Unknown Source}
JBufferzdReader, readiine (Unknown Sovrcs) :
| 3t java.io.Bufferzdeader, readline (Unknown Sovrce) 1 '
at ezryverIcha, runiserverIcho, javai36) i;
{ }

Wi | Soathat 5013

ik

) AEEASRALG i

61

WA otbench
B Lt +

Schema: vsers

oo Tm ko
o 106 N e
:) 13 2GS INSERT INTO e e, (s, st VRLUES il e)
@ 14 20610 INSERTINTO s el seman, psvnd | VELUES ‘ol snch |
0 19 24622 hooychennes e o

© 16 204543 SELECT *FROM wsrsus_eloLMIT 0,000

i o, o LES e |

62

E e DDy ey SRR
110wy feced

T 105

Nochrgs 0
e 10/ 000

3

s £lientl

63

3 [T Five] 4 ova 6

= {:\1

import jave.ayt.*

& sgam
& leginpage
SE Wefnul prckages
331 loginpagejava
B IFE Systemn Librry 12k

IMpOTt JaVA.ALE,&venc. 7
import javax,mwing.*;

prbiic olass logsnpage extends Gfraze
1

private Jiabel 5agi;
private JLahel tagl:
privats JTextField uzcrarea;
private JPasswordField Pasawordarear
privata JButton logirbutton:
privata JPanel conzancEanes

ypublic logincage()
T

ayeate();

this.sezVisible (trae) s

Problems 33 . @ Jriadoc! 3 Declarat
ings 0 cthers

 Oescion
& Wernings {2 iterma)

8.Conclusion and future scope

Strong Passwords: We can encourage all users to choose strong passwords that cannot
be found in a dictionary or is directly related to user’s personel information like date of
birth, name etc. and that are not simple sequences of dictionary words. Requiring users
to choose strong passwords is an effective measure of avoiding dictionary attacks.

Strong passwords can easily be created by making them as long as possible; including
alphabets, numericals, and special characters; and using passwords that are differen;‘.
from those that you have used on other systems. You can also create strong passwords
from long phrases. For example, consider the phrase “Rome was not built in a day”, If'it
is easy for you to remember such a quote, you can transform it into a password such as
R1ws2N3bt4I5aa6D. The first letter of alternate word in the phrase has been used in
uppercase, and other words are transformed into sequence number, first and last letter of

the word followed by next number.

“Honeypot” Passwords: To enable catching of attackers who are trying to hack into a
password protected system, simple passwords and usernames are used as “honey” to
attract the attackers. For example, some systems might have a default user id called
“guest” that has the password “guest[23.” You do not expect normal users to use this
guest account. You can set up your system such that if the attacker tries to log in using a
default password for the guest user, you can set that as a trigger so that your system
administration staff can be notified. When somebody tries logging into it, you know that
it may be an indication that an attacker is trying to break into your system. Once the
system administration staff is notified that somebody might be trying to break into the
system, you can then take action to identify which IP address the attacker is coming

from.

Password Filtering: we can test the password strength of the password selected by the
user. If the user chooses a password that matches some dictionary pattern we can

conclude it as easy to guess and ask the user to choose another password.

Aging Passwords: Every time a user uses a password for the session there is a

possibility that an attacker is monitoring the user’s activity. So it advantageous for us to

65

R —

prompt the user to change their password periodically , after regular intervals. Or we can

limit the user to use each password to a fixed number of logins only.

Pronounceable Passwords: Password security system designers noticed that users
sometimes want to choose dictionary words because they are easy to remember. Hence,
they decided to create pronounceable passwords that may be easy to remember because
users can sound them out, but would not be words in the dictionary. Pronounceable
passwords are made up of syllables and vowels connected together that are meant to be
easy to remember. Some examples of pronounceable passwords—generated by a

package called Gpw (www.multicians.org/thyv/epw.html) areahrosios, chireckl, and

harciefy.

Limited Login Attempts: The number of failed login attempts before locking or
disabling the user’s account can be limited to some fixed number. The advantage of
limited login attempts is that it will reduce the probability of an attacker successfully
guessing the password and intruding the user’s account. The downside of using this
approach is that if a legitimate user happens to incorrectly enter her password just a few
times, then her account will be locked, which would then require to ask the system
administrator for resetting the password. Another disadvantage of account locking is
that it gives an attacker the ability to launch a Do$ attack against one or more accounts.
For instance, if the attacker gets a lot of usernames in the system and tries a couple of
random guesses for each username’s password, the attacker can end up locking a large

fraction of the user accounts in a system.

Last Login: Another feature that can be provided to increase the security of the
password system is that the last date , time, and location about the all the login attempts
in the previous day are displayed everv *ima when a user logs in. User can monitor their
account easily and check when was their account misused. If a user ever notices an
unauthorized behavior or login activity between when and where she last logged in and
when and where the system reported that she last logged in, she can notify the system
administration staff or customer service. For example, if a user usually logs in once a
month from her home in Delhi, but upon login, the system informs her that the last time
she logged in was at 3 a.m., three days ago in shimla, she will realize that something is

wrong. She can then notify the appropriate personnel, and the security issue can be

66

=~

reactively dealt with. If the last login mechanism did not exist, then the occurrence of

the attack may not have been noticed.

Image Authentication

One of the latest attempts at making password systems less vulnerable to phishing
attacks has been to use images as a second factor in authenticating the user. While the
user is creating the account, a user is advised to choose an image in addition to a
username and password. When the user is presented with a login page, the user is asked
for his username first. Upon entering a username, the user is shown the image that he
chose when signing up, in addition to being prompted for his password. The intent of
using image authentication is to prevent the user from providing his password to an fake
web site. While an fake web site may be able to succesfully imitate a legitimate web
site’s home page, the impostor will not know what image a user has selected. Hence,
after a user enters his username into :;1 web site that uses image authentication, he should
not enter his password if the web site does not display the same image that he selected
when he signed up.

Yahoo mail implement image authentication to provide better security options to its

clients.

One-Time Passwords

The final type of password system that can be incorporated in password secure systems
is called a one-time password systen. In all of the techniques that are available to us so
far, one of things that gives the attacker undue advantage and an upperhand is that each
user uses a same password multiple times to log into a system. However, every time that
a user logs into a system, there is a potential threat that the login session is susceptible to
eavesdropping and it is possible for that password to be eavesdropped on or found by an
attacker. This is.especially a problem if that password has not changed over a long
period of time. In a one-time password system, every time a user logs in, the user is
expected to log in with a different password. The one-time password system used to be
implemented by giving users lists of passwords. These lists were essentially small books
full of passwords customized for users each time they would log in. For example, the
first time that the user logs in, she would use the first password on the list. The next time

she logs in, she would be instructed to use the second password on the list. The system

67

could also choose a random password number and expect the user to enter that number.
These lists, however, became cumbersome for users.

Most one-time password systems today are ones in which the user is given some device
with a small amount of computing power that is used to compute passwords. The device
can be used as a source of passwords. The users, when they log into a system, take out
the onetime password device, read off the password from that device, and enter it into
the computer system. All the passwords that are generated by this device are based off
of some cryptographic algorithm. There is typically some seed (initial value) that is used
to generate an entire stream of many passwords over time. That seed is also known by
the server. Therefore, given the current time and the seed, the server can check that the
password the user is entering is correct. The functionality provided in these one-time
password devices are now integrated into PDAs, cell phones, and other mobile devices
that users already carry. One-time passwords end up being a very good system for
ensuring password security. In fact, some banks have started to give one-time password
devices to some of their users in order to log into their web-based bank accounts.

Hopefully, there will be more usage of one-time passwords in the future.

68

REFERENCES:

Introduction to Network Security — by Neal Krawetz
Computer Network Security — Jie Wang
Guide to Computer Network Security — Joseph MiggaKizza

http://csrc.nist.gov/publications/nistpubs/

Cisco IronPort URL Filters_datasheet
Web Screening Model Using Multiple Features (IEEE Publication)

A High-Performance URL Lookup Engine for URL Filtering Systems (IEEE

Publication).

An Efficient Caching Mechanism for Network-based URL Filtering (IEEE Publication).

69

