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Abstract

Beamforming is a technique used to process signals received by an array of antennas.

It amplifies signals coming from desired directions while reducing the strength of

signals coming from undesired directions. The algorithms used to perform real-

time beamforming are called adaptive beamformers. The adaptive beamforming

algorithms are sensitive to certain circumstances, such as the steering vector errors,

small samples for parameter estimation, non-stationary interference signals, increase

sidelobe level (SLL), multiple desired signals, etc. The errors in the steering vector

arise from various factors, including mismatch in the direction of arrival (DOA)

of signal of interest (SOI), perturbation in propagation medium, sensor position

uncertainty, imperfect antenna array calibration etc. Therefore, to overcome these

problems, robust adaptive beamformers are required. In this work, various robust

beamformers have been developed to enhance the efficacy of beamforming algorithms

in different scenarios. The foremost cause of the steering vector error is DOA mismatch,

so the true direction of the desired signal is estimated iteratively through proximal

gradient approach. The regularization function is utilized to modify a hyper-parameter

for each iteration and also guarantees that the estimated direction is sufficiently close

to the actual direction in case of large DOA mismatch. In a moving interference

environment, traditional algorithms become ineffective as the interferences may shift

outside the null created by the beamforming algorithm. Expan- ding the nulls

effectively resolves the issue of moving interferences. The process of null widening

involves modifying the steering vector by introducing a taper matrix of imaginary

interferences alongside the original one. Hence, an algorithm is developed for moving

interferences along with DOA mismatch. To address the DOA mismatch, the approach

is to maximize the signal-to-interference-noise ratio (SINR) output while adhering

to specific constraints on the response levels within the region of interest (ROI).

A bi-objective optimization problem has been formulated for dual desired signals

and SLL control in the vicinity of the two desired signals. To accomplish the bi-

objective, standard Capon beamformer (SCB) is modified by incorporating a limited

number of constraints into it. The proposed algorithm can form dual beams for

xvi



receiving the two SOIs simultaneously amidst interference and noise , while also

regulating the SLL to a predefined level. This work is geared towards designing

the sparse arrays with only 50% antenna elements of the full array. The resulting

sparse array undergoes further analysis, considering additional constraints to enhance

the performance of the SCB in terms of mitigating SLL, addressing grating lobes,

and minimizing mutual coupling. This work also explored the area of evolutionary

computing. The algorithms such as orthogonal particle swarm optimization (OPSO)

and particle swarm optimization (PSO) have been utilized for beamforming. Mean

square error (MSE) based novel objective function is developed for the implementation

of wideband beamforming. Frequency invariant beampatterns are obtained with

OPSO and PSO over the 200MHz bandwidth.The simulation results clearly demonstr-

ate that the proposed techniques are better than the current techniques in terms of

various performance metrics.
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Chapter 1

Introduction

Smart antennas [1, 2] have maintained their popularity over the years due to

the continuous advancements in wireless technology. The phrase "smart antenna"

typically describes an array of antenna elements [3] that is associated to an advanced

signal processor. Here, the signal processor refers to an adaptive algorithm used for

processing the signals received on the array of antenna [4]. The primary objective

of adaptive algorithms is to boost the SOI while suppressing the interferences along

with the noise at the array output [5]. This process is commonly referred to as

"beamforming".

The process of beamforming is accomplished by multiplying the signals received

with adjustable weights that are determined using different adaptive beamforming

algorithms. Adaptive algorithms are employed to dynamically adjust these weights

to achieve desired performance characteristics such as maximizing signal strength,

minimizing interference, or tracking a moving target. The weight vector is applied

to the antenna elements to form the desired beam pattern. The weight vector in

adaptive beamforming algorithms consists of both amplitude and phase components

for each antenna element. These components are crucial for controlling the direction

and shape of the antenna array’s radiation pattern.

The amplitude of each antenna element affects the strength of the signals received or

transmitted by each element. By varying the amplitudes, the overall beam pattern
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can be shaped to amplify signals from desired directions while minimizing interference

and noise from undesired directions. The phase of the signal at each antenna element

shifts the phase relationship between elements. By controlling the phase, the system

can direct the beam towards a specific target or direction, enhancing signal reception

and transmission in that direction. The pictorial representation of the smart antenna

system [6] is depicted in Figure 1.1. To practically implement the adaptive algorithms

and control the array weights, several components and technologies are required:

• Antenna Elements: The individual radiating elements that form the array.

These can be dipole, patch, or any other suitable type of antenna.

• RF front end: Each antenna element has its own RF chain, which includes

amplifiers, phase shifters, and variable attenuators. The adaptive weights are

applied within these RF chains to control the amplitude and phase of the signals.

• Digital signal processing (DSP) Unit: This unit is critical for real-time signal

processing and execution of adaptive algorithms. It includes:

– Analog to digital convertors (ADCs) : Convert the analog signals received

by the antenna elements into digital form for processing.

– DSP: High-performance DSP are used to execute the adaptive algorithms

in real-time. These processors calculate the optimal weights based on the

incoming signal data and the desired beam pattern.

• Feedback Mechanism: A feedback loop is established between the antenna array

and the DSP unit. The system continuously monitors the received signals and

dynamically updates the weights based on the output of the adaptive algorithm.

This real-time feedback ensures that the antenna array can adapt to changing

signal environments, maintaining optimal performance.

In literature, numerous adaptive algorithms are employed to compute beamforming

weights in a dynamic signal environment, ensuring that the wireless system’s performa-

nce is maintained. However, the traditional beamforming algorithms often suffer from

2



Figure 1.1: Smart Antenna System

substantial performance degradation due many situations such as mismatches in the

signal steering vector, limited snapshot number, existence of the target signal within

the training snapshots, mobile interferences, etc [7, 8]. Thus, robust beamformers

are required to obtain good performance in these situations. In the literature, diverse

robust beamformers have been presented based on different techniques such as diagonal

loading and its variants, eigen space based methods, uncertainty based techniques,

reconstruction based methods, etc. These different approaches are described in the

next section.

1.1 Literature review

Various robust beamforming methods are reviewed in this section. These robust

techniques are applied on the SCB which is also known as minimum variance distortio-

nless response (MVDR).

1.1.1 Diagonal loading and its variants

Diagonal loading has been a prominent technique to improve the robustness

against a small number of samples and mismatches in the signal steering vector. In the

diagonal loading, the covariance matrix has been modified to achieve robustness, and

the modification has been done by incorporating a weighted identity matrix into it [9].
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The primary purpose of diagonal loading is to determine the scaling factor, referred

to as the loading level, by which scaling is performed. The diagonal loading technique

has been formulated in [10] by placing additional limits to the weight vector’s norm,

and the covariance matrix has diagonally loaded with an appropriate multiple of the

identity matrix. In the work by [11], an additional constraint has been introduced to

the disparity between the weight vector and the desired weight vector, leading to the

derivation of diagonal loading. However, there is no relation between the loading level

and the uncertainty set of the steering vector. Therefore, a sophisticated diagonal

loading-based approach has been proposed in [12], where the loading value has been

calculated with the uncertainty bound of the steering vector. But in reality , it

has been very difficult to obtain the uncertainty bounding value, and therefore the

calculation of the loading level also became challenging. Moreover, the algorithm

will not be robust if the uncertainty set parameter has not been chosen correctly. A

robust adaptive beamformer has been presented in [13] that calculates the loading

level dynamically. This method, on the other hand, requires iterations and will place

a computing load on an adaptive beamformer. So, a less computationally complex

method has been proposed in [14] to calculate the loading value.

The authors of [15] have employed only single snapshot for DOA estimation [16] which

can subsequently be employed in a beamforming algorithm. A constant modulus-

based robust beamformer has been proposed in [17] to achieve robust adaptive beamfo-

rming. The loading value has been determined by utilizing the constant modulus

property of the desired signal. A few diagonal loading techniques have been presented

in the literature that are fully automatic [18], [19]. To find the diagonal loading level,

they do not need any user parameter. Some variable loading techniques have also been

proposed in the literature. In the variable loading approach, the loading has been

done in such a way that the loading factor only provides for the lower eigenvalues of

the covariance matrix. A simple less complex variable loading adaptive beamformer

has been described in [20] and the loading factor has been determined in an ad-hoc

manner.

To further improve the performance, a low-complexity variable loading beamformer

in [21] that dynamically changes the value of the loading level with the practical

4



scenario. To generalize the diagonal loading technique, a robust beamformer has

been proposed that is based on tridiagonal loading. The diagonal loading has been

realized by regularizing the covariance matrix with the tridiagonal Toeplitz matrix.

Recently, the mismatch in the signal steering vector has been rectified using the

diagonal loading method [22]. Instead of using any uncertain parameters which are

very hard to estimate practically, the suggested methodology determined the loading

factor from the optimization problem of weight vector calculation.

1.1.2 Eigen-space based methods

When the performance of conventional beamformers has been degraded due to

errors in the sample covariance matrix. The errors in the sample covariance matrix

mainly occurred because of a small number of snapshots available for its calculation

and the perturbation errors occur due to various reasons such as discrepancy between

the presumed and actual signal steering vectors, pointing error in the direction of SOI,

imperfect calibration of the sensor array, etc. To mitigate the effects of these errors,

another class of robust beamformers have been presented which are known as eigen-

space based beamformers. In this method, the signal plus interference subspace has

estimated from the sample covariance matrix and then the actual steering vector has

estimated by projecting the presumed steering vector on the estimated subspace [23].

This approach was initially introduced in [24], where the weight vector is computed

using the signal plus interference subspace. It has been demonstrated that this

technique converges more rapidly compared to the conventional beamformer.

[25] illustrated a signal subspace-based robust beamformer against steering vector

errors mainly due to look direction error. The proposed methodology has been

analyzed with and without the steering vector error. From the analysis, it has

been noticed that it enhances performance in the presence of errors while providing

the best performance when the errors are absent. The proposed technique can be

applied as long as the sample covariance matrix can be divided into signal and noise

subspaces. The effect of pointing error on the conventional sample matrix inversion
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beamformer and the eigen-space-based beamformer has been studied in [26]. The

output SINR of both the considered beamformers has been evaluated to examine

their performance in the presence of pointing error. A robust adaptive beamformer

against array imperfections has been provided in [27] and the mentioned goal has been

achieved by determining the proper steering vector orthogonal to the noise subspace.

Another projection method described in [28] has been used to provide robustness

by modifying the presumed steering vector. The modification has again been done

by projecting the presumed vector onto the subspace associated with the principal

eigenvectors of the covariance matrix. However, the described eigenspace-based beam-

formers do not improve the array’s ability to receive the SOI. As it is already known,

even a little pointing error might cause a significant performance reduction. An

effective solution for steering vector errors has been offered in [29] that utilizes the

signal subspace technique. The suggested method has reduced level of computational

complexity compared to the current beamformers since it uses subarrays to calculate

the signal subspace and estimate the actual steering vector instead of the original

array. To further improve the robustness in the case of eigen-space-based beamformers,

an algorithm has been presented in [30]. Firstly, the signal plus interference subspace

has been constructed using an eigen decomposition, and then the constructed signal

subspace has been employed for the calibration of the presumed steering vector.

Numerous simulations have demonstrated the viability of the suggested method.

It is already known that pointing error may lead to performance deterioration of the

eigen-space-based beamformers, and the robustness against pointing error has been

presented in the described literature. However, when the pointing errors are large,

the SOI may be considered interference, and instead of enhancing it, the beamformer

can suppress it. So, to deal with large pointing errors, a generalized eigen-space-based

beamformer has been given in [31]. A full array has been utilized to calculate the

actual steering vector and signal subspace. Now, to handle the large steering vector

mismatch and in situations of low signal-to-noise ratio (SNR), a modified approach

has been developed in [32]. Firstly, the covariance matrix has been estimated from the

received data, and then the signal subspace has been evaluated from the eigenvectors

of the estimated covariance matrix. Finally, the weight vector has been calculated
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with the estimated covariance matrix and the signal subspace. Another different

approach has been presented in [33] named vector space projection (VSP), which is

employed for the elimination of pointing errors. Moreover, the power of SOI has

been evaluated in a single step using the covariance fitting approach. Although

the eigen-space beamformers provide robustness against steering vector errors, the

performance of most of the beamformers deteriorates in situations of low SNR. So, an

algorithm has been suggested in [34] that provides optimum performance in the case

of a low SNR scenario. The estimation of the new steering vector has been done by

the eigen decomposition method and solved by quadratically constrained quadratic

programming, which increases the computational complexity. Recently, an approach

has been presented in [35] that approximates the eigen-space projection beamformer.

The accurate steering vector of SOI has been estimated by orthogonally projecting

the presumed signal steering vector onto the signal subspace.

It is described that eigen-space-based beamformers have many advantages as they

offer robustness against various factors of steering vector errors. Nonetheless, it has

many shortcomings, such as performance degradation in low SNR scenarios, prior

knowledge of the number of sources, performance degradation in cases of unknown

dimensions or incorrect dimensions of subspaces, etc.

1.1.3 Uncertainty set constraint based methods

Uncertainty involves scenarios in which there is incomplete or imprecise knowle-

dge about the steering vector. The method based on uncertainty set constraints

is widely recognized as a prominent approach in robust adaptive beamforming. In

this category of robust beamforming, the steering vector of the SOI is estimated by

incorporating spherical or ellipsoidal uncertainty constraints on the signal steering

vector. The actual signal steering vector is represented as the summation of the

assumed steering vector and the uncertainty set.

A beamforming approach grounded in worst-case performance optimization has been

introduced in both [36] and [37]. The beamformer offers robustness against an
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unknown signal steering vector by employing the spherical constraints in the mathema-

tical modeling of the algorithm. In the optimization problem, the output interference

plus noise power have been minimized while forcing the magnitude response of the

signal steering vector to be distortionless. The problem has been formulated using

second order cone programming (SOCP) and solved using the interior point method.

But the worst case optimization based methods are not able to provide closed form

solutions as they have used SOCP, moreover, they do not provide easy online execution.

To have simpler closed form solutions, another worst case based beamformer has been

suggested in [13]. The proposed approach has provided a general approach that can

be applied to single rank as well as higher rank signal models. The generalization has

been executed by designing the SOI’s uncertainty using the covariance matrix instead

of the steering vector.

The efficacy of considered worst case based algorithms can be further enhanced

by extending these for non-stationary interferences. So, a new approach has been

explained in [38] which provides robustness against steering vector uncertainties along

with robustness to rapidly moving interferences. The steering vector uncertainties

have been dealt by using worst case optimization of [36] and to ensure nulling of

non-stationary interferences, the tapering of the covariance matrix has been done.

To enhance the robustness of worst case based technique an additional constraint

has been added to the norm of the steering vector in [39]. The other parameters

and the preliminary insights needed for the proposed method are the same as that

of the worst case approach. The proposed approach consists of two constraints in

the optimization problem hence named a doubly constrained robust beamformer and

due to the additional constraint, It has offered an improved estimation of the steering

vector

In [40] and [41] ellipsoidal uncertainty has been employed instead of spherical uncerta-

inty to deal with steering vector errors. The weight vector in [40] has been evaluated

by minimizing the total output power subject to the condition that the gain for each

response in the defined ellipsoid must be greater than one. The SOCP has been

employed as the optimization problem for the calculation of the optimum weight

vector, and further, the optimization problem has been solved by the Lagrange
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multiplier. The formulation used in [41] has been similar to the doubly constrained

robust beamformer of [39] but spherical uncertainty has been replaced by ellipsoidal

uncertainty. The advantage of using ellipsoidal uncertainty over spherical one is that

it can provide a more realistic depiction of the uncertainty.

A different approach has been investigated in [42] which assumed that the mismatch

vector is random in nature. In worst-case-based approaches, the assumption is made

that the mismatch vector is deterministically norm-bounded. Consequently, in the

proposed approach, the optimization needs to be formulated in probabilistic terms.

For the formulation of the probabilistic optimization problem, various parameters

have to be known, including the presumed steering vector, type of probability distribut-

ion, variance, and non-outage probability. In comparison to the worst case base

approach, the prior known parameters of this approach are easy to determine. The

proposed method has improved robustness by rejecting errors whose probability is

low while providing robustness for errors with a high probability.

In [43] a robust approach has been provided to rectify the errors in the steering vector.

The formulation of the optimization problem involves maximizing the output SINR

to estimate the discrepancy between the true and assumed signal steering vector. The

difference has been evaluated for each iteration, and it has been utilized to correct

the signal steering vector.

The methods outlined assume only steering vector errors, yet the array may be

subject to a range of other imperfections, including sensor location errors, sensor

phase mismatches, and sensor gain mismatches. So, to provide robustness against

all the stated errors, the reformulation of the worst case based approach has been

done in [44] using semidefinite programming. Based on some ideas of [45] and the

worst case method, a new algorithm has been obtained. The optimization problem

has a regularized semidefinite relaxation form, and robustness has been managed

through the regularization parameter. Till now, the error in the steering vector has

been eliminated by various distinct approaches, and the theoretical covariance matrix

has not been estimated. But the covariance matrix has been estimated in [46] by

employing the shrinkage method, and the estimated matrix has been used to rectify

the error of the presumed steering matrix.
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The presented findings do not discuss the ability to withstand significant discrepancies

in steering vectors. To address substantial deviations in steering vectors, it is necessary

to expand the size of the uncertainty sphere, resulting in a degradation of performance

for robust beamformers in terms of output SINR. Therefore, to overcome the large

steering vector mismatches, robust adaptive beamformers have been depicted in [47]

and [48]. In the [47], an adaptive uncertainty level has been used, and in each iteration,

the uncertainty level of the sphere has been changed according to the mismatch in the

signal steering vector. Along with this, one more approach based on flat ellipsoidal

constraints to model the steering vector mismatch has been presented. In [48], the

SOI’s steering vector has been calculated iteratively by employing a small sized

uncertainty sphere as well as a small flat ellipsoid. The proposed mythologies have

been mostly confined to the case of uniform linear arrays (ULAs). The uncertainty

based beamformers can also be applied to arbitrary array geometries, which have

been suggested in [49]. The robustness against array imperfections has been achieved

by applying magnitude constraints, and the solution has been obtained by solving a

series of convex subproblems.

Most of the explained techniques utilize some prior knowledge about the steering

vectors, amount of uncertainty, non-outage probability, etc. There is a need for a

beamformer that utilizes as little prior knowledge as possible prior knowledge to

achieve robustness. Thus, a beamformer has been suggested in [50] that requires very

small and imprecise prior information and even provides robustness by maintaining

an acceptably high output SINR. In the proposed technique, it has been assumed

that the SOI is located inside the known angular sector, and that sector is free from

interferences.

A novel approach has been presented in [51] to correct the deterministic errors in

the estimated signal steering vector. The convex optimization [52] method has been

utilized for the estimation purpose and the eigen decomposition has been done to

separate the signal and noise subspaces. Moreover, to deal with uncertainties in the

covariance matrix and optimizing the performance of the worst case approach, a new

error bound has been suggested by employing the estimated signal steering vector.

Different from the suggested approaches, a new method has been developed in [53]
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to improve the performance in the case of a mismatch in the signal steering vector.

Usually, maximizing the output SINR has been considered the objective function, but

in the proposed approach, the objective function has been formed by minimizing the

sum of the estimated actual signal steering vector projections on the noise subspace.

Further, the constraints in the optimization problem have been added according to

the angular sector of the SOI and array geometries.

The sensitivity of a robust beamformer is a parameter that is used to examine its

sensitivity to enduring errors. In [54] a general scenario has been considered by

assuming that the signals have been disturbed by the correlated random errors.

The random error covariance has been calculated by inverting the sample covariance

matrix, and Euclidean uncertainty has been used to provide the beamformer with

the minimum sensitivity to random errors. Further, the problem has been solved

by the Lagrange multiplier. To manage the main beam in the beampattern of

robust adaptive beamformer has been presented in [55]. The signal steering vector

and sample covariance matrix uncertainties have been considered to formulate the

problem. The proposed method proved through the simulations that it can control

the main beam precisely for arbitrary steering vector error.

Some of the suggested beamformers utilize specific optimization toolboxes in order

to solve the formulated optimization problems for the estimation of the steering

vector. Besides this, the effectiveness of almost all the beamformers relies on ad-

hoc parameters, which are very challenging to compute in a real situation. Various

improvements have been made using the uncertainty based technique, though their

performance deterioration occurred in the high SNR scenario because of the presence

of a desired signal component in the covariance matrix.

1.1.4 INCM reconstruction

To eliminate the SOI from the covariance matrix, a new technique has been

developed called interference plus noise covariance matrix (INCM) reconstruction.

The interference-plus-noise covariance matrix has been reformed in [56] by integrating
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the product of the Capon spatial spectrum and the signal steering vector component

over an angular region devoid of SOI. Subsequently, the estimation of the actual

signal steering vector has been performed using the reconstructed INCM. Finally,

the optimal weight vector has been determined by utilizing the estimated signal

steering vector. The robust performance has been achieved at the expense of increased

computational burden due to the integration function. The performance of the

algorithm proposed in [56] has been improved further in [57]. As the steering vector is

not known prior, the algorithm of [56] used the interference angular sector as well as

the signal steering vector for the reconstruction. So, in [57] firstly the DOA of SOI and

interferences have been estimated before reconstruction, and the steering vectors have

been estimated using the robust Capon beamformer (RCB) approach [12]. Then, the

INCM matrix was obtained by employing the estimated steering vectors. A different

shrinkage based technique has been developed in [58] that determines the signal

steering vector by utilizing the cross correlation between array observation data and

the output of the beamformer. Then the INCM has been calculated by subtracting

the covariance matrix of SOI from the received data matrix. The proposed approach

offers low computational complexity, but it can work for lower interference powers.

The reconstructed INCM has been obtained in [59] by employing the compressive

sensing approach. The proposed approach used sparsely distributed sources with the

assumption that the DOA of the source signals has been known prior. In [60], the

component of SOI has been removed from the covariance matrix by using the average

of noise eigen values instead of signal eigen values in the correlation coefficient. The

developed method provided robustness against large steering vector mismatches by

estimating the signal steering vector before reconstruction. However, this method has

been valid only when the interference-to-noise ratio (INR) is not in the vicinity of

SNR.

In most of the previously proposed methods, the region over which the integration

took place for the reconstruction was the complement of the SOI’s region. In [61],

the integral region has been reduced by employing low-resolution DOA estimation

methods, and the reconstruction has been done by imposing the annulus uncertainties

constraints on the interference steering vectors. But it has been a challenging task
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to obtain the exact region for integration. To further reduce the computational

complexity of [56] a novel INCM reconstruction method based on the sampling of the

spatial spectrum has been developed in [62]. The taper matrix has been utilized in the

covariance matrix to enhance the robustness of the beamformer. The computational

complexity of the proposed method has been reduced, but it has a little performance

degradation.

To reconstruct the INCM and examine the efficiency of reconstruction, a parameter

has been defined in [63] that is known as the improvement factor (IF). A relationship

has been established between SNR and the IF, i.e., when the SNR is low, reconstruction

has not been required to achieve robustness, but when the SNR is high, reconstruction

has to be performed after the estimation of the signal steering vector. In [64], a novel

method has been devised to extract the SOI from the covariance matrix. To calculate

the interference steering vector, the intersection of two subspaces has been done, and

the corresponding power has been determined by the Capon spectrum. The two

subspaces include the signal plus interference subspace and the interference subspace

only. The coprime array configuration has been utilized in [65] for the estimation of

DOA as well as for the power estimation. Then, the reconstruction was done using the

estimated DOA and the corresponding powers. As the coprime array configuration

has a larger aperture as compared to ULA, therefore, using an equal number of

elements as that of ULA, the coprime array has improved resolution along with less

computation burden.

In [66], the efficacy of various reconstruction based algorithms has been analyzed.

The effect of the estimation of interference power on robustness has been studied,

and based upon that, a simple approach has been presented to estimate the power of

interference.

1.2 Research gaps

Robust adaptive beamforming algorithms are employed to improve smart antenna

system performance. However, when reviewing both traditional and state-of-the-art
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algorithms, several research gaps become apparent which are as follows:

1. The effectiveness of existing algorithms diminishes significantly in cases where

there is a substantial disparity in the DOA of the SOI. Thus, there is a need to

create robust algorithms capable of addressing such significant DOA mismatches.

2. The current body of research on adaptive beamforming algorithms has primarily

concentrated on individually mitigating DOA mismatch or mobile interferences,

rather than providing a holistic solution that effectively combats both of these

critical factors simultaneously. To fulfil this research gap in view, there is a

need to develop a robust algorithm capable of addressing these dual challenges

cohesively.

3. Most adaptive beamforming algorithms have traditionally focused on a single

desired signal at a given time. However, in numerous applications, there is

a requirement to simultaneously monitor multiple SOIs. Therefore, the need

arises for advanced technique capable of effectively handling such multi-source

scenarios.

4. In the literature, both traditional and recent beamforming techniques have

predominantly centred around ULAs. Nevertheless, as a means to streamline

system complexity, the utilization of sparse arrays offers a viable alternative to

ULAs. Thus, investigating the incorporation of sparse arrays into beamforming

methodologies holds great promise in terms of mitigating hardware demands

and augmenting performance across a wide spectrum of applications.

5. In literature, while evolutionary algorithms have found applications in beamform-

ing, their utilization in the context of wideband beamforming has been relatively

scarce. Therefore, there is a pressing need to improve the performance of

wideband beamforming by integrating evolutionary algorithms with novel object-

ive functions.

14



1.3 Motivation

The main aim of adaptive beamforming algorithms is to enhance the performance

of a system. The overall performance can be influenced by both external environmental

factors and internal factors. External environmental factors include environmental

uncertainties such as SOI direction mismatch, source wavefront distortion, signal

fading, signal scattering, fast variations in propagation channel or medium, and

sometimes the performance deterioration is caused due to the antenna array itself,

such as inaccurate array calibration or distorted antenna shape, which are known as

internal factors.

In today’s rapidly evolving world of communication, it is essential to prioritize accuracy

when it comes to estimating parameters. The array signal processing field is completely

dependent on estimating parameters such as DOA of SOI, steering vector estimation,

covariance matrix estimation, etc.

To minimize the impact of inconsistency and maintain the accuracy of estimating

parameters, it is essential to develop innovative approaches and algorithms that focus

on maximizing the performance of the system.

1.4 Objectives

There are several areas identified where further investigation is needed. In light

of these gaps, following objectives have been formulated.

1. To develop a robust adaptive beamforming algorithm capable of mitigating the

adverse effects of large DOA mismatch.

2. To develop an adaptive beamforming algorithm for robustness against moving

interferences along with DOA mismatch.

3. To develop an adaptive algorithm to efficiently control the SLL in dual beams

scenario to enhance the overall performance of beamforming.
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4. To analyse and design sparse arrays for improvements in the beamformer perfor-

mance.

5. To develop a novel objective function for evolutionary algorithms to implement

wideband beamforming.

1.5 Thesis organisation

The structure of this thesis is as follows. In the chapter 1, a brief overview of

the thesis topic and review of literature are described. All the remaining work that

has been presented is listed as follows.

1. To develop a robust adaptive beamforming algorithm capable of

mitigating the adverse effects of large DOA mismatch.

The proximal gradient method is employed to develop a novel optimization for

robust beamforming. By estimating the true direction of SOI, the suggested

method effectively mitigates the impact of DOA mismatch while suppressing

interfering signals. The iterative estimation of the true SOI direction is integrated

as a hyper-parameter within a regularization function.

2. To develop an adaptive beamforming algorithm for robustness against

moving interferences along with DOA mismatch.

The formulation of the interference steering matrix entails the use of a taper

matrix, designed to broaden the nulls. Deriving this taper matrix requires

introducing artificial interferences in proximity to the existing ones. Furthermore,

to ensure the beamformer’s resilience against DOA mismatch, the magnitude

within the ROI is restricted to unity. The proposed beamforming solution is

computed using semi-definite techniques and resolved utilizing Matlab’s CVX

toolbox.

3. To develop an adaptive algorithm to efficiently control the SLL in dual

beams scenario to enhance the overall performance of beamforming.
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The traditional SCB has been remodelled by including a single constraint in its

optimization problem. This modification ensures that both beams are accurately

directed towards the dual desired signals even in the presence of interference

and noise. Moreover, to control the SLL, constraints are introduced into the

optimization problem.

4. To analyse and design sparse arrays for improvements in the beamfo-

rmer performance.

The optimal positions of antenna elements in sparse array (SA) are ascertained

through SINR maximization criteria. Subsequently, an analysis is presented,

introducing supplementary constraints to enhance the beamforming algorithm’s

performance using sparse arrays. Simulation results corroborate that sparse

arrays subject to these conditions outperform unconstrained arrays, exhibiting

superior performance in terms of sidelobe levels and grating lobes.

5. To develop a novel objective function for evolutionary algorithms to

implement wideband beamforming.

Evolutionary algorithms such as OPSO and PSO are used to calculate the

optimum weights for wideband beamforming. To enhance wideband beamformi-

ng’s effectiveness, a novel objective function is introduced. The MSE serves as

a fitness function and measures the dissimilarity between the array pattern

derived from uniform weights and that achieved through OPSO/PSO. This

ensures that nulls and main lobe positions are maintained in the designated

direction for every specified frequency.
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Chapter 2

Robust Beamforming for Large DOA

Mismatch

2.1 Introduction

Array signal processing is essential in many different fields such as radar, wireless

communication, sonar, and antenna arrays. Adaptive beamforming [67] is one of

the most important aspects of array signal processing and is capable of receiving

the desired signal amid noise and interference. Capon beamforming is a technique

that offers remarkable resolution and interference nulling ability. Despite that, this

method can be applied only if the desired signal is known correctly [68, 69]. Due

to the disparity between the presumed and actual/true angle of the desired signal,

the performance of the beamformer deteriorates, and there is a need for robustness.

So, there are various methods in the literature to improve the performance of SCB.

Diagonal loading is a renowned approach for robustness against steering vector errors

and small sample size. In the basic diagonal loading approach, the covariance matrix is

modified by incorporating the weighted identity matrix into it [9]. The factor by which

the identity matrix is weighted is called the loading level or loading factor. There are

many approaches described in [12, 14, 18, 70, 71] to calculate the appropriate loading

level to achieve robustness. However, in practical situations, it is very challenging to
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determine the accurate loading level. In [12], the signal steering vector is estimated to

prevent any mismatches in the RCB. The optimization problem has been reformulated

by employing ellipsoidal uncertainty in it. The performance of the beamformer relies

on the selected uncertainty bounding value, and obtaining the exact bounding value

as that of actual uncertainty is very difficult in real situations. When the bounding

value is smaller than the current uncertainty, then optimization conditions will not

be fulfilled. The interferences nulling capability reduces in cases of large chosen

uncertainty as compared to the actual amount. The most challenging task is to

determine the uncertainty value in the actual situations. The Bayesian approach [72]

has been employed with RCB in [73] to cope with large DOA mismatches. RCB

has been used to estimate the signal steering vector, and further, the weights have

been calculated by the Bayesian method. Many parameters have been defined for

the execution of the presented beamformer, and the parameters are environment

dependent. Therefore, for each scenario,the parameters should be redefined, which

makes it a little more complex, and choosing several parameter values leads to

performance tradeoffs. The robustness is achieved against incomplete and erroneous

knowledge about the steering vector in recently presented algorithms [50, 74]. The

estimation of the signal steering vector has been executed by reformulating the

optimization problem, and particular toolboxes have been used to obtain the solution.

Most of the described robust beamformers utilize some specific parameters that

are challenging to determine in a practical situation. Moreover, various adaptive

beamformers do not solve the optimization problem analytically rather use some

specific toolboxes, which increases the computation burden. A novel beamformer has

been presented in [75] which estimates the signal steering vector by eigen decomposition

approach. However, it is assumed that the number of signals are known in advance

and desired signal’s strength is relatively low compared to the strength of interfering

signals, which limits its practicality.

The foremost objective of an adaptive beamformer is to improve the quality of

the desired signal with nullifying the interferences. For enhancing the quality of

the desired signal its direction of incidence should be known accurately because by

directing more power towards wrong direction of the desired signal degrades the
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performance of the beamformer. The essential parameter to examine the performance

of a robust adaptive beamformer is output SINR. The accurate estimation of the

desired signal’s direction leads to enhancement of output SINR. In this chapter, a

proximal gradient based approach has been proposed, which reduces the impact of

DOA mismatches. The precise direction of the desired signal has been iteratively

determined using a hyper-parameter incorporated into a regularization function. The

performance of the suggested method has been improved by nullifying the interferences

along with the estimation of actual SOI.

2.2 Signal model

It is considered that P farfield source signals are incident on the M element

ULA. Assume that the desired signal impinges on the array from θo direction and the

remaining P − 1 interference signals are incident from θ1, θ2...θP−1 directions. At a

particular instant (k), the array output [38] can be illustrated as

x(k) = so(k)a(θo) +
P−1∑
i=1

si(k)a(θi) + n(k), k = 1, 2, . . . , K (2.2.1)

In the equation 2.2.1, so(k), si(k) and n(k) represent the desired signal, ith

interference signal and noise, respectively. The assumed noise is white and has a zero

mean. The steering vector for the angle θ is denoted by a(θ).

When there are M elements in an antenna array spaced half a wavelength apart, the

representation of the steering vector is as follows:

a(θ) = [1, ejπ sin(θ), ..., ejπ(M−1) sin(θ)]T (2.2.2)

Now, for the x(k) received vector, the covariance matrix can be calculated by

utilizing the expectation operator, i.e.,

R = E[x(k)x(k)H ] (2.2.3)
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where (.)H denotes the Hermitian. However, the covariance matrix R is not

available in the actual scenario, and the sample covariance can be calculated as

R̂ =
1

K

K∑
k=1

x(k)x(k)H (2.2.4)

The SCB can be determined by reducing the total output power while constraining

the beamformer’s response towards the presumed direction of the desired signal θp to

unity. The overall power of the received signal x(k) is determined as follows:

E{|wHx(k)|2} = wHRw (2.2.5)

So, mathematical formulation of SCB is given as

min
w

wHR̂w, s.t. wHa(θp) = 1 (2.2.6)

2.3 Proposed proximal gradient based robust beamfo-

rmer

SCB provides good resolution and superior interference rejection ability in the

absence of a mismatch condition. However, if the presumed direction of SOI (θp)

is deviated from the actual direction (θo) then the performance of SCB degrades

severely. So, the SCB is altered by constraining the total array power to direction

θ ∈ [−π/2, π/2] and the proximal gradient method is used to update the direction

iteratively. The modified optimization problem is formulated as

min
w

wHR̂w, s.t. wHa(θ) = 1 (2.3.1)

The constrained problem of equation 2.3.1 can be converted to a single goal

problem by using the Lagrange multiplier technique, which is provided as
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f(θ) = wHR̂w + λ(1−wHa(θ)) (2.3.2)

The single optimization problem is solved w.r.t. w to yield the Lagrange

multiplier λθ and the optimum weight vector wθ for the direction θ.

λθ =
1

a(θ)HR̂
−1
a(θ)

(2.3.3)

wθ =
R̂

−1
a(θ)

a(θ)HR̂
−1
a(θ)

(2.3.4)

For the direction θ the minimum array output power is calculated by utilizing

the equations (2.3.2-2.3.4).

fmin(θ) = wH
θ R̂wθ =

1

a(θ)HR̂
−1
a(θ)

(2.3.5)

It should be noted that when the θ lies proximate to the actual direction of

SOI θo then there is an increase in fmin(θ) which in turn improves the output SINR.

This motivates to develop a new function in terms of θ that maximizes the fmin(θ)

and adjust θ to determine the actual direction of SOI. Hence, a new function is

expressed as a combination of the initial function f(θ) and a regularization function

r(θ). The regularization function is utilized for adjusting the hyper-parameter θ,

moreover, it assures that the determined direction must be in enough proximity to the

tune direction of SOI. For the formulation of the described function some assumptions

are made that are the unknown actual direction of SOI belongs to an angular sector

Θ = [θmin, θmax] and the interferences are not situated in the given angular sector.

For the separation of desired signal from interference signals, a matrix C̃ is used,

which is given as

C̃ =

∫
Θ̃

a(ϕ)a(ϕ)Hdϕ (2.3.6)
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In equation 2.3.6, Θ̃ includes all the angles except the angles of set Θ and a(ϕ)

is the steering vector corresponds to angle ϕ. Now, to formulate the optimization

problem equations (2.3.2), (2.3.5) and (2.3.6) are used

minimize
θ

F (θ) = a(θ)HR̂
−1
a(θ) + a(θ)HC̃a(θ) (2.3.7)

=
1

f(θ)|wθ,λθ

+ r(θ) (2.3.8)

Due to the convex and differentiable nature of f(θ), simple and convex r(θ)

moreover, f(θ), w and θ are linked only through a constraint, thus, the proximal

gradient approach is utilized to resolve the problem. The θ is evaluated for each

iteration using the proximal gradient approach and the update for a particular iteration

is given as:

θj+1 = proxδj ,r

(
θj + δj [∇θf(θ)]θ=θj

)
(2.3.9)

where δj is the step size whose value is chosen greater than zero, i.e., δj > 0

and ∇ is the gradient operator. Initially, the value of step size is chosen randomly,

and it is updated with every iteration according to approach mentioned in [76]. The

proximal operator prox given in equation (2.3.9) is defined as

proxδ,r(φ) = argmin
θ∈[−π

2
,π
2
]

(
δr(θ) +

1

2
(θ − φ)2

)
(2.3.10)

Now, the gradient of jth iteration can be computed by :

gj = [∇θf(θ)]θ=θj =

[
d

dθ

(
wHR̂w + λ(1−wHa(θ))

)]
θ=θj

= −jπλθj cos(θj)
(
wH

θj

(
u ◦ a(θj)

))
(2.3.11)

In the equation 2.3.11, u = [0, 1, 2, .......,M−1]T , ◦ indicate Hadamard product.
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Further, the issue of the number of received samples is addressed because they

are used to determine the sample covariance matrix. The estimation of the sample

covariance matrix can be inaccurate because of the small snapshot number that

deteriorates the effectiveness with regard to the output SINR of the beamformer.

So, to enhance the output SINR, the optimum weight vector is determined by using

the diagonal loading method. The weight vector for the proposed proximal gradient

based RCB (PGRCB) is given as

ŵ =
(R̂+ ρI)−1a(θ̂)

a(θ̂)H(R̂+ ρI)−1a(θ̂)
(2.3.12)

where ρ is the loading level and θ̂ is the estimated direction of the desired

signal. The diagonal loading value is determined by scaling the estimated power of

the desired signal in [70] but the value becomes very large as the number of snapshots

increases in case of no mismatch condition, which deteriorates the performance of

beamformer. In the suggested beamformer, the estimated direction of the desired

signal is approximately the same as the actual direction. Therefore, the HKB approach

will not be the appropriate method. So, the diagonal loading value is calculated

according to [10] and no scaling is performed on the estimated power of SOI.

ρ = wH
θJR̂wθJ

=
1

a(θ̂)HR̂
−1
a(θ̂)

(2.3.13)

where wθJ depicts the weight vector for J th iteration. The whole method is

summarized in an algorithm which is depicted in Algorithm 1.
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1 Input: Sample covariance matrix R̂, Number of array elements M ,

Presumed DOA of SOI θp, DOA uncertainty range [−∆,∆] ;

2 Initial: DOA θ1 = θp, angular sector Θ1 = [θp −∆, θp +∆], step size δ1,

number of iterations J ;

3 for j = 1, 2, . . . , J do

4 Compute the steering vector a(θj) equation (2.2.2);

5 Compute matrix C̃ associated with angular sector Θj equation (2.3.6);

6 Compute minimization function F (θj) equation (2.3.7);

7 Compute the Lagrange multiplier λθj equation (2.3.3);

8 Compute the weight vector wθj equation (2.3.4);

9 Compute the gradient gj equation (2.3.11);

10 Compute the gradient step φj = θj + δjgj;

11 Compute the proximal operator θtent = proxδj ,r(φ
j) equation (2.3.10);

12 Repeat steps 4-6 to compute F (θtent);

13 if F (θtent) ≤ F (θj) then

14 Update DOA, angular sector and increase step size: ;

15 θj+1 ← θtent;

16 Θj+1 ← [θtent −∆, θtent +∆];

17 δj+1 ← 1.2δj;

18 quit if |(θj+1 − θj)/δj|+ |gj+1 − gj| ≤ ε;

19 else

20 Reject updates and decrease step size:;

21 θj+1 ← θj;

22 Θj+1 ← Θj;

23 δj+1 ← 1
2
δj;

24 end

25 end

26 Output: Estimated DOA of SOI: θ̂ ← θj+1 ;

27 Optimum weight vector: ŵ equation (2.3.12);

Algorithm 1: PGRCB algorithm
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2.4 Simulation results and discussions

Several simulations are implemented to illustrate the performance of the proposed

beamformer. To validate the superiority and effectiveness of the proposed PGRCB,

it is compared with some standard as well as state-of-the-art algorithms that are

SCB,RCB [12], MVDR2012 [50], and MVDR2019 [74] . In the simulations, ULA of

10 elements that are uniformly placed at a distance of half-wavelength w.r.t. each

other is utilized. Two interferences are assumed to incident on the array from −20°

and 60° with an equal interference-to-noise ratio (INR) of 30 dB.

The proposed PGRCB is configured to have a total of 100 iterations set as J = 100.

The step size for each iteration is chosen as δ1 = 0.1. A small value of step size

is chosen because more iterations will be required to converge in the case of a

larger value. Different scenarios have been considered to examine the performance

of the PGRCB. For each scenario, final results are obtained by averaging the 500

independent simulation runs. The parameter uncertainty value for RCB is set to

ϵ = 6 and the range of uncertainty for the other considered algorithm is [−6°, 6°].

2.4.1 Precise knowledge of DOA for SOI

Firstly, it is assumed there is no mismatch in the DOA of SOI. The actual and

presumed DOAs of SOI are identical θo = θp = 0°. The effectiveness of the considered

beamforming algorithms is evaluated by the parameter output SINR. Input SNR and

snapshot number are varied, and their effect on output SINR is studied. The effect

of input SNR and snapshot number on output SINR is illustrated in Figure 2.1 and

Figure 2.2, respectively. In Figure 2.1, input SNR is varied with a fixed number of

snapshots K = 100, and from the figure it can be seen that for the entire range of

input SNR, the proposed PGRCB provides better output SINR in comparison to the

tested beamforming algorithms. It can also be noticed that even for the higher range

of input SNR, the output SINR degrades severely in the cases of MVDR2012 and

MVDR2019.

Figure 2.2 depicts the effect of a change in snapshot number on the output SINR. It is
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Figure 2.1: Output SINR performance against input SNR with K = 100
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Figure 2.2: Output SINR performance against snapshot number with SNR = 15 dB
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evident from the figure that the best performance among all the tested beamformers is

given by the proposed PGRCB. However, the SINR of conventional SCB deteriorated,

particularly at lower snapshot numbers.

2.4.2 Mismatch in the DOA for SOI

In this case, mismatch is considered the DOA of SOI. The presumed DOA

of SOI impinges on the array from θp = 0°. However, the direction of actual SOI is

incident on the array from some other direction, which is not the same as the presumed

direction. So, in the proposed algorithm, the actual DOA of SOI is considered to be

random in nature and is evenly distributed in the range [−6°, 6°]. For every trial, the

DOA of SOI is changed while being kept the same for each snapshot. The simulation

results for this scenario are shown in Figure 2.3 and Figure 2.4. The performance
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Figure 2.3: Output SINR performance against input SNR with K = 100 in mismatch

scenario

of output SINR is analyzed in the mismatch situation by changing the input SNR

while keeping the number of snapshots fixed at a constant value of K = 100 and
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Figure 2.4: Output SINR performance against snapshot number with SNR = 15 dB

in mismatch scenario

the results are illustrated in the Figure 2.3. From the figure, it can be seen that

the proposed PGRCB provides nearly identical results for both mismatch and no

mismatch scenario. So, it can be said that it is robust against mismatch in the DOA

of SOI. Additionally, the performance of the suggested beamformer surpasses that

of other examined beamformers across the entire input SNR range. However, the

conventional SCB is not able to provide robustness against mismatch in the DOA of

SOI as the output SINR deteriorates dramatically . Now, the performance parameter

SINR is evaluated by varying the snapshot number with fixed input SNR of 15 dB and

the results are depicted in the Figure 2.4. From where it is observed that the proposed

PGRCB is more robust because it maintains higher output SINR as compared to all

other tested beamformers.
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2.4.3 Large DOA mismatch

To investigate the robustness against large DOA mismatch, the range of DOA

mismatch is taken from [0°, 10°]. The performance parameters, such as output SINR

and estimate of SOI power, are evaluated by uniformly varying the DOA mismatch

angle from 0° to 10° with SNR=15 dB and snapshots K = 100. The performance of

output SINR against the DOA mismatch angle is illustrated in Figure 2.5. It is clear

from the figure that the proposed beamformer can handle the large DOA mismatch

as it maintains the output SINR for the whole range of mismatch angles. However,

the other beamformers, such as RCB, MVDR2012, and MVDR2019, work well only

for small mismatches.

Now, the power of SOI is estimated under the large mismatch scenario, and the results

are depicted in Figure 2.6. From there, it is evident that the proposed technique

accurately estimates the power in comparison to all the examined beamformers. RCB

also estimates the power accurately, but only for small DOA mismatches. While all

the other beamformers are failed to estimate the DOA of SOI in the large mismatch

case.
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Figure 2.5: Output SINR performance against SOI mismatch angle
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Figure 2.6: SOI power estimation performance against SOI mismatch angle

2.4.4 Deviation in the estimation of DOA of SOI

The proposed algorithm estimates the actual DOA of SOI along with robustness

against mismatches. The performance of DOA estimation is investigated by calculating

the error in estimation. The input SNR and snapshot number are varied to evaluate

the error in estimation, and the corresponding results are shown in Figure 2.7 and

Figure 2.8, respectively. From Figure 2.7, it can be seen that there is negligible error

for each presumed DOA of SOI θp. Moreover, the error vanishes as the input SNR

increases.

Now, the error is also evaluated for a different number of snapshots, which is

given in Figure 2.8. The figure makes it abundantly evident that as the snapshots

rises, the error dies out for each considered presumed angle.
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Figure 2.7: Deviation in estimated DOA of SOI with variable input SNR.
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2.5 Conclusion

In this chapter, a simple robust beamforming algorithm is developed that is

based on the proximal gradient method. Firstly, the beamforming problem is paramet-

erized and further solved by a hyper-parameter, which is regulated by the proximal

gradient method. The proposed algorithm estimates the accurate DOA of SOI along

with the power of SOI. The robustness against large DOA mismatches is achieved

by acquiring the optimal weight vector. The simulation results demonstrate that

the proposed beamformer is more robust to large mismatches as compared to the

standard and state-of-the-art algorithms.
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Chapter 3

Robust Beamforming for DOA

Mismatch and Moving Interference

3.1 Introduction

Due to rapid advancements in wireless communications, researchers have shown

a keen interest in adaptive beamforming. It is a versatile and efficient technology

for boosting the SOI while simultaneously suppressing noise and interfering signals.

The most classical adaptive beamformer has been developed by Capon [69] that

provides outstanding performance in terms of resolution and interference suppression

ability. Since the Capon beamformer is highly susceptible to various factors such as

DOA mismatch, a small number of snapshots for steering vector estimation, moving

interfering signals, imperfect antenna array calibration,etc. It is necessary to make

the beamformer robust so that its performance can be improved against the above-

mentioned factors. A review of various robust beamformers has been presented

in [77–80] that improves the capon beamformer’s performance in various scenarios.

To tackle the problem of DOA mismatch, diagonal loading techniques have

been given in [9, 14, 17, 18, 81, 82]. These techniques addressed the problem of DOA

mismatch quite effectively, at the expense of a reduction in interference suppression
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capability. Further, [83] and [12] handled the SOI’s uncertainties by employing

ellipsoidal constraints in the steering vector. However, the loading value is dependent

on the amount of uncertainty, which is difficult to obtain in reality. To deal with

large DOA mismatches, magnitude constraints have been utilized in [55,84]. Despite

significant mismatches, the main beam’s beamwidth and direction were kept in check,

but they did not consider the desired signal is the received data.

Further, to make the beamformer robust against moving interferences, various

methods have been illustrated in [85–95]. For these quickly moving interferences,

the null broadening method has received a lot of attention [96]. Multi-parametric

quadratic programming has utilized in [85] to control the null width. In [91–93] the

expansion of null is executed via covariance matrix taper (CMT). The aforementioned

techniques address DOA mismatch and non-stationary interferences independently

but do not concurrently offer robustness against these two key problems. Consequently,

a new robust beamformer has been developed to suppress the moving interferences

while also being resilient against DOA mismatch.

Thus, this chapter is divided into the different sections below:

The mathematical model of SCB and the proposed formulation for null widening

along with DOA mismatch are illustrated in sections 3.2 and 3.3, respectively. It is

followed by simulation results, which is elucidated in section 3.4. Finally, the chapter

is concluded in section 3.5.

3.2 Signal model

It is considered that P number of signals are incident on antenna array of M

elements, which are positioned at half wavelength spacing. There is only one SOI,

and the remaining P − 1 are interference signals. The steering vector for angle θ is

calculated as

a(θ) = [1, ejπ sin(θ), ..., ejπ(M−1) sin(θ)]T (3.2.1)
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The SOI and the steering vector for DOA θo are represented by so and a(θo), respectively.

For ith interference signal si, the steering vector is denoted as a(θi). The P − 1

interference signals impinge on the array from θ1, θ2...θP−1 directions. The mathematical

expression of the received data in the presence of noise n on the antenna array at a

particular instant k [80] is given as:

x(k) = so(k)a(θo) +
P−1∑
i=1

si(k)a(θi) + n(k), k = 1, 2, . . . , K (3.2.2)

The covariance matrix is calculated from the received signal vector x(k) given by

R = E[x(k)x(k)H ] (3.2.3)

Where E is the expectation. Theoretically, the covariance matrix can be represented

as the summation of SOI covariance matrix and INCM.

Rt = Rs +Ri+n

= σ2
oa(θo)a

H(θo) +
P−1∑
i=1

σ2
i a(θi)a

H(θi) + σ2
nI (3.2.4)

In the equation 3.2.4, σ2
o , σ2

i and σ2
n represent the power of SOI, ith interference signal,

and noise, respectively. However, in the real environment, the covariance matrix is

determined from the received snapshots at the antenna array. The expression of the

covariance matrix for a total of K snapshots is given as

R̂ =
1

K

K∑
k=1

x(k)x(k)H (3.2.5)

For w weight vector the response of the beamformer at k(th) instant, is given as

y(k) = wHx(k) (3.2.6)

The total output power of the received signal x(k) is calculated by utilizing expectation

operator.

E{|wHx(k)|2} = wHRw (3.2.7)

The optimization problem of SCB is computed by reducing the total output power

while restricting the output towards SOI to unity. It is mathematically represented

as

min
w

wHR̂w, s.t. wHa(θo) = 1 (3.2.8)
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The equation 3.2.8 is solved by Lagrange multiplier [97,98] and the weight vector can

be computed as

w =
R̂

−1
a(θ̂o)

a(θ̂o)HR̂
−1
a(θ̂o)

(3.2.9)

3.3 Proposed robust beamformer

A taper matrix is utilized in the interference steering matrix to handle interferen-

ces in motion. The taper matrix is computed by inserting fake interferences in close

proximity to the real interferences

3.3.1 Taper matrix for null broadening

The P − 1 interference signals arriving at the antenna array from θ1, θ2...θP−1

directions. The steering matrix for ith interference is given by

A(θi) = a(θi)a
H(θi) (3.3.1)

Let F be the fictitious interferences inserted around the actual ones, and Wf is the

null width. For ith original interference, the fictitious interferences are placed at the

following positions:

θfi = θi + q∆ (3.3.2)

where q should lie in the range −(F−1)
2
≤ q ≤ (F−1)

2
, and ∆ =

Wf

F−1
. The new steering

vector and matrix are given as

anew(ϕi) = [1, ..., ej(M−1) sin(θi+q∆)]T (3.3.3)

Anew(θi) = anew(θi)a
H
new(θi) (3.3.4)

Elucidate the equation 3.3.4 by using equation 3.3.1-equation 3.3.3, yields
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[Anew(θi)]m,f =
sin(FΦ/2)

sin(Φ/2)
[A(θi)]m,f ; 1 ≤ m, f ≤M (3.3.5)

Φ = π∆(remainder(f − 1,M)− remainder(f − 1,M)) (3.3.6)

In the equation 3.3.6, remainder(x, y) refers to the remaining amount after dividing

x with y. Finally, the taper matrix is given as

[T ]m,f =
sin(FΦ/2)

sin(Φ2)
; 1 ≤ m, f ≤M (3.3.7)

Now, the Anew(θi) can be rewritten in the form of taper matrix and Hadamard

product ⊙.

Anew(θi) = A(θi)⊙ T (3.3.8)

3.3.2 Robustness against DOA mismatch along with null expan-

sion

To create a beamformer that is resilient against DOA mismatch, the strength

of the ROI is maintained at a constant level of unity. The semidefinite approach

[99,100] is used to resolve the proposed beamformer, and the final solution is obtained

by the CVX toolbox [101] of Matlab. When there is precise knowledge of SOI’s

steering vector a(θo) and the INCM Ri+n then the weight vector can be computed

by maximizing the SINR, which is given as

max
w

SINR =
σ2
o |wHa(θo)|2

wHRi+nw
(3.3.9)

The equation 3.3.9 can be expressed as

max
w

SINR =
σ2
o |wHa(θo)|2∑P−1

i=1 σ
2
iw

Ha(θi)aH(θi)w + σ2
nw

Hw

=
σ2
o |wHa(θo)|2∑P−1

i=1 σ
2
i |wHa(θi)|2 + σ2

nw
Hw

(3.3.10)

Now, consider a ROI in which SOI has a high probability and the magnitude response

of the ROI is set to unity. Let the ROI be denoted as Ωs = {θ1, ..., θS} and the SOI
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should lie in the ROI θ0 ∈ Ωs. The magnitude response condition is represented as

|wHa(θs)|2 = 1; θs ∈ ΩS (3.3.11)

To fulfill the objectives of null broadening and DOA mismatch simultaneously,

the optimization is expressed as

max
w

SINR =
σ2
o |wHa(θo)|2∑P−1

i=1 σ
2
i |wHa(θi)|2 + σ2

nw
Hw

subject to |wHa(θs)|2 = 1; θs ∈ Ωs (3.3.12)

|wHanew(θi)|2 = µi

In the above equation, µi is the null level and calculated via SCB using the weight

vector of equation 3.2.9 |wHa(θi)|2 = µi. The SINR in equation 3.3.12 can be

expressed as

SINR =
σ2
o∑P−1

i=1 σ
2
i µi + σ2

nw
Hw

(3.3.13)

There is a need to deal with only one part of the denominator wHw to optimize the

SINR. Consequently, the optimization problem of equation 3.3.12 can be rewritten as

min
w

wHw = ||w||22

s.t. |wHa(θs)|2 = 1; θs ∈ Ωs (3.3.14)

|wHanew(θi)|2 = µi

In the equation 3.3.14, ||.|| represents the l2 norm. The optimization problem of

equation 3.3.14 is non-convex, which needs to be converted into convex. So, the

convex form is presented as

min
W

trace{W }

s.t. trace{A(θs)W } = 1; θs ∈ Ωs (3.3.15)

trace{Anew(θi)W } = µi

39



W ⪰ 0

where W = wwH and A(θi) = a(θi)a(θi)
H . For converting non-convex problems

into convex problems, various formulas have been used, which are given as

||w||22 = trace{wHw} = trace{wwH} (3.3.16)

|wHa(θ)|2 = trace{wHa(θ)aH(θ)w} = trace{a(θ)aH(θ)wwH} (3.3.17)

Now, the optimization problem is solved to get the weight vector W in the CVX

toolbox of Matlab. Then eigen decomposition is applied to W to get the largest

eigenvalue λmax and corresponding eigenvector vmax. The optimal weight vector w∗

is calculated as

w∗ =
√
λmaxvmax (3.3.18)

3.4 Simulation results and discussions

The proposed beamformer is tested under diverse situations, and its effectiveness

is measured against SCB, RCB [12] and RSLC [92]. A half wavelength d = λ/2 spaced

ULA of M = 10 antenna elements is considered for all the considered beamformers

except for [92]. In RSLC, M = 21 primary antenna elements assumed at d = λ/2

and L = 8 auxiliary antenna elements located at non-uniform positions at both ends

of the primary array. For RCB, the uncertainty level is assumed to be ϵ = 6 and for

other considered beamformers, the uncertainty range is [−3o, 3o]. The performance

of the considered beamformers under different scenarios is described as follows:
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3.4.1 Null expansion and no mismatch

The SOI is assumed to arrive at 0o while the two interferences incident on

the array from −25o and 40o directions. It is assumed that the interferences are in

motion and the SOI is perfectly known. For suppressing the moving interferences

N = 5 virtual interferences are considered around each actual interference to widen

the null. The width of each null is considered Wn = 0.04. The number of snapshots

for simulations is taken as K = 100. The input SNR and INR are 10 dB and 30 dB

respectively.

To observe the null widening, an illustration of the radiation patterns obtained

through the use of considered approaches, is presented in Figure 3.1. While both
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Figure 3.1: Radiation patterns for null widening at −25o and 40o

SCB and RCB create distinct nulls in relation to the two interferences, these nulls

are unable to eliminate the interferences that are in motion. Therefore, moving

interferences cannot be controlled by SCB or RCB. Conversely, broad nulls are observed

in the case of the proposed beamformer and RSLC that can control the moving

interferences. Apart from broad nulls, the proposed algorithm produces lower sidelobes

as compared to the other tested approaches.
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The output SINR is assessed for the examined beamformers by altering the

input signal-to-noise ratio (SNR) and the number of snapshots, and the corresponding

results are shown in Figures 3.2 and 3.3, respectively. To determine SINR, the INR

and snapshot number are held constant while altering the SNR. Conversely, when

seeking to find the SINR by adjusting the snapshot number, both the SNR and

INR remain unchanged.To acquire the average results for each SINR calculation,

500 distinct simulation runs are carried out. According to Figures 3.2 and 3.3,

the proposed beamformer clearly outperforms the other beamformers tested since

it generates an output SINR that closely matches that of the optimal beamformer,

regardless of the SNR and snapshot number. Contrastingly, the effectiveness of the

other examined algorithms deteriorates as SNR increases, and a small number of

snapshots result in a significantly low SINR.
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Figure 3.2: Output SINR performance with varying SNR at K = 100

3.4.2 Null expansion and mismatch in SOI’s direction

In the current section, the performance of the considered beamformers is investi-

gated under SOI mismatch conditions along with moving interferences. In the previous

section, it was presumed that SOI strikes the array from 0o however, it is incident
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Figure 3.3: Output SINR performance with varying snapshot number K

from 2o. So, the mismatch of 2o is considered in the simulations. The directions,

quantity of fictitious interferences, and null width remain intact from the previous

section of this chapter.

The effect of varying input SNR and snapshot number on the output SINR is
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Figure 3.4: Output SINR performance with varying SNR at K = 100 in the presence

of mismatch in SOI

43



investigated for the tested algorithms, and the corresponding results are depicted in

Figures 3.4 and 3.5, respectively. The performance of null broadening along with

DOA mismatch of the tested beamformers in the case of SNR variation is given

in Figure 3.4. From there, it can be seen that the output SINR of the proposed

technique tracks the optimum beamformer accurately, indicating that as SNR rises,

the output SINR goes up linearly. However, the output SINR of RCB and RSLC

failed to follow the optimal SINR for higher range of input SNR. The output SINR of

the proposed beamformer is unaffected by the number of snapshots, as seen in Figure

3.5. Additionally, the suggested beamformer keeps the output SINR close to the
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Figure 3.5: Output SINR performance with varying snapshot number K in the

presence of mismatch in SOI

ideal curve. Consequently, it could be stated that the suggested beamformer is more

reliable and offers greater resistance to DOA mismatch with broad nulls to cope with

non-stationary interferences. Whereas, SCB is not suited for moving interferences

and DOA mismatch, which is visible from its performance.
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3.4.3 Minimization of moving interferences

In the present section, the impact of variation in the directions of interferences

on the considered beamformers in two distinct situations is discussed in subsections

3.4.3.1 and 3.4.3.2.

3.4.3.1 Minimization of moving random interferences random with random

SOI direction

In the current scenario, the directions of SOI as well as each interference are

varied for each simulation run, while they are kept the same for every snapshot. The

SOI is varied in the range of [−2o, 2o] whereas the two interferences are uniformly

distributed in [−28o,−22o] and [37o, 43o]. The output SINR performance of the tested

beamformers is shown in Figures 3.6 and 3.7, respectively. When attempting to

identify SINR by varying SNR, the number of snapshots remains constant atK = 100,

whereas when attempting to acquire SINR by changing the number of snapshots, the

input SNR remains the same at 20 dB.

Figure 3.6 illustrates the performance of the tested beamformers in terms of SINR

across varying SNR levels. It is evident that the proposed beamformer is better

than the existing ones, especially when the SNR is high. The performance of the

available methods declines for these higher levels of SNR. The impact of variation in

snapshot number on the output SINR is depicted in Figure 3.7 which indicates that

the suggested beamformer achieved satisfactory results when compared to the other

beamformers that are taken into account.

3.4.3.2 Minimization of moving interferences with mismatches in SOI

direction

It is considered that the DOA of SOI suffers from a mismatch of 2o and the

two interference signals also show deviation in the range of [−3o, 3o] around −25o,

40o respectively. It is also assumed that the angles of interferences are altered within
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Figure 3.6: Output SINR performance comparison with varying SNR at K = 100 for

minimization of quickly moving random interferences and random SOI direction
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Figure 3.7: Output SINR performance comparison with varying snapshot number K

at SNR = 20 dB for minimization of quickly moving random interference sources

and random SOI direction
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the considered deviation range for each snapshot while remaining the same for every

simulation run.

As illustrated in Figure 3.8, the output SINR of the suggested approach precisely
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Figure 3.8: Output SINR performance comparison with varying SNR at K = 100 for

minimization of quickly moving random interferences and mismatches in SOI

mirrors the optimal beamformer, meaning that, when SNR increases, the SINR

output rises in a proportional manner. As the SNR increases, the effectiveness of

SCB and RCB decreases, while the SINR of RSLC increases linearly, but there

is a gap of approximately 20 as compared to an optimal beamformer. So, it can

be said that in the mismatch scenario, the proposed beamformer outperforms the

other considered beamformers. Now, snapshots number is also varied, and the effect

is depicted in Figure 3.9. The figure highlights the superior performance of the

proposed beamforming method compared to other tested beamformers. While the

SINR remains nearly constant across all considered approaches for every snapshot

number, a substantial difference in the actual output SINR values is observed. The

SINR difference of approximately 1.5 dB, 10 dB, 13.5 dB and 25 dB is observed in

the proposed, RSLC, RCB, and SCB, respectively, as compared to optimal SINR.
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Figure 3.9: Output SINR performance comparison with varying snapshot number

K at SNR = 10 dB for minimization of quickly moving random interferences and

mismatches in SOI

3.5 Conclusion

This chapter introduces an adaptive beamformer capable of suppressing the

interference from moving sources and being robust against errors in the DOA estimati-

on of the SOI. The computation of the optimal weight vector involves the use of

the reformulated interference matrix and imposing magnitude regulations on the

Region of Interest (ROI). The performance of the proposed beamformer is examined

by comparing its simulation results with those of conventional and recent methods.

Simulation results reveal that the proposed beamformer is able to widen the nulls

and, consequently, offer a higher output SINR compared to the other methods tested.
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Chapter 4

Dual Beam Adaptive Beamforming

with SLL Control

4.1 Introduction

In recent years, a lot of work has been done in array signal processing to address

the issues of adaptive beamforming, which is incredibly essential for radar, navigation,

wireless communication, remote sensing, etc. [67, 102–104]. Adaptive beamforming

is a significant technique utilized to amplify the SOI while minimizing the effect of

interferences and background noise through dynamic alterations made to the array

components’ weights [2].

There are many adaptive beamforming algorithms in the literature, and the most

widely used beamformer is MVDR [69] that is also called SCB. Despite being the

renowned beamformer, it does have some limitations. It can only deal with a single

SOI at a particular moment, and in numerous fields of wireless communications

such as satellite communications [105–108], mobile communications [109], etc., it

is necessary to process several SOIs at the same time while also handling interfering

signals [110–112]. Therefore, the adaptive beamforming algorithms must be able to

create multiple beams so they can efficiently receive multiple signals from different

desired directions while blocking out interfering signals at the same time. Moreover,
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the SCB does not take into account the SLL, which is a critical attribute of the

beampattern. In an adaptive antenna array environment, it is possible for sudden

or unexpected interferences to disrupt the array, resulting in reduced performance

since the beamformer is unable to minimize these unexpected interferences. Hence,

an efficient method to take care of this issue is by controlling the SLL so that the

unintentional interferences can be suppressed.

Various techniques for controlling the SLL have been described in the literature

[113–116, 118–124]. For reducing the SLL, several quadratic constraints have been

applied on the complete beampattern area except the main lobe region. The quadratic

constraints in the considered region keep the SLL level below a certain value, but

employing excessive constraints may overconstrain the optimization problem, which

can lead to an infeasible solution. A subspace based approach is presented in [123] to

minimize the SLL. The subspace comprises the entire sidelobe region, and sampling

is performed on several angles of the subspace region. The powers of sampled angles

in the subspace region are minimized to reduce the SLL. Nevertheless, the number

of angles in the subspace region is not specified to ensure SLL control. Evolutionary

computing has also been utilized for regulating the SLL and described in [114–117],

but their iterative behavior sometimes makes them impractical because of their large

convergence times. Another method based on gravitational search to minimize the

SLL is presented in [119]. However, the search procedure is quite ad hoc and also not

restricted to a global search.

This chapter presents an adaptive beamforming technique that is capable of directing

dual beams towards two distinct desired directions while simultaneously diminishing

interferences and managing the SLL. The optimization problem of SCB for obtaining

dual beams only involves only one additional constraint. Essentially, this involves

generating a fresh steering vector for the second SOI, and the response towards that

direction is limited to a value of one. For managing the SLL, four regions of interest

(ROIs) are chosen in the vicinity of the two beams, and the strengths that correspond

to these regions are limited to a particular value. Beamwidth between first minimas

(BWFM) is employed for calculating the ROIs widths, and to address the issue of

overconstraints, a practical formula has been devised to determine the appropriate
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constraint number. The optimization of dual beams is altered by incorporating

inequality constraint on ROIs for reducing SLL. consequently, the suggested algorithm

is able to receive dual SOIs from two different sources at the same time. In addition to

this, the devised algorithm is capable of regulating the sidelobe level at a predefined

value, thus, the algorithm becomes less susceptible to unanticipated interferences

around dual lobes.

The organization of this chapter is as follows. The basic mathematical modeling of

received signals on the antenna array and SCB’s optimization problem are deduced

in section 4.2. The mathematical modeling of the suggested algorithm is given in

sections 4.3 and 4.4. Simulation results for various scenarios are detailed in section

4.5, followed by the concluding section.

4.2 Signal model

Consider a ULA consisting of M number of elements with an inter-element

spacing of half wavelength. For multiple desired signal environments, it is considered

that N number of desired signals with J interference signals in the presence of noise

are incident on the M antenna elements. It is assumed that the total K number of

snapshots are received on the array. The mathematical representation of the received

signal vector for the kth snapshot is as follows:

x(k) = Aoso(k) +Aisi(k) + n(k), k = 1, 2, ..., K (4.2.1)

The dimensions of the received signal vector are M × 1. so and si represent the

vectors of SOIs and interference signals, respectively.

so = [so1 , so2 , ..., soN ]N×1 (4.2.2)

si = [si1 , si2 , ..., siJ ]J×1 (4.2.3)

In the equation (4.2.1), the matrices that represent the steering vectors of SOIs and

interferences are indicated by Ao and Ai.

Ao = [a(θo1),a(θo2), ...,a(θoN )]M×N (4.2.4)

51



Ai = [a(θi1),a(θi2), ...,a(θiJ )]M×J (4.2.5)

For nth desired signal, the steering vector is represented by a(θon), n=1,2,..,N with

DOA θon and a(θoj), j=1,2,..J is the steering vector for jth interference with the DOA

of θij . For M antenna elements in the array the vector a(θ) for angle θ is represented

as

a(θ) = [1, ejπ sin(θ), ..., ejπ(M−1) sin(θ)]T (4.2.6)

where (.)T represent the transpose.

From the receivedK snapshots on the antenna array, the covariance matrix is estimated,

which is written as

R̂ =
1

K

K∑
k=1

x(k)x(k)H (4.2.7)

The formulation SCB is determined by reducing the output power and constraining

the unity response to the DOA of the single SOI. For the weight vector w and DOA

of the desired signal θo1 , the formulation of SCB is given as

min
w

wHR̂w, s.t. wHa(θo1) = 1 (4.2.8)

The SCB is limited to single SOI situations and therefore cannot be used in scenarios

where multiple desired signals are present. In scenarios with multiple desired signals

at the same time, a beamformer should have distinct main beams pointing towards

every desired signal for its efficient reception [125, 126]. Thus, there is a need to

modify the SCB for receiving multiple desired signals simultaneously. In the current

chapter, the SCB is adjusted to effectively receive a couple of SOIs simultaneously,

even when there are interferences and noise present.

4.3 Proposed dual beam beamformer

To enhance the performance of SCB, an additional constraint is added to its

optimization problem. The additional constraint restricts the response to unity in the

DOA of the second desired signal θo2 . Thus, a modified SCB facilitates the reception

of the second desired signal by forming an independent beam towards its direction.
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The modified optimization problem for dual beams is described as

min
wd

wH
d R̂wd

subject to

wH
d a(θo1) = 1

wH
d a(θo2) = 1

(4.3.1)

where wd is the optimal weight vector for SCB-dual beam (SCB-DB) and it is

calculated by solving the equation (4.3.1) in convex optimization solvers CVX [101].

4.4 Sidelobe level management with dual beam

The SCB pays attention to the SOI and interferences and put less emphasis

on the SLL. Since the sidelobes are more prevalent close to the main lobe, these

should be decreased. If interferences strike the antenna array from the dominant

sidelobe directions, then the performance of the beamformer is adversely affected

as the interfering signals are amplified instead of being blocked. In these scenarios,

reducing the level of the sidelobes located close to the main beam can ameliorate the

performance of the beamformer since it can withstand unexpected interferences [122].

Thus, a beamformer is developed for dual beams and SLL minimization and explained

as follows:

1. Initial parameters: (i). Define antenna number (M)

(ii) Number of received samples (K)

(iii) DOAs of SOIs θo1 , θo2 and interferences θi1 , θi2 .

2. Determine the sample covariance matrix using the received K snapshots as per

the formula provided in equation (4.2.7).

3. To acquire dual beams towards the two SOIs, modify the SCB beamformer

according to equation (4.3.1).

4. Determine the weight vector wd and array factor (AF1) utilizing equation

(4.3.1).
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5. From the AF1 of the radiation pattern, compute the BWFM for the dual beams.

The BWFM for the two beams are denoted as ∆m1 and ∆m2 .

6. Four ROIs are chosen that are located near to the main lobes.

• The sizes of ROIs are chosen based on the DOAs and BWFM of the dual

beams. The ROIs’ widths are chosen based on the DOAs and BWFM of

both main lobes. The sizes of four ROIs are represented as u1, u2, u3, and

u4, which are computed as follows:

u1 = [θo1 − α1, θo1 − α2]

u2 = [θo1 + α1, θo1 + α2]

u3 = [θo2 − α3, θo2 − α4]

u4 = [θo2 + α3, θo2 + α4]

(4.4.1)

where, α1 =
3∆m1

4
, α2 =

∆m1

2
,α3 =

3∆m2

4
and α4 =

∆m2

2
.

7. The same number of constraints are imposed on every ROI, and the amount of

constraints put into place for each ROI is decided by an experimentally derived

formula, which is illustrated as
log2N

2
(4.4.2)

8. The outputs of all the ROIs are computed and restricted to a particular value

δ. Then the computed conditions are included in equation (4.3.1) and the

reformulated problem is given as

min
wo

wH
o R̂wo

subject to

wH
o a(θo1) = 1

wH
o a(θo2) = 1

|wH
o a(θSLL)| <= δ; θSLL ∈ (u1...u4)

(4.4.3)

9. The optimum weight vector for minimizing SLL and obtaining dual beams is

calculated by solving the equation (4.4.3) using the CVX toolbox of Matlab.
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4.5 Simulation results and discussions

To examine the efficiency of the suggested beamformer, simulations are performed

for two distinct conditions that are symmetric SOIs and the asymmetric SOIs. For

both scenarios, an array of M = 32 antenna elements equi-spaced at distances λ/2 is

assumed. λ is the wavelength. To compute the sample covariance matrix, K = 500

snapshots are utilized.

4.5.1 Symmetric SOIs

In the current scenario, it is assumed that the two SOIs θo1 and θo2 are incident

on the antenna array from symmetric directions, so if the DOA of the first SOI

is θo1 then the second SOI will impinge the array from θo2 = −θo1 . For carefully

analyzing the proposed algorithm, the directions of the SOIs are changed in the range

of SOI1 = [−60o,−10o] and SOI2 = [10o, 60o] with a step size of 1o. It is considered

that two interference signals also impinge on the array from directions θi1 = −30o

and θi2 = 25o along with the two SOIs. The SNRs of both the SOIs are 20 dB and 10

dB, while the INRs of the interference signals are 15 dB and 20 dB for this scenario.

Angles ranging from [θi−8o, θi+8o] are left out because the proposed algorithm finds

it challenging to effectively block out the interferences inside the main beam area.

The simulations are carried out for all the angles of the considered range [−60o, 60o]

with a step size of 1o. However, it is impractical to display all the beam patterns that

have been produced for the specified range. As a result, three diverse angles have

been selected that situate in the farthest left, farthest right, and amid the considered

range.

The radiation patterns for these three angles are illustrated in Figures 4.1, 4.2 and

4.3. The beampatterns indicate that the proposed algorithm minimizes the SLL for

the entire considered range and also correctly places the main lobes to the two SOIs.

Further, it can be easily noticed from the obtained radiation patterns that the SCB-

DB beamformer has increased sidelobes, and these sidelobes are more prominent close

to the main lobes. These prominent sidelobes can enhance unexpected interferences
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Figure 4.1: Radiation patterns produced for θo1 = −10o, θo2 = 10o.
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Figure 4.2: Radiation patterns obtained for θo1 = −38o, θo2 = 38o.
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Figure 4.3: Radiation patterns obtained for θo1 = −60o, θo2 = 60o.

which leads to performance deterioration.

Due to the practical limitation of not showing each obtained beam patterns for the

considered range of DOAs of SOIs [−60o, 60o], the proposed algorithm is investigated

by computing characteristic parameters.These parameter measurements are derived

from the radiation patterns across the specified range. The characteristic parameters

include relative SLL, maximum SLL, 3-dB beamwidth (BW), BWFM, and the angular

disparity in the main lobe’s position from the corresponding angle of SOI.

The angular disparity between main lobe’s position and the SOI’s direction as well as

relative SLL for the SCB-DB and the suggested algorithm is depicted in Figure 4.4.

From there, it is evident that the suggested approach minimizes the SLL in the ROI.

The proposed algorithm attains the greatest and least improvement of around 20 dB

and 2 dB, respectively, in comparison to the SCB-DB beamformer in terms of relative

SLL. Now, the main lobe deviation w.r.t. the actual DOA of SOI is computed, and

the results are shown in the third and fourth graphs of Figure 4.4. It is observed from

the graphs that the mean deviation for the considered range is less than 1% which

can be considered negligible and can be neglected.

57



The performances of BWFM and 3-dB BW for the considered algorithms are shown
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Figure 4.4: Relative SLL and deviation in main lobes in SCB-DB and the proposed

method

in Figure 4.5.From there, it is noticeable that a slight expansion of the main lobes

is seen, which is likely a consequence of minimizing the sidelobes. The proposed

algorithm widens the BWFM and 3-dB BW by approximately 4o and 1.5o respectively,

as compared to the SCB-DB. It is already anticipated that reducing the strength of

the sidelobes can result in the concentration of energy towards the main lobes and

causes beam broadening.

The evaluated performance of the beamformers under consideration is analyzed

concerning SLL across the entire beam pattern area. The outcomes are illustrated

in Figure 4.6. The proposed method potentially reduces the SLL even for non-

ROIs, which makes the method less vulnerable to unanticipated interferences in the

non-ROIs. The proposed algorithm demonstrates a notable improvement, with a

maximum increase of 4 dB observed in the side lobe level (SLL) in comparison to the

SCB-DB.

To achieve a more precise comprehension, the average of the distinctive parameters
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Figure 4.5: BWFM and 3-dB BW of the SCB-DB and the suggested method
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Figure 4.6: Maximum SLL obtained of the SCB-DB and the suggested method
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are computed for the all the angles of SOIs and shown in Table 4.1. The improvement

of 8 dB in the SLL of the ROIs is observed in the proposed algorithm. Additionally,

the maximum SLL is also minimized by 1.4 dB as compared to the SCB-DB. However,

the enhancement comes with the drawback of beam widening. The beam widening is

evaluated by 3-dB BW and BWFM, which are increased by 1.1o and 4o, respectively.

The angular disparities between the actual main lobes’ directions and the assigned

desired directions, as well as the nulls’ positions and the interference directions,

are also determined, and insignificant discrepancies are produced by the proposed

approach.

Table 4.1: Characteristic parameters for symmetric SOIs scenario

Characteristic Parameters SCB-DB Proposed Algorithm

SLL of first lobe (dB) -7.1792 -15.8140

SLL of second lobe (dB) -7.1792 -15.814

Maximum SLL (dB) -6.1934 -7.678

3-dB BW first lobe (o) 6.1307 7.2717

3-dB BW second lobe (o) 6.1017 7.2427

BWFM first lobe (o) 10.2371 14.1925

BWFM second lobe (o) 10.2737 14.2383

Angular deviation in first lobe (o) 0.1008 0.1015

Angular deviation in second lobe (o) 0.0939 0.1001

Angular deviation in first null (o) 0.0032 0.0021

Angular deviation in second null (o) 0.0018 0.0034

4.5.2 Asymmetric SOIs

For this scenario, it is assumed that SOIs impinge on the antenna array from

asymmetric directions. Therefore, the first desired signal is taken at θo1 = 0o,

and the DOA of the second signal is changed in a step size of 1o for the range of
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[40o, 60o]. The remaining parameters such as SNR, number of interferences, directions

of interferences, and INR, are kept the same as that of the symmetric SOIs scenario.

The beam patterns are produced for all the angles in the range [40o, 60o] but all the

obtained radiation patterns can not be shown here. Consequently, three individual

angles are selected that are located at the most left end, the most right end, and amid

the specified range. The results for the chosen angles are shown in Figures 4.7, 4.8

and 4.9. From the figures of the radiation patterns, it is observed that the proposed

approach fulfill its objectives of dual beams along with SLL minimization as the main

lobes are pointed towards the two SOIs and sidelobes are also minimized in the ROIs.
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Figure 4.7: Radiation patterns for θo1 = 0o, θo2 = 40o

For an asymmetric scenario, radiation patterns are obtained for the entire

considered range, and characteristic parameters are computed from the radiation

patterns. The determined parameters are illustrated in Figures 4.10 and 4.11. From

the first and second graphs of Figure 4.10, it is observed that the SLL is greatly

reduced and preserved below −16 dB for the whole set of angles. The proposed

algorithm improves the relative SLL by as much as 16 dB, when compared to the
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Figure 4.8: Radiation patterns for θo1 = 0o, θo2 = 50o
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Figure 4.9: Radiation patterns for θo1 = 0o, θo2 = 40o
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SCB-DB beamformer. The SLL in non-ROI is indicated in the third graph of Figure

4.10, from there it is evident that the suggested beamformer effectively reduces the

SLL even outside the desired area, which can be seen as an added benefit. For

the entire specified range, the SLL is maintained below the SCB-DB beamformer.

Now, the difference between the direction of the main beam in the obtained radiation

patterns and its actual DOA is computed and shown in the fourth trace of Figure

4.10. The deviation of 0.6% is observed in the main beam, which is very insignificant.

So, it can efficiently point main lobes to its DOAs.

The BWFM and 3-dB BW are also evaluated from the obtained radiation patterns
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Figure 4.10: Relative SLL and deviation in dual beams obtained for asymmetric case

and illustrated in Figure 4.11. Both the beamwidths BWFM and 3-dB BW of the

proposed beamformer are increased in comparison to the SCB-DB beamformer. The

increase in beamwidths causes the widening of beams that can be expected because

when the power of the sidelobes is decreased, it can be accumulated towards the main

lobes.

Table 4.2 illustrates the important characteristic parameters produced by the

tested beamformers. It is clear that the suggested algorithm provides a significant
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Figure 4.11: BWFM and 3-dB BW for asymmetric case

Table 4.2: Characteristic parameters for asymmetric SOIs scenario

Characteristic Parameters SCB-DB Proposed Algorithm

SLL of first lobe (dB) -6.8052 -18.9746

SLL of second lobe (dB) -6.8053 -18.9749

Maximum SLL (dB) -6.3410 -9.3766

3-dB BW first lobe (o) 4.2518 5.2718

3-dB BW second lobe (o) 6.8809 8.6073

BWFM first lobe (o) 7.0609 13.1509

BWFM second lobe (o) 11.52 14.6945

Angular deviation in first lobe (o) 0.0200 0.0300

Angular deviation in second lobe (o) 0.0645 0.0730

Angular deviation in first null (o) 0.0141 0.0160

Angular deviation in second null (o) 0.0023 0.0041
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enhancement of 12 dB in the SLL surrounding the main lobes. Furthermore, a 3

dB improvement is offered by the proposed method in the maximum SLL outside

the ROI as compared to the SCB-DB.The notable enhancement in SLL has a slight

repercussion, which is manifested in the 3-dB BW and BWFM values, which indicate a

little expansion of the main beam. The stable main beams and sharp nulls are directed

toward the DOA of SOIs and interferences, respectively, as the suggested algorithm

exhibits a negligible angular disparity in the main lobes and nulls directions.

4.5.2.1 Output SINR performance

To evaluate the output SINR for the considered beamformers, a formula is

utilized, which is given in equation (4.5.1).

output SINR =
output signal power

output interference plus noise power

=
wH

o Rsswo

wH
o Ri+nwo

(4.5.1)

Where wo, Rss and Ri+n represent the weight vector, signal covariance matrix, and

interference plus noise covariance matrix. The covariance matrices are determined as

Rss =
N∑

n=1

σ2
ona(θon)a(θon)

H (4.5.2)

Ri+n =
J∑

j=1

σ2
ij
a(θij)a(θij)

H + σ2
pI (4.5.3)

where, σ2
on represent the power of nth desired signal, σ2

ij
is the power of jth interfering

signal and σ2
p is the noise power.

In both symmetric and asymmetric scenarios, the output SINR for the first SOI

is computed by considering the second desired signal as interference. The output

SINR is computed by varying the input signal-to-noise ratio (SNR). The comparison

of output SINR for SCB-one beam, SCB-DB, and the suggested beamformer for both

symmetric and asymmetric scenarios is depicted in Figures 4.12 and 4.13 respectively.

From there, it can be seen that the proposed algorithm does not result in an adverse

effect on output SINR even with two main lobes and sidelobes minimization. The
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Figure 4.12: Output SINR performance with input SNR in symmetric SOIs

suggested beamformer performs at a comparable level to the SCB-DB in terms of

SINR. Additionally, there is only a small disparity in SINR between the SCB-one

beam and the suggested beamformer.

Table 4.3 illustrates a comparison of different methodologies with the proposed

work. The authors in [112] employed a planar array consisting of 16 × 10 antenna

elements, capable of resolving two SOIs separated by an angle of 40o.The SLL of

-10 dB may be insufficient to effectively reduce undesired signals within the sidelobe

region.In [122] and [123], a single desired signal is addressed using 30 and 32 antenna

elements, respectively. The authors of [122] reduced the SLL to −20 dB, while

the authors of [123] achieved a reduction to −30 dB. The proposed approach can

simultaneously address two desired signals that are merely 20o apart using an array

of 32 antenna elements. Additionally, the SLL has been diminished to -19 dB.
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Figure 4.13: Output SINR performance with input SNR in asymmetric SOIs

Table 4.3: Comparative analysis of various methods.

Methods ↓ Antenna Elements No. of SOIs SLL

H. Singh et al. [112] 16× 10 Planar Two SOIs 40o apart −10 dB

I.P. Gravas et al. [122] 30 ULA Single SOI −20 dB

M. Zhou et al. [123] 32 ULA Single SOI −30 dB

Proposed work 32 ULA Two SOIs 20o apart −19 dB

4.6 Conclusion

A new method is devised to minimize the SLL when two desired signals are

present along with interferences. For achieving the aim, the optimization of the

traditional SCB is reformulated for two SOIs and by introducing appropriate number

of constraints for SLL reduction. By doing so, the algorithm is less likely to be

affected by any unexpected interruptions, and at the same time, it can create two
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lobes in the two preferred directions. The findings from the suggested algorithm

demonstrate that it can realize its objectives even when the SOIs are situated near

one another. Furthermore, stable main beams and nulls are steered to the desired

signals and interferences, respectively.
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Chapter 5

Improvements in sparse array via

additional constraints

Antenna array configuration has a substantial influence on the performance of

a beamformer. The majority of beamforming algorithms are limited to ULA only.

Sparse array [127, 128] configurations can be utilized for beamforming as they offer

numerous advantages, such as minimizing mutual coupling between antenna elements,

reducing antenna system complexity, etc., over ULAs [129–131]. A few examples

of well-known SAs are coprime arrays, nested arrays, minimum holes arrays, and

minimum redundancy arrays [132]. Apart from these, SAs are formed by selecting

a subset of antenna elements from the entire antenna array, and only the selected

elements are utilized for subsequent calculations such as DOA estimation, weight

vector estimation, etc. A simple illustration of SA is depicted in Figure 5.1.

SAs are designed to meet certain criteria that include output SINR (OSINR)

Figure 5.1: Sparse Array

maximization, BW management, SLL minimization, and MC reduction, to name

69



a few [133–139]. The OSINR plays a crucial role in assessing the effectiveness of

a beamformer, and its value is influenced by the arrangement of the array. The

correlation between OSINR and the quantity of antennas in the array is directly

correlated. In certain environments, the OSINR for an ULA does not follow a linear

pattern in relation to the number of antenna elements. This observation serves as

motivation to enhance the linearity of sparse arrays.

The authors of [138,139] designed a sparse array with the objective of SINR maximiza-

tion. The designed SA cannot be used in unpredictable interference environments

because the obtained beam patterns have high sidelobes. Numerous techniques have

been utilized for SLL management [119–123] but they are applied to ULAs only.

In [140], a method for designing SAs is discussed that effectively reduces sidelobes.

However, the proposed configuration utilizes 70% of the elements found in a full array.

The researchers have not placed much emphasis on controlling sidelobes in sparse

arrays until now. This chapter introduces an enhanced approach to beamforming,

taking into account additional constraints.

The chapter involves designing a sparsely populated array to maximize the OSINR.

The design process involves deriving the relation between the OSINR and the number

of antenna elements. Subsequently, an optimal weight vector is computed, taking into

account additional constraints to regulate the level of sidelobes. Then an analysis is

performed to prevent the grating lobes and reduce the MC by varying the separation

between the antenna elements of the designed SA.

The sequential process of the work done is as follows:

1. Derive the relationship between the OSINR and the number of antenna elements

in an antenna array.

2. Find the optimal positions of antenna elements, i.e., SA based on the OSINR

maximization criteria.

3. Apply additional constraints to the optimization problem for SLL regulation.

4. Perform distance analysis to circumvent the grating lobes and mutual coupling.
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The remainder of this chapter is structured as follows:

The basic algorithm for beamforming is described in section 5.1. The relationship

between N and OSINR is formulated in section 5.1.1 which is followed by motivation

presented in section 5.2. The mathematical formulations of the SA configurations,

SLL control, and distance analysis with their respective simulations are illustrated

in sections 5.3, 5.4 and 5.5, respectively. A summary of the chapter is outlined in

section 5.6 .

5.1 Signal model

The mathematical representation of a beamformer’s output for a received signals

vector x(k) at kth instant and the weight vector w [17] is as follows:

y(k) = wHx(k) (5.1.1)

The optimization problem for the MVDR is stated in equation 5.1.2 and the weight

vector is determined from the optimization problem via Lagrange multiplier and

illustrated in equation 5.1.3.

min wHRw s.t. wHa(θ0) = 1 (5.1.2)

In the equation 5.1.2, R is the practical covariance matrix, and a(θ0) denotes the

steering vector for SOI with direction θ0.

w =
R−1a(θ0)

a(θ0)HR
−1a(θ0)

(5.1.3)

The practical covariance matrix is computed for K number of snapshots from the

received signals vector x(k) and is given as:

R =
1

K

K∑
k=1

x(k)xH(k) (5.1.4)

The crucial parameter for examining the performance of a beamformer is OSINR,

which is determined by dividing the output signal power by the summation of the
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output interference power and output noise power. Mathematically, OSINR is written

as:

OSINR =
σ2
0|wHa(θ0)|2

wHRi+nw
(5.1.5)

In the equation 5.1.5, Ri+n is the interference plus noise covariance matrix which can

be deduced from the theoretical covariance matrix R̂.

R̂ = Rs +Ri+n = σ2
0a(θ0)a(θ0)

H +
P∑
i=1

σ2
i a(ϕi)a(ϕi)

H + σ2
nI (5.1.6)

In equation 5.1.6, Rs is the SOI’s covariance matrix, and the power of SOI is denoted

by σ2
0. P denotes the number of interferences incident on the array from the directions

[ϕ1, ...., ϕP ] with powers σ2
1, ..., σ

2
P , respectively. It is presumed that along with the

SOI and interferences, noise is also present in the received data, which is Gaussian in

nature with a zero mean. The power of noise is noted as σ2
n.

5.1.1 Relationship between number of antenna elements and

the OSINR

The weight vector stated in equation 5.1.3 is utilized in the expression of

equation 5.1.5 and the OSINR is expressed as

OSINR = ISNR a(θ0)
HR−1

a a(θ0) (5.1.7)

The input SNR (ISNR) is the ratio of input signal power and input noise power that

is written as:

ISNR =
σ2
o

σ2
n

(5.1.8)

The expression for Ra is given as

Ra =
Ri+n

σ2
n

= I + σ−2
n TRiT

H (5.1.9)

The covariance matrix of interferences is denoted as Ri stated in equation 5.1.6 and

T denotes the matrix of interference signals received on the antenna array.

The inverse of Ra is evaluated as

R−1
a = I − T (Rj + THT )−1TH (5.1.10)
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Rj =
σ2
n

Ri

(5.1.11)

Now, the expression of Ra is utilized in equation 5.1.7 for simplifying the OSINR

OSINR = ISNR[M − a(θ0)T (Rj + THT )−1THa(θ0)] (5.1.12)

From the equation 5.1.12, it is evident that there is a direct relationship between

OSINR and the number of antenna elements (M) in an antenna array.

5.2 Analysis of number of antenna elements in an

ULA

The practical implementation of the linear relationship is carried out by evaluati-

ng the OSINR against the number of antenna elements in an ULA. For simulations,

it is presumed that a SOI and three interferences impinge the array from θo = 90o

and ϕ1 = 76o, ϕ2 = 83o, ϕ3 = 101o respective directions. The frequencies of the three

interferences are fi1 = 2.9 GHz, fi2 = 3.1 GHz, and fi3 = 3.2 GHz, with the frequency

of SOI being fSOI = 3.0 GHz. The powers of interferences are assumed to be 20 dB,

20 dB, and 30 dB, respectively.

The OSINR examination is done by varying M = 2 to M = 40 and the results are

illustrated in Figures 5.2 and 5.3. From the figures, it can be observed that there is

a discrepancy between the actual and expected OSINR. The OSINR of an ULA does

not exhibit a linear correlation with the number of antenna elements. It can also be

seen that the deviation is greater for lower range of antenna elements. There is a 3

dB disparity between the obtained and expected OSINR at M=12.

Now, radiation patterns are also obtained for ULA with lower antenna elements in

the considered range that are M=8 and M=16. The obtained radiation pattern is

shown in Figure 5.4. It is found out from the radiation pattern for ULA that for

M=8 the sidelobes become very dominant and the main lobe is deviated by 1.26o

from the actual SOI’s direction.

From the results, it can be said that the ULAs are unable to give a decent radiation
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pattern as the sidelobes are very dominant and there is a deviation between the

direction of SOI and the main lobe position in the obtained pattern. Moreover,

the obtained OSINR does not follow the expected values. This observation provides

motivation to improve the performance of a beamformer with fewer antenna elements

in the array. Therefore, sparse arrays are explored, in which only some elements are

selected from the whole array.
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Figure 5.2: OSINR versus antenna elements number in linear scale.

5.3 Analysis and design of sparse array

The optimal array configuration is determined based on the OSINR maximization

criteria. The entire process has illustrated in a step-by-step process.

1. Choose a specific number of antenna elements (V) from the overall number of

antennas in the array (M).

2. Explore all potential combinations of C(V,M) and compute the OSINR using

equation 5.1.12 for each combination.
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Figure 5.3: OSINR versus antenna elements number in dB scale.
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Figure 5.4: Radiation pattern obtained for ULA with M=8 and 16.
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3. After careful consideration, the configuration that offers the highest OSINR is

chosen and referred to as the optimal configuration.

In this work, it is considered that the total number of antenna elements in the array

is M = 16. The sparsity of 50% and 56% is considered by choosing V = 8 and V = 9,

respectively. The OSINR is computed for every combination of C(16, 8) and C(16, 9)

and illustrated in Figure 5.5. From there, it can be noted that the OSINR of the best

and worst array structures differ by around 9 dB.

The optimal antenna locations for V = 8 and V = 9 are given in equations 5.3.1 and
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Figure 5.5: OSINR performance for all combinations of C(16, 8) and C(16, 9)

5.3.2, respectively.

[1 3 6 7 9 11 13 16] V = 8 (5.3.1)

[1 4 5 7 9 10 11 14 16] V = 9 (5.3.2)

In both optimal SA configurations, the array aperture remains the same as the

elements at both end positions are active.
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5.3.1 Simulation results of OSINR and beampattern with sparse

array

To examine the performance of SA, OSINR is determined by changing the

antenna elements from 8 to 16. The OSINR performance for SA and ULA is compared

in Figure 5.6. The figure clearly indicates that the OSINR of the sparse array meets

the expected OSINR, while the ULA fails to achieve the desired OSINR, especially

for a smaller number of antenna elements. The beam patterns are also obtained for
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Figure 5.6: Comparison of OSINR of sparse arrays and ULA

the optimal SAs with V = 8 and V = 9. The results are portrayed in Figure 5.7. It

is observed from the beam patterns that the SA for V = 8 have greater sidelobes as

compared with the V = 9. The highly SA is producing higher sidelobe levels near the

outer region of the beampattern. In some environments, it is necessary to minimize

the SLL. Therefore, improvements should be made to enhance the performance of

SAs.

In a uniform linear array, gain is directly proportional to the number of antenna

elements. High gain implies more focused energy, which improves signal strength in
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the desired direction. The proposed algorithm aims to design a sparse antenna array

to maximize the OSINR. A higher OSINR indicates that the desired signal strength

is significantly higher compared to the combined levels of interference and noise.

However, implementing a sparse array configuration introduces trade-offs, primarily

between gain and sidelobe levels. While the designed sparse array can maintain

high gain, directing maximum energy towards the desired signal despite interferences

and noise (as illustrated in Figure 5.7), it also results in the presence of prominent

sidelobes in the radiation pattern. These sidelobes can potentially capture and

amplify unwanted signals or noise, thereby degrading overall system performance.

To address this issue, the algorithm incorporates SLL constraints into the optimization

problem, as detailed in Section 5.4. These constraints help mitigate the impact of

sidelobes by reducing their levels, thereby improving the array’s ability to reject

interference from directions other than the main beam. The proposed sparse array

configuration balances the trade-off between gain and sidelobe levels by maximizing

output SINR while applying SLL constraints to manage sidelobe performance.
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Figure 5.7: Radiation pattern for optimal SA configurations
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5.4 SLL control for sparse array

For managing the SLL, constraints are applied to the entire radiation pattern

area except the main beam region. The response of the considered region, or ROI,

for SLL control is maintained below a certain value. The optimization problem given

in equation 5.1.2 is modified by introducing SLL constraints. The modified problem

is given in equation 5.4.1
min
w

wHRw

subject to

wHa(θ0) = 1∣∣wHAROI

∣∣ <= ϵ

(5.4.1)

It is considered that the ROI contains the angles [ψ1....ψ2] ∪ [ψ3....ψ4]. The steering

vectors are determined for all the angles in the considered range, and the matrix

AROI is formed from all the determined steering vectors. The response towards the

ROI is constrained to a certain level ϵ.

In the simulations the ROI includes [30o 70o] ∪ [110o 150o ]. The step size in the

considered ROI is 5o. The angles of ROI are computed in such a way that they do

not take into account SOIs or interferences. The radiation patterns for the optimal

SAs are obtained by utilizing the equation 5.4.1 and the results are shown in Figure

5.8. Based on the figure, it is apparent that when V = 8, the SLL remains at −10 dB

in the region proximate to the main lobe. However, the beam pattern becomes more

prominent at angles far away from the main beam. This occurrence can be viewed as

the manifestation of the grating lobe. Therefore, to further improve the performance

of the beamformer, another degree of flexibility as the distance between the antennas

is taken into account.

5.5 Analysis of sparse array with variable distance

To avoid the grating lobe appearing in the beam pattern, distance analysis

has been performed. Generally, the separation between the antenna elements ’d’ is
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Figure 5.8: Radiation pattern for SLL control in SA

considered d = λ/2 = 0.5λ. Now, the variation of ’d’ is achieved by incorporating

an additional condition in the optimization problem outlined in equation 5.4.1. The

modified optimization is stated as:

min
w

wHRw

subject to

wHa(θ0) = 1

|wHAROI | <= ϵ

d ∈
{
0.5λ± n λ

16
, n = 0 to 4

}
(5.5.1)

In the modified optimization, a new parameter ′n′ is defined in the span of [0 4] with

a step size of 0.5. Therefore, the distance varies in the range of 0.25λ to 0.75λ. This

range is chosen to ensure that the spacing between the elements is both practical

and manageable. It is important to strike a balance between the distance that is too

small, which is not feasible, and a distance that is too large, which would result in an

excessively long array.

The radiation patterns obtained for the distance variations are shown in Figure 5.9.

In the figure, the patterns are only shown for three different distances, as the other
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Figure 5.9: Radiation pattern for SA (V=8) with distance variation.

patterns obtained with the remaining distances are infeasible. It is noted that, with

the exception of the primary beam, the pattern is remarkably uniform at a distance of

0.4375λ. The grating lobes obtained in Figure 5.8 also disappear with the suggested

distance based modification. The radiation pattern for SA with 56% sparsity is shown

in Figure 5.10. From the figure, it can be noticed that when comparing V = 8, the

SLL outside the region of interest is effectively reduced by approximately 1 dB across

all distances.

The effect of distance variation on the OSINR is also studied. The results

obtained for OSINR with different distances are shown in Figures 5.11 and 5.12. To

analyze how the distance between antenna elements impacts the OSINR, the distance

is altered for different situations. In Figure 5.11, the distances d ≤ 0.5λ are shown,

and from there it can be seen that as the distance between antenna elements shrinks,

the OSINR also reduces. The OSINR is reduced by about 3 dB as the ’d’ shrinks from

d = 0.5λ to d = 0.25λ. The results obtained for the other situation of d ≥ 0.5λ are

illustrated in Figure 5.12. For this scenario, the OSINR shows a negative correlation,
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Figure 5.10: Radiation pattern for SA (V=9) with distance variation.

as with the increase in distance, the OSINR decreases. For the d ≥ 0.5λ situation,

the decrease in OSINR is very small in comparison to d ≤ 0.5λ. From the distance

variations, it is clear that the appropriate spacing is d = 0.5λ because the OSINR is

maintained near optimal.

Results from several methodologies are presented in Table 5.1 and are contrasted

with the suggested approach. The number of antenna elements chosen V from the full

array, the level of sidelobes, and OSINR are the parameters on which the proposed

work is compared with various methods in the literature. From the comparison table,

it is observed that the 57% and 70% antenna elements are used in the designed SAs

of [139] and [140], respectively. On the other hand, the proposed work utilized only

50% elements from the full array. In [138], 50% sparsity is achieved but at the cost

of OSINR. The proposed work improves the OSINR in comparison to the considered

methods, which in turn enhance the system performance in SAs. The proposed work

produces a level of sidelobes below −10 dB, with which unwanted sidelobes can be

minimized.
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Table 5.1: Comparison of the suggested work with the existing techniques

Parameter X.Wang et al. [138] X.Wang et al. [139] Z.Zheng et al. [140] Suggested work

V(%) 50 57 70 50

SLL (dB) -15 above -10 above -10 below −10

OSINR (dB) 7.5 10.68 NA 11.98

5.6 Conclusion

To improve the performance of a beamformer with sparse arrays, an analysis

is carried out by appropriately defining the additional constraints. The optimal

positions of the antenna elements for sparse arrays are determined via SINR maximiza-

tion criteria. The additional constraints are introduced for SLL minimization, avoiding

grating lobes, and reducing mutual coupling between the antenna elements. Analysis

results show that by properly defining the additional constraints in sparse arrays, the

stringent requirements of the beamformer can be fulfilled.
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Chapter 6

Wideband Beamforming using

Evolutionary Algorithms

6.1 Introduction

Array signal processing has been thoroughly researched because of its importance

in numerous areas such as communications, medical, microphone arrays, etc. The

array of antennas is utilized to receive signals from different directions, and these

signals are further processed to achieve beamforming. Beamforming can be divided

into two categories, namely narrowband beamforming and wideband beamforming,

based on the bandwidth of the signals received [67].

Fractional bandwidth is utilized to classify the signals as wideband or narrowband.

Signals with a fractional bandwidth of less than 1% are categorized as narrowband,

while those with a bandwidth between 1% and 20% are known as wideband. To

deal with wideband signals, wideband beamformers are required, as the efficacy of

narrowband beamformers deteriorates as the bandwidth of received signals increases

[141,142]. To deal with wideband beamforming, a tapped delay line (TDL) is incorpor-

ated with every antenna element of the receiving array to counterpoise the phase shift

for different frequencies.

The most renowned method for wideband beamforming is the Frost algorithm [143].
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It is also known as the linearly constrained minimum variance (LCMV) algorithm

and is used for beamforming in a given frequency range. In the literature, multiple

techniques have been devised to enhance the effectiveness of the Frost algorithm.

The subsequent discourse offers a discussion on some of these strategies. In [144],

the LCMV beamformer is improved by adding a response variation factor to its

optimization problem so that the algorithm becomes robust against DOA mismatch.

The output obtained may have different responses that correspond to different freque-

ncies, which distort the array pattern. Therefore, its performance is further enhanced

in [145] by incorporating norm bound along with response variation factor that

provide frequency response consistency. To reduce the computational complexity

of [144] and [145], derivative constraints are used in place of worst case criteria in

the optimization problem [146]. Now, to deal with quickly moving interferences in

wideband beamforming, null widening is recommended in [91]. The optimization

problem of the Frost algorithm is reformulated by adding a taper matrix of virtual

interferences around the original ones.

Evolutionary optimizations have several benefits over traditional optimization methods,

making them a suitable choice for developing wideband beamforming [147]. Therefore,

evolutionary optimizations can be employed for this purpose. The most popular

evolutionary method utilized in the literature is PSO [148]. In [149,150], beamforming

examples for different scenarios are carried out via PSO. The major drawback of the

presented method is the deviation in the direction of the null as the frequency changes,

and for suppression of interference, nulls should be placed in the exact interference

direction. Therefore, OPSO and PSO with new objective functions are discussed to

enhance the effectiveness of wideband beamforming. An identical objective function

is used for both OPSO as well as PSO.

PSO is a bio-inspired optimization technique in which the optimal solution to a

particular problem is obtained by the continuous interaction of swarm particles [151].

It is motivated by the social behavior of swarms in nature, such as fish schools, bird

flocks, and bee swarms. The entire search space is explored by continuously updating

the velocity and position of each particle. This update is done by continuously

evaluating particle’s best fitness Pbest and swarm’s best fitness gbest . PSO is developed
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based on two equations that are velocity update and position update, which are given

in equations 6.1.1 and 6.1.2, respectively.

vi(k + 1) = wivi(k) + c1r1(xp(k)− xi(k)) + c2r2(xg(k)− xi(k)) (6.1.1)

xi(k + 1) = xi(k) + vi(k + 1) (6.1.2)

The velocity and position of ik particle for kth iteration are denoted as vi(k) and xi(k)

respectively. The inertia weight w exhibits the effect of the previous velocity vector on

the new vector, and it also prohibits the particle from moving very fast from one area

to another in the search space. c1, c2 are the positive acceleration coefficients, and r1,

r2 are random numbers with a uniform distribution between 0 and 1. xp(k) and xg(k)

are individual best and global best values. The complete procedure of PSO is depicted

in Figure 6.1. In PSO algorithm, every individual particle adjusts both its velocity and

position based on the most optimal values obtained from its personal experience and

that of its neighboring particles. The particles become disoriented as they struggle

to ascertain the path of their motion, resulting in the occurrence of an oscillation

phenomenon [152]. Therefore, this phenomenon impairs the algorithm’s search ability

and delays convergence. To enhance the searching ability of PSO, orthogonality is

introduced in conventional PSO. Orthogonality is employed to distribute the points

of a starting population throughout the potential solution space. This ensures that

the algorithm can uniformly explore the solution space and identify suitable points

for further investigation in subsequent iterations.

In OPSO [153], only some particles are selected from the swarm that have possible

solutions. This selection is carried out via the process of OD [154] in which orthogonal

vectors are produced from current position vectors. The orthogonal vectors undergo

updates during each iteration, guiding the chosen particles towards the global solution.

To derive the mathematical equations of OPSO, a swarm with n number of particles

is considered, and each ith particle consists of a position vector X i and a velocity

vector V i. These vectors are illustrated in equations 6.1.3 and 6.1.4, respectively.

X i = [xi1, xi2, xi3.....xin] (6.1.3)

V i = [vi1, vi2, vi3.....vin] (6.1.4)
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Figure 6.1: Flowchart of PSO
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In the OPSO algorithm, the particles’ position and velocity undergo updates during

each iteration through a set of specific steps, which are as follows:

1. The fitness of each swarm’s particle is evaluated via fitness function, and the

particles are sorted in ascending order of their fitness function value.

2. A matrix K from the best particle positions according to their fitness values is

formed, having dimensions n ×m. A symmetric matrix Lm×m is formed from

the K utilizing the method mentioned in [155].

3. By utilizing the Gram–Schmidt orthogonalization method [154], the orthogonal

matrix M is created from the symmetric matrix L.

4. Then, the orthogonal diagonalization (OD) process is utilized to create an

orthogonal diagonal matrix N having dimensions m×m.

N = MLMT (6.1.5)

Now, the orthogonal diagonal matrix Nm×m is utilized to evaluate the best position

and velocity from the equations 6.1.6 and 6.1.7, respectively.

vi(k + 1) = wivi(k) + cr(N i(k)− xi(k)) (6.1.6)

xi(k + 1) = xi(k) + vi(k + 1) (6.1.7)

In the equation 6.1.6, N i is the ith row of N and here i varies from 1, 2...m. The

inertia weight and acceleration constant are denoted as w and c, respectively. The r

represents the random number whose values are uniformly distributed between [0, 1].

Once the velocity parameters are determined, the position is then modified according

to equation 6.1.7.In OPSO, the velocity equation has only one guide, which causes

particles to move toward the target rather than getting stuck in oscillation. The

entire process of the OPSO is presented in the flowchart given in Figure 6.2.

The chapter is organized as follows. The problem formulation and novel objective

functions are illustrated in section 6.2. Several examples of wideband beamforming

and diverse characteristic parameters of array patterns are deliberated in section 6.4,
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Figure 6.2: Flowchart of OPSO
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subsequently followed by a conclusion.

6.2 Signal model

Wideband beamformers with H number of taps are utilized to process the

wideband signals received on the array of M antenna elements. At a particular

time instant k, the response at the output of the wideband beamformer is given in

equation 6.2.1.

y(k) =
M−1∑
m=0

H−1∑
h=0

wm,hxm(k − (τm + hTs)) (6.2.1)

where xm denotes the received signal at the mth antenna element and w is the weight

vector element. τ and Ts represent the propagation delay between the antenna

elements and the delay between adjacent taps. If it is considered that the signals

received on the array are sinusoidal then the array response based on the angular

frequency ω and the angle of arrival θ, is expressed as:

y(ω, θ) =
M−1∑
m=0

H−1∑
h=0

wm,hexp
−jω(τm+hTs) (6.2.2)

The vector representation of equation 6.2.2 is presented as

Y (ω, θ) = wTS(ω, θ) (6.2.3)

The weight vector and steering vector are illustrated in equation 6.2.4 and 6.2.5,

respectively.

w = [w0,0...wM−1,0...w0,H−1...wM−1,H−1]
T (6.2.4)

S(ω, θ) = [e−jωτo , ..e−jωτM−1 , ..e−jω(τo+(H−1)Ts), ..e−jω(τM−1+(H−1)Ts)]T (6.2.5)

S(ω, θ) = xTs(ω)⊙ xτm(ω, θ) (6.2.6)

In the equation 6.2.6, xTs(ω) is the received signal on antenna elements. The received

signal is then sampled using H number of taps, and the sampled signal is denoted
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as xτm(ω, θ). The xTs(ω) and xτm(ω, θ) are given in equations 6.2.7 and 6.2.8,

respectively.

xTs(ω) = [1, .....e−jω(H−1)Ts ]T (6.2.7)

xτm(ω, θ) = [1, .....e−jω(M−1)d sin(θ)/c]T (6.2.8)

In the equation 6.2.7, d denotes the separation in antenna elements and c indicate

the speed of light. The output of a beamformer depends mainly on the weight vector,

which is now calculated via PSO and OPSO. MSE serves as a measure of fitness.

6.3 Modeling of novel objective function for PSO

and OPSO

The MSE is determined by comparing the beam pattern generated from uniform

unity weights (where the weight vector is set to 1) and the beam pattern generated

from OPSO/PSO. This comparison is done in such a way that the nulls’ position

remains fixed in the specified direction for each frequency. The PSO/OPSO updates

the calculated weights with each iteration, ensuring that the MSE is minimized during

the calculation process. The vector with the minimum MSE is chosen for obtaining

the wideband beamformer’s output and is termed as optimum weight vector. The

formulation of the fitness function is presented as follows:

Y best(ω, θ) =MSE[Y OPSO/PSO(ω, θ)− Y uniform(ω, θ)] (6.3.1)

The responses obtained from references pattern and PSO/OPSO are given in equation

6.3.2 and 6.3.3, respectively.

Y uniform(ω, θ) = X(ω, θ)W uniform ∀ ω, θ except θj (6.3.2)

where, θj represent the nulls locations. The response obtained from OPSO/PSO is

given as

Y OPSO/PSO(ω, θ) = X(ω, θ)WOPSO/PSO (6.3.3)
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6.4 Simulation results and discussions

The array consists of 10 antenna elements, each having 5 taps. is considered for

the simulations. A bandwidth of 200MHz is assumed to have a frequency range of

1.2GHz to 1.4GHz. The desired signal strikes the array from 0o and two interferences

are at −40o and 30o. The values of constants for both PSO and OPSO are kept the

same at c1 = c2 = 1.042 and the inertia weight wi decays linearly with every iteration

from 0.8 to 0.4. 500 iterations are taken for the simulations, which are enough for the

convergence of the considered algorithms.

The comparison of convergence plots obtained from PSO and OPSO is depicted in
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Figure 6.3: Comparison of convergence curves obtained from PSO and OPSO.

Figure 6.3. From there, it can be noticed that OPSO offers a lower MSE than PSO.

The beampatterns obtained from the considered algorithms Frost, PSO, and OPSO

for three distinct frequencies are illustrated in Figures 6.4, 6.5 and 6.6 respectively.

From the figures, it can be said that all three algorithms considered achieve wideband

beamforming by placing main beams in the intended directions and nulls towards the

interference directions for each of the three distinct frequencies.
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Figure 6.7: First interference level acquired through Frost, PSO and OPSO.
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Figure 6.8: Second interference level acquired through Frost, PSO and OPSO.

The considered algorithms are compared in terms of performance parameters

such as peak SLL, interference level, and discrepancy in the respective interference

direction and null position. These parameters are plotted separately for a more clear

comparison of the considered algorithms.

The levels of both interferences for the algorithms are shown in Figures 6.7 and 6.8.

The figures illustrate the depth of nulls for the considered frequency range of 1.2GHz

to 1.4GHz. It is evident that both PSO and OPSO yield lower interference levels

compared to the conventional Frost algorithm across all the considered frequencies.The

training of the evolutionary algorithms is limited to just three frequencies (1.2GHz,

1.2GHz, and 1.3GHz) but they also reduce null depth for the other frequencies in

the considered range.

The deviation in null’s direction w.r.t. interference direction is evaluated and

shown in Figures 6.9 and 6.10. The interferences can be effectively canceled out by

minimizing the deviation in the null’s position w.r.t. the angle of interference, and it

is evident from the figures that OPSO provides no deviation. PSO also reduces the

deviation in the null position as compared to the Frost algorithm. The comparison
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and OPSO algorithms.
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algorithms.

of SLL determined from Frost, PSO, and OPSO is depicted in Figure 6.11 and it has

been discovered that OPSO displays a lower SLL in comparison to PSO as well as

the classical Frost algorithm.

6.5 Conclusion

In this chapter, wideband beamforming is achieved through the evolutionary

algorithms PSO and OPSO. A novel objective function based on MSE is devised,

which is utilized by the evolutionary algorithms to produce frequency invariant beamp-

atterns over the 200MHz bandwidth. The results achieved by utilizing the formulated

objective function are evaluated against the Frost method for both PSO and OPSO.

The simulations clearly show that OPSO excels over the other algorithms under

consideration concerning peak SLL, interference levels, and deviation in null position

relative to the interference angle.
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Chapter 7

Conclusion and Future Scope

7.1 Conclusion

This thesis presents a range of algorithms aimed at achieving robust adaptive

beamforming. The factors affecting the performance of beamforming algorithms such

as mismatch in DOA of SOI, moving interferences, multiple SOIs, SLL control etc. are

thoroughly investigated. Robustness against these factors is achieved via developing

novel beamforming techniques and the simulation results are obtained as well as

compared with state-of-the-art methods. The significant observations and results

obtained in this work are outlined as follows.

First and foremost, the PGRCB provides robustness against large DOA mismatch

by estimating the actual DOA of SOI.The PGRCB enhances the output SINR in

the presence of significant DOA mismatch. Additionally, it demonstrates accurate

estimation of the power of the SOI, as validated through simulations.

A novel algorithm is developed in chapter 3 to offer a comprehensive solution addressing

both moving interferences and DOA mismatch. Magnitude constraints are imposed

on the ROI to handle DOA mismatch, while the Taper matrix is employed for null

widening to address moving interferences efficiently. The proposed beamformer’s

output SINR accurately matches the optimal beamformer’s SINR which make the

developed algorithm more reliable in non-stationary interferences and resistant to
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DOA mismatch in SOI.

Efficiently monitoring multiple SOIs simultaneously is crucial for various applications.

To address this need, an algorithm is devised for dual beam adaptive beamforming

algorithm with SLL control. This algorithm generates dual beams towards the two

distinct SOIs with effective management of interferences and noise. Additionally, the

proposed algorithm ensures precise control over the SLL.

To streamline system complexity and optimize performance of adaptive beamforming

algorithm, Chapter 5 employs sparse arrays. An analysis with sparse arrays is

conducted by appropriately incorporating additional constraints into the optimization

problem of the SCB. The analysis results illustrate the fulfillment of the beamformer’s

stringent requirements in terms of output SINR and SLL.

Further, wideband beamforming is implemented via evolutionary algorithms PSO

and OPSO in chapter 6. A novel MSE-based objective function is designed for these

algorithms. Computer simulations proves that with the proposed objective function

both PSO and OPSO provides better peak SLL, interference rejection capability as

well no deviation in null’s position w.r.t their directions for all the frequencies in the

200MHz range.

It is evident that all the proposed robust beamforming techniques have effectiv-

ely fulfilled their objectives and outperformed current state-of-the-art algorithms.

Consequently, the novel proposed algorithms can be applied in their respective domains

of application.

7.2 Future Scope

Array signal processing remains a pressing issue, with numerous unresolved

challenges awaiting solutions from researchers in the field. Possible future work for

the current thesis could include the following:

1. The array geometries such as circular or planar arrays can be utilized in the

signal model of adaptive beamforming algorithms. Circularly-polarized antennas
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radiate electromagnetic waves with electric fields rotating in a circular manner,

either left-hand circular polarization (LHCP) or right-hand circular polarization

(RHCP) [156, 157]. The adaptive beamforming algorithms must account for

the polarization properties while adjusting the amplitude and phase weights.

Adapting beamforming algorithms for circularly-polarized antenna arrays invol-

ves incorporating polarization states throughout the entire algorithm design.

This includes the mathematical modeling of circularly polarized antenna elements

in the signal model and calculating complex weights for dual polarization.

2. The physical constraints such as mutual coupling between the adjacent antenna

elements can also be taken into account for more realistic simulation environment.

3. The optimal sparse array configuration can be identified through an efficient

search algorithm rather than relying on enumeration.
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