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ABSTRACT 

 
 

Abnormal formation and growth of cell within the brain gives rise to the Brain Tumors. 

Tumors can be Benign i.e. Non-cancerous or Malignant i.e. Cancerous. Tumors may also be 

classified on the basis of their origin into Primary and Secondary Tumors. Primary tumors 

are those which start to originate from within the brain itself, whereas Secondary are those 

that start to develop outside the brain and then move into the brain. 

Primary Brain tumors are further classified into Meningioma which is generally benign, 

Glioma that is malignant 80% of the times and Pituitary tumors. 

 

In the present world, Computer Aided Diagnosis systems are powerful means that assist the 

doctors and other experts in the detection and identification of various kinds of diseases that 

include heart diseases, tumors, cancer, etc. using medical images or other data. There have 

been several path breaking researches in this domain concerning different diseases, tools, 

aspects and specifications. This project is motivated and aimed to create a deep learning 

based model using Light-weight architecture to detect the presence of brain tumors from 

MRI images and classify the tumor into Meningioma, Glioma and Pituitary. In the recent 

past, there have been several works for the same task but most of the works have focused on 

using models having huge number of parameters, learning layers and large size for storage 

as well as high time consumption. This project aimed at efficiently performing the said task 

in less time and by using less storage space. 

 

To achieve the proposed task, light-weight CNN architectures have been used in this project. 

These include MobileNet, EfficientNet, NASNetMobile, InceptionV3 and DenseNet121. 

Apart from using these pre-trained models, fine-tuning of these models has also been done 

to increase the performance. Hence, the best result was obtained by the fine-tuned version of 

EfficientNet, which achieved an accuracy of 94.25%. 
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CHAPTER 1: INTRODUCTION 

 

1.1 INTRODUCTION 

 
Development of unwanted mass lesions and abnormal growth of cells in the brain results into 

brain tumors. Under the scope of this project work, the classification of brain tumors into 

Meningioma (generally benign), Glioma (malignant 80% of the times) and Pituitary tumors 

has been dealt with. When a tumor is said to be benign, it means that the tumor is not 

cancerous, whereas malignant tumor refers to cancerous tumor. It is noteworthy to mention 

here that the mentioned classification falls under the category of Primary Tumors, i.e. the 

tumors that are developed in the brain itself [1]. Apart from these, there are Secondary 

Tumors, which originate from some other body organ and then enter the brain [2]. The 

malignant tumors range across Grade 1 to 4 with Grade 4 being the deadliest. The cancerous 

tumor, starting from Grade 1, gradually get transformed into higher grade tumors. In the 

grade 4 survival of the patient becomes quite difficult [3]. Thus, it becomes increasingly 

important to detect brain tumor at the earliest. [4] 

 

The role of doctors, radiologists and other experts definitely cannot be ruled out in the 

detection, classification and all the other subsequent actions in the cases of any disease. 

However, apart from conventional methods used for the purpose, which are very time 

consuming, there is a need of such a system which is very fast, is accessible, viable in terms 

of economy and scalability and is accurate enough to support the doctors and experts in 

taking the decisions related to the subject. In the normal course, doctors and experts detect 

and classify brain tumors with the help of MRI scans and CT scans that come under the 

domain of medical imaging. Thus, Computer Aided Diagnosis (CAD) is the system which 

can serve the purpose of classification of brain tumors in an effective manner. CAD makes 

use of the medical images and using the modern computerized techniques to serve the 

purpose of detection and classification of the diseases. The insights obtained from CAD are 

then referred to by the doctors and experts to take further calls related to the disease and 

necessary treatment. Under the domain of Artificial Intelligence, Deep Learning plays a very 

significant role in detection and classification of diseases. Deep convolutional neural 

network is a very adapt tool for classification of images [5]. 
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This project uses the dataset of Brain MRI Scans and applies light-weight convolutional 

neural network architectures for detection and classification of brain tumors. Unlike the very 

well-known CNN models that consume a lot of time and need huge amount of disk space 

[6], the models used in this project are quite fast and reliable at the same time. The models 

are robust, give desired results and have very less storage requirements. Hence, the result of 

this project quite robustly serves the purpose of Brain Tumor Classification at minimal cost 

as well as very good accuracy. 

 

 

1.2 PROBLEM STATEMENT 

 

The process which doctors and experts use is the examination of the medical images like 

MRI scans of the brains to detect and classify brain tumors. This process consumes 

significant amount of time. There is a need to develop some automated system that can assist 

the doctors and experts in their work. 

 

The task of this project is to develop a Computer Aided Diagnosis system using Light-

Weight architectures of the deep learning domain to effectively detect and classify Brain 

Tumors. Such system, while consuming very less time and requiring very less amount of 

storage due to the light-weight architecture, can in turn assist the doctors and experts in 

decision making process. Thus, the task of Brain Tumor Detection and Classification can be 

performed at much enhanced pace. 

 

 

1.3 OBJECTIVES 

 

a) To develop a Computer Aided Diagnostics (CAD) system to detect and classify brain 

tumors from the brain MRI scans. 

b) The Computer Aided Diagnostics system should be built in such a way that it costs way 

less than the present systems in place. 

c) To use deep learning techniques and architectures to build a predictive model for the said 

CAD system with high accuracy and low cost. 
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1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT WORK 

 

The gravity of the problem can be understood by the fact that the average five year survival 

rate is just 33% in the US in case of brain cancers. Even benign tumors can be fatal depending 

upon their size and location. The best possible way to deal is to detect the brain tumor and 

classify it at the earliest possible stage, i.e. minimum grade possible. This warrants the 

detection and classification system to be very fast and viable in all terms. As a result, there 

is a need of a system to assist the doctors and experts in their work, so that time frame can 

be reduced as much as possible. This provides the Motivation for this project work. 

 

This project work will make immense contribution to the medical domain of image based 

brain tumor detection and classification. The significance will be in terms of a system which 

will consume less time and occupy less space as compared to the present system without 

compromising on the performance part. 

 

 

1.5 ORGANIZATION OF THE PROJECT REPORT 

 

The rest of the project report is organized in such a way that Chapter 2 represents the 

Literature Survey, Chapter 3 corresponds to System Development, Chapter 4 is dedicated to 

Testing, Chapter 5 is of Results and Evaluation and Chapter 6 gives the Conclusions and 

Future Scope. 
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CHAPTER 2: LITERATURE SURVEY 

 

2.1 OVERVIEW OF RELEVANT LITERATURE 

 

Abhiwinanda et al. [7] implemented simple architecture of CNN that consisted of one layer 

each of convolution, max pooling and flattening followed by full connection. The objective 

of brain tumor classification into Meningioma, Glioma and Pituitary was achieved with 

training accuracy of 98.51% and validation accuracy of 84.19%. This work was implemented 

using Figshare dataset [8]. 

Ahmad et al. [9] did rigorous augmentation of brain MRI scans using Generative Adversarial 

Networks coupled with Variational Autoencoders to increase the size of the dataset. 

ResNet50 model was applied. Without augmentation, the classification accuracy was 

72.63% and after augmentation, the same improved to 96.25%. For most severe class of brain 

tumor, glioma, results were 0.769, 0.837, 0.833 and 0.80 corresponding to recall, precision, 

specificity and F1 score respectively. 

Afshar et al. [10] proposed a CapsNet architecture that uses both, raw MRI brain images as 

well as tumor course boundaries. With this method, the need of annotation of tumor is 

eliminated and architecture is able to focus on main area. The proposed model achieved an 

accuracy of 90.89%. 

Chelghoum et al. [11] used nine different pre-trained models of deep learning domain for the 

purpose. AlexNet, VGG19, GoogleNet, ResNet18, VGG16, ResNet50, ResNet-Inception-

v2, ResNet101 and SENet were used for the task and an accuracy of 98% was achieved. In 

all the pre-trained models, the end three layers were modified after which a fully connected 

layer was added according to the size of required output.  

Kokkalla et al. [12] used Inception Resnet v2 with customised output layer on a brain tumor 

dataset of 3064 images. 

Gumaei et al [13] proposed a Regularized Extreme Learning Machine (RELM) model along 

with feature extraction in a hybrid manner to classify the brain tumors. An accuracy of 

94.233% was achieved in the said approach. RELM can be used for both classification as 

well as regression and in advantageous in terms of speed of training and low complexity. It 
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also tends to overcome some disadvantages of backpropagation method [18]. Guamei et al. 

[16], [17] proposed Normalized GIST descriptor for feature extraction, which is an improved 

version of traditional GIST descriptor proposed by Oliva and Torralba [15]. NGIST solves 

the issues related to illumination and shadowing by normalizing the data using L2 norm. The 

NGIST was coupled with Principal Component Analysis (PCA) to form PCA-NGIST [13] 

that was efficiently used to extract features from brain images. 

Ari and Hanbay [14] used ELM-LRF i.e. Extreme Learning Machine Local Receptive Fields 

to classify brain tumor into cancerous or non-cancerous. The concept of ELM was introduced 

by Huang et al. [19] for multiclass classification by making use of RELM. 

Anaraki et al. [20] proposed a CNN architecture consisting of six convolutional and max 

pooling layers and then FC (fully connected) layer. The model achieved an accuracy of 94%. 

Sajjad et al. [21] developed a deep CNN with data augmentation for multi-grade tumor 

classification. The pre-trained CNN model is refined for classification. Similarly, Swati et 

al. [22] proposed a method for brain tumor image classification using fine-tuned transfer 

learning. These deep transfer learning methods have shown a slight increase in accuracy. On 

the other hand, Deepak and Ameer [23] proposed deep transfer learning and a support vector 

machine (SVM) for three-class classification. The authors used a pre-trained GoogleNet to 

extract features from brain MR images. The SVM classifier was then used for classification. 

Afshar et al. [24] came out with an approach to ascertain uncertain predictions as well, so as 

to improve the performance. For this task, the authors used Bayesian Capsule Network, also 

called BayesCap. Togacar et al. [25] proposed a new model called BrainMRNet for brain 

tumor classification. The model worked better than the pre-trained models like VGG-16, 

GoogleNet and AlexNet. The classification accuracy was 96%. 

 

2.2 KEY GAPS IN THE LITERATURE 

 

Ahmad et al [9] have performed extensive preprocessing of the data by rigorous 

augmentation. Also, in the form of ResNet50, a heavy-weight model has been used that 

consumes fairly good amount of time. These factors have been adequately addressed in our 

project work. 
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The work carried out Afshar et al [10] leaves behind a future scope interpretability of 

CapsNet architecture for brain tumor classification. 

In [7], [9], [10], there is much scope of performance improvement in terms of validation 

accuracy. 

Majority of the works carried out largely leave behind a scope to experiment with light-

weight CNN architectures to save the cost. The same has been considered the prime objective 

of this project work. 
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CHAPTER 3: SYSTEM DEVELOPMENT 

 

 

3.1 REQUIREMENTS AND ANALYSIS 

The proposed brain tumor classification system aims to accurately classify brain tumors from 

magnetic resonance imaging (MRI) scans. The system should meet the following 

requirements: 

 Accuracy: 

The system should achieve high accuracy in classifying brain tumors into different types, 

i.e. glioma, meningioma, and pituitary tumor. 

 

 Generalizability: 

The system should be able to generalize well to unseen data, ensuring its effectiveness in 

real-world clinical settings. 

 

 Efficiency: 

The system should be computationally efficient, allowing for real-time or near-real-time 

classification. 

 

 Ease of use: 

The system should have a user-friendly interface that is accessible to medical 

professionals with varying levels of technical expertise. 

 

 Data Requirements: 

The performance of deep learning models is highly dependent on the quality and quantity 

of training data. The proposed system will require a large dataset of labeled MRI scans 

of brain tumors, with accurate annotations for tumor type and grade. The dataset should 

be diverse and representative of the real-world distribution of brain tumors.  
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 Performance: 

The system should be able to handle large volumes of data and provide predictions in a 

timely manner. It should also be able to scale up to accommodate increasing data volumes 

as needed. 

 

 Reliability: 

The system should be reliable and able to provide accurate predictions consistently. 

 

 Scalability: 

The system should be scalable and able to handle increasing data volumes. 

 

 Maintainability: 

The system should be easy to maintain and update, with clear documentation and 

modular design.  

 

 Compatibility: 

The system should be compatible with a wide range of operating systems and web 

browsers. 

 

 Performance Efficiency: 

The system should use system resources efficiently and minimize response times. 

 

 Interoperability: 

The system should be able to integrate with other systems and tools as needed, such as 

data visualization tools or data analytics platforms. 

  



9 
 

3.2 PROJECT DESIGN AND ARCHITECTURE 

  

START 

Figshare dataset Br35H dataset 
SARTAJ dataset 

Merging and creation of final dataset 

Training Set Testing Set Validation Set 

Tensorflow Autotune and Prefetching application 

 
NASNetMobile MobileNetV2 EfficientNetB1 

Fine tuning last 

90 layers 

Fine tuning last 

169 layers 

 

Fine tuning last 

54 layers 

Model Building using pre-trained version 

(excluding top layer) and fine tuning 

Validation along with 

epochs 

Testing, Performance Evaluation 

and Analysis of Results 

END 
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The structuring of the pre-trained models with custom layers added by replacing the top layer 

is shown below. Global Average Pooling, Dropout Layer, Flattening Layer and Dense layers 

have been used. 

 

 

A general view of the Project Design is shown below. 
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3.3 DATA PREPARATION 

 

For our project, we needed dataset of Brain MR Images. Some popular publicly available 

datasets of MRI scans are Figshare dataset [8], SARTAJ dataset [26], Br35H dataset [27]. 

Figshare dataset consists of 3064 images of MRI scans, SARTAJ dataset consists of 3264 

images and Br35H dataset consists 3959 images. For our task, since the CNN architectures 

are data dependent, there was a need of ample quantity of data so that model training could 

be carried out effectively. Thus, with a view of obtaining increased performance, to avoid 

overfitting and to efficiently achieve our goal, all the three mentioned datasets were merged. 

In this way, our final dataset consisted of total 10287 files. This combined dataset existed 

with images divided into Training Data and Testing Data. Each folder i.e. Training and 

Testing further consisted of 4 sub-folders each- meningioma, glioma, pituitary and 

no_tumor. Going forward, this division of training and testing was expanded into three sets- 

Training set, Validation set and Testing set, during the course of implementation by the way 

of programming. 

Table 3.1 shows the number of images in each subfolder. 

Table 3. 1. Dataset Details 

 Training Testing Total 

Meningioma 2161 421 637 

Glioma 2147 400 2547 

Pituitary 2284 374 2658 

No Tumor 1990 510 2500 

Total 8582 1705 10287 

Percentage 83.42% 16.5%  

 

The snapshots of the dataset are as follows- 
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Figure 3. 1. Glioma - Test Set 

 

 

Figure 3. 2. Meningioma – Test Set 

 

 

Figure 3. 3. Pituitary tumor – Test Set 

 



13 
 

 

Figure 3. 4. No tumor – Test Set 

 

 

Figure 3. 5. Glioma – Training Set 

 

 

Figure 3. 6. Meningioma – Training Set 
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Figure 3. 7. Pituitary Tumor – Training Set 

 

 

Figure 3. 8. No tumor – Training Set 
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3.4 IMPLEMENTATION 

The aim of the project work was to use light-weight deep learning models to efficiently 

classify brain tumors into Meningioma, Glioma, Pituitary and No tumor. Hence, after 

carefully evaluating all the possible methods and architectures, it was decided to implement 

and test five architectures – MobileNetV2 [28], EfficientNet [29], NASNetMobile [30], 

InceptionV3 [32] and DenseNet121 [33]. 

These architectures have been chosen due to their low time and space requirements. The time 

and space requirements and other details of these architectures have been shown in Table 

3.2. For implementation of these models, keras open-source library which is a part of 

tensorflow was used in python language. The details have been obtained from Keras 

Applications documentation [31]. 

 

Table 3. 2. Details of the architectures used 

Models Size (MB) Parameters Depth Time (ms) per inference step 

(CPU) 

MobileNetV2 14 3.5M 105 25.9 

EfficientNetB1 31 7.9M 186 60.2 

NASNetMobile 23 5.3M 389 27 

Inception V3 92 23.9M 189 42.2 

DenseNet121 33 8.1M 242 77.1 

 

These models have been trained on ImageNet validation dataset. 

The network's topological depth is referred to as Depth in the Table 3.2. This covers layers 

for batch normalization, activation, etc. Depth keeps track of the number of parameterized 

layers. 

The average time for 30 batches and 10 repeats is used for each inference step where each 

batch is of 32 size, CPU is AMD EPYC Processor (with IBPB) (92 core) and RAM is 1.7T. 
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Figure 3. 9. Setting of path for fetching data 

 

As already shown earlier, the dataset existed divided into Training and Testing data. Now, 

while implementation, 20% out of Training data was carved out and a Validation set was 

created. So, after this action, 66.74% i.e. 6866 files of the total dataset of 10287 files were 

used for Training, 16.68% i.e. 1716 files were used for Validation and 16.5% i.e. 1705 files 

were used for Testing. All these details have been shown in below figures. 

 

 

Figure 3. 10. Carving out of Validation set – Showing number of files in Training set 
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Figure 3. 11. Carving out of Validation set – Showing number of files in Validation set 

 

 

Figure 3. 12. Testing set 

 

 

Before proceeding for model creation, the dataset was visualized as shown in Figure 3.13 

and 3.14. The visualization was done along with the label names of the images. Batch sizes, 

image dimensions and number of channels were checked, Autotune was applied and pre-

fetching was used to optimize the performance as shown in Figure 3.15. Pre-fetching loads 

next batch of items parallel to the current execution of predecessor batch. 

 

 

Figure 3. 13. Code for visualization of Training set 
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Figure 3. 14. Dataset visualization output 

 

 

Figure 3. 15. Pre-fetching applied 
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An important requirement of deep learning models is enormous amount of data. In the 

medical domain, this cannot be ensured automatically or inherently. Thus, Data 

Augmentation is the tool widely used to increase the size of the dataset. Using Augmentation, 

artificial images of the existing images are created by introducing features like flipping, 

rotation, cropping, hazing and de-hazing, changing the contrast, zooming, etc. So, the 

Training data was augmented before its use. Rescaling was done, horizontal flips were 

introduced, random rotations were introduced, and zoom and contrast were carried out. The 

code for such augmentation is shown in Figure 3.16. To display a few augmented images, 

code is shown in Figure 3.17 and images have been shown in Figure 3.18. 

 

 

Figure 3. 16. Code for data augmentation 

 

 

Figure 3. 17. Code to display some augmented images 

 

Now, the data pre-processing stage was complete. Further, the stage was to create and train 

CNN architectures for the classification of brain tumors. In line with our objective, pre-

trained version of MoblieNetV2 on ImageNet dataset was initialized as our Base model as 

shown in 3.19. The top layer of the pre-trained version was excluded and the base model was 

set to non-trainable. 
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Figure 3. 18. Augmented images 

 

 

Figure 3. 19. Initialization of pre-trained version of MobileNetV2 
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On the top of the pre-trained base model, an average pooling layer was added, dropout was 

included, flattening layer was added and then a dense layer was added with ReLU activation 

function. Before passing inputs to the model, pre-processing specific to MobileNetV2 was 

done. 

 

Figure 3. 20. Initialization of Average Pooling Layer and Dense Layer and Pre-processing of Inputs for 

MobileNetV2 model  

 

The learning rate was set to 0.0001, optimizer used was Adam and Sparse Categorical Cross 

Entropy loss function was used. Prediction layer of 4 classes was used since the number of 

classes of output is 4. 

 

Figure 3. 21. Adding of layers, pre-processing the input, initializing the model and compiling the model 
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For avoiding overfitting as well as for saving time, Early Stopping was included. Under this, 

validation loss was monitored and patience was set to 5. So, after a particular epoch, if for 5 

continuous epochs validations would be greater, the model training would stop. 

 

Figure 3. 22. Inclusion of Early Stopping and Model Fitting 

 

 

 

Figure 3. 23. Summary of final model including MobileNetV2 as well as manually added layers 
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Now, after using pre-trained model of MobileNetV2, it was decided to fine-tune the model. 

Fine tuning is always a good idea to enhance the performance of a deep learning model. Fine 

tuning means some layers are made trainable, i.e. pre-defined weights are not used. Some 

layers are freshly trained. This sometimes fires back because model gets susceptible to 

difficulties of training. 

Out of 154 layers of the MobileNetV2 model, last 54 layers were made trainable and were 

fine-tuned. 

 

Figure 3. 24. Fine tuning of MobileNet model 

 

 

 Figure 3. 25. Summary of fine-tuned model 
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For fine-tuning 30 additional epochs were added. Due to early stopping feature included, 

fine tuning stopped after total 42 epochs which means 12 epochs of fine tuning ran. 

 

Figure 3. 26. Epochs running for fine-tuned model 

 

Now, EfficientNetB1, another light-weight architecture was chosen to be implemented. Its 

implementation details and snapshots follow. 

 

Figure 3. 27. Loading of pre-trained EfficientNetB1 

 

 

Figure 3. 28. Adding of layers and Model compilation 
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Figure 3.29. Training of EfficientNet model 

 

 

Figure 3.30. EfficientNetB1 model summary 
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Out of 340 layers of the EfficientNetB1 pre-trained model, the last 90 layers were fine-tuned. 

For fine-tuning 30 additional epochs were added. Due to early stopping feature included, 

fine tuning stopped after total 39 epochs which means 9 epochs of fine tuning ran. 

 

Figure 3.31. Fine tuning of EfficientNetB1 

 

 

Figure 3.32. Summary of fine-tuned model 
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Figure 3.33. Fine tuning epochs 

 

A very light-weight architecture, NASNetMobile, was chosen to be utilized for the purpose 

of brain tumor classification. Its pre-trained version was downloaded without the top layer. 

Also, all other details remained same as in the previously implemented two models. 

 

 

Figure 3.34. Loading pre-trained NASNetMobile 

 

 

Figure 3.35. Adding of layers and NASNetMobile model compilation 
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Figure 3.36. Fitting of the NASNetMobile model 

 

 

 

Figure 3.37. Summary of the NASNetMobile model 
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The total number of layers in the NASNetMobile model are 769. Out of this, the last 169 

layers were made trainable and were fine tuned. 

 

Figure 3.38. Fine tuning and compilation of NASNetMobile 

 

 

Figure 3.39. Summary of the fine-tuned model 
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Figure 3.40. Epochs of fine tuning 

 

For fine-tuning 30 additional epochs were added. Due to early stopping feature included, 

fine tuning stopped after total 43 epochs which means 13 epochs of fine tuning ran. 

Next, while exploring the documentation for some light-weight architectures, Inception V3 

was found to be applicable for the purpose of this project. Although its size may seem to be 

a bit larger as compared to other architectures used in this project, its time consumption is 

quite good and lesser than some other models used in this project. Also, from the previous 

works, it was clear that Inception V3 can be of good use for this project. 

Below are the screenshots for the implementation of Inception V3 model, which was added 

with additional layers after replacement of the top layer of the pre-trained model. 

 

Figure 3. 41.  Loading of InceptionV3 model 

 

Figure 3.42. Addition of Custom layers on top of pre-trained model 
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Figure 3. 43. Compilation of the model using Adam cost function and Sparse Categorical Cross Entropy loss function 

30 initial epochs were initialized for the training of Inception V3 model. Early Stopping 

feature was also included on the basis of Validation Loss. This means, if validation loss 

increases for 5 consecutive epochs, training stops at the fifth consecutive step and the training 

gets reverted to the step before the start of increasing validation loss. 

Inception V3 was the only case in which the initial training stopped before the completion 

of 30 epochs at 20 epochs. 

 

 

Figure 3.44. Training of 30 epochs of InceptionV3 
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Figure 3. 45. Summary of the InceptionV3 model 

 

There were total 311 layers in the model. For fine tuning, last 61 layers were made trainable. 

20 additional epochs were initialized for fine tuning. Since initial training had stopped at 20 

epochs itself, the fine tuning began at 21st epoch and continued till 34 epochs were completed 

until getting stopped due to early stopping feature. 

 

Figure 3.46. Fine tuning initialization of last 61 layers of InceptionV3 
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Figure 3.47. Summary of the fine-tuned version of InceptionV3 model 

 

 

Figure 3.48. Fine tuning epochs of InceptionV3 

After getting encouraging results of using light-weight architectures, a fifth light-weight 

model, DenseNet121 was chosen to be implemented for the purpose of this project. This 

architecture is specifically much optimized in terms of space consumption as well as 

performance for various deep learning applications. 

 

Figure 3.49. Loading of DenseNet121 model 
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Figure 3.50. Adding of custom layers on DenseNet121 

 

Figure 3.51. Compilation of DenseNet121 model 

 

Figure 3.52. Training of DenseNet121 model using 30 epochs 
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Figure 3.53. Summary of DenseNet121 model 

There were total 427 layers in the DenseNet121 architecture. Fine tuning was done from the 

layer 250 onwards. This means, the last 177 layers were fine tuned to enhance the 

performance of the model. Out of additional 30 epochs initialized for fine tuning, 17 epochs 

ran after which training stopped due to continuous increase in validation loss for 5 epochs 

starting from 13th epoch. 

 

Figure 3. 54. Fine tuning initialization of DenseNet121 model 
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Figure 3.55. Summary of Fine-tuned DenseNet121 model 

 

 

Figure 3.56. Fine tuning epochs for DenseNet121 model 

 

At this point, the model creation and fitting part of the project was complete. Three different 

architectures were implemented and their training was done on our dataset of brain MR 

images. All these architectures were pre-trained state of the art light-weight models that 

consumed very less time and space and at the same time, ensured an uncompromised 

performance. 

For ease of classification and enhanced user experience, a User Interface has been built using 

Flask application in Python programming language. The UI and prediction using the UI has 

been shown in Figure 3.57. A UI was also built using tkinter library in Python which is shown 

in Figure 3.58. 
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Figure 3.57. Prediction using Flask UI 

 

 

Figure 3.58. Prediction using Tkinter UI 

 

3.5 KEY CHALLENGES 

The key challenges faced during the course of implementation were majorly related to the 

difference between the dimensions of the input and the acceptable dimensions of the model’s 
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layers. For addressing this issue, the documentation was read carefully for all the 

architectures and the needful was done accordingly. 

Another type of problem that was faced was fair validation accuracy but poor testing 

accuracy. This problem was addressed by enhancing the dataset and improving the 

augmentation. 
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CHAPTER 4: TESTING 

 

4.1 TESTING STRATEGY 

Multiple approaches were used for testing the models built for brain tumor classification. 

Specifically for better testing strategy, the dataset was split into three subsets. The advantage 

of using both, validation and testing set is that validation set is repeatedly used for checking 

the performance during multiple experiments. During the course of different experiments, 

testing set stays isolated. This avoids the case of overfitting because testing set is used only 

once at the end. If we use testing set repeatedly while model building, it becomes prone to 

overfitting and we do not get accurate results regarding the performance. 

At first, with the pre-trained version of the model, 30 epochs were run and at each epoch, 

training accuracy, loss, validation loss and validation accuracy were monitored. 

Table 4.1 shows the details of monitored parameters for each model at the end of 30 epochs. 

 

Table 4.1. Validation results at the end of 30 epochs 

 Loss Accuracy Validation Loss Validation Accuracy 

MobileNetV2 0.0248 0.9946 0.0687 0.9808 

EfficientNet 0.0263 0.9942 0.0493 0.9825 

NASNetMobile 0.0968 0.9681 0.1255 0.9470 

InceptionV3 0.6333 0.8024 0.4713 0.8520 

DenseNet121 0.2923 0.8870 0.2332 0.8986 

 

Training and Validation Accuracies for all the models were plotted for better visualization. 

Also, Training loss and Validation loss were plotted for each model. Then, testing set was 

used to obtain predictions using the model built. The Testing Accuracy was obtained for all 

the models. Some random images of the test set were used to obtain their predictions for 

brain tumor. The possibility of correct prediction in terms of percentage confidence was also 

obtained. 
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Figure 4.1. Training and Validation Accuracy for MobileNetV2 after 30 epochs 

 

Figure 4.2. Training and Validation Loss for MobileNetV2 after 30 epochs 

 

 

Figure 4.3. Predictions for random images of testing set using MobileNetV2 model 
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Figure 4.4. Test Accuracy for MobileNetV2 model 

 

 

Figure 4.5. Classification report for MobileNetV2 model 

 

 

Figure 4.6. Training and Validation Accuracy for EfficientNetB1 model 
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Figure 4.7. Training and Validation Loss for EfficientNetB1 model 

 

 

Figure 4.8. Predictions for random test images with confidence 

  

 

Figure 4.9. Test Accuracy for EfficientNetB1 model 
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Figure 4.10. Classification Report for EfficientNetB1 model 

 

 

Figure 4.11. Training and Validation Accuracy for NASNetMobile model 

 

 

Figure 4.12. Training and Validation Loss for NASNetMobile model 
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Figure 4.13. Predictions for test images with confidence 

 

 

Figure 4.14. Test Accuracy for NASNetMobile model 

 

 

Figure 4.15. Classification report for NASNetMobile model 
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Figure 4. 16. Training and Validation Accuracy for InceptionV3 

 

 

Figure 4. 17. Training and Validation Loss for InceptionV3 

 

 

Figure 4. 18. Test accuracy of InceptionV3 
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Figure 4. 19. Prediction of random MRIs using InceptionV3 

 

 

Figure 4. 20. Classification Report of InceptionV3 

 

 

Figure 4. 21. Training And Validation Accuracy of DenseNet121 model 
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Figure 4. 22. Training and Validation Loss for DenseNet121 model 

 

 

Figure 4. 23. Test Accuracy for DenseNet121 model 

 

Figure 4. 24. Predictions using DenseNet121 model 

 

 

Figure 4. 25. Classification Report of DenseNet121 model 
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Test Accuracies of all the models have been summarized in Table 4.2. Later, all the three 

architectures were fine-tuned and a similar strategy for testing was used. Classification 

Reports for all the models have been summarized in Table 4.3. The training and validation 

details of the fine-tuned models have been summarized in Table 4.4. 

Table 4.2. Test Accuracies after 30 epochs of each model 

 Test Accuracy 

MobileNetV2 0.9378 

EfficientNetB1 0.9396 

NASNetMobile 0.9155 

InceptionV3 0.8105 

DenseNet121 0.8539 

 

Table 4.3. F-1 Scores for all the models at the end of 30 epochs 

 MobileNetV2 EfficientNetB1 NASNetMobile InceptionV3 DenseNet121 

Glioma 0.88 0.87 0.84 0.69 0.78 

Meningioma 0.91 0.92 0.89 0.76 0.77 

No Tumor 0.98 0.98 0.96 0.89 0.92 

Pituitary 0.97 0.97 0.95 0.85 0.93 

 

The plots of training and validation accuracy and training and validation loss for fine-tuned 

models have been shown in the following figures.  

 

Figure 4.26. Training and Validation Accuracy after Fine-Tuning of MobileNetV2 



49 
 

 
Figure 4.27. Training and Validation Loss after Fine-Tuning of MobileNetV2 

 

 

Figure 4.28. Training and Validation Accuracy after Fine-Tuning of EfficientNetB1 

 

 

Figure 4.29. Training and Validation Accuracy after Fine-Tuning of EfficientNetB1 
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Figure 4.30. Training and Validation Accuracy after Fine-Tuning of NASNetMobile 

 

 

Figure 4.31. Training and Validation Loss after Fine-Tuning of NASNetMobile 

 

Figure 4. 32. Training and Validation Accuracy after fine-tuning of InceptionV3 
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Figure 4. 33. Training and Validation Loss after fine-tuning InceptionV3 

 

 

Figure 4. 34. Training and Validation Accuracy after fine-tuning DenseNet121 

 

 

Figure 4. 35. Training and Validation Loss after fine-tuning DenseNet121 
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Additional 30 epochs were initialized for fine tuning of the models. All the models were 

already equipped with the early stopping feature with validation loss being monitored with 

patience of 5. 

 

Table 4.4. Training and Validation after fine tuning 

 Total no. 

of layers 

Last Layers 

fine-tuned 
Loss Accuracy 

Validation 

Loss 

Validation 

Accuracy 

Fine tune 

epochs 

MobileNetV2 154 54 0.0034 0.9981 0.0406 0.9878 12 

EfficientNetB1 340 90 0.0009 0.9975 0.0359 0.9878 9 

NASNetMobile 769 169 0.0122 0.9978 0.0798 0.97526 13 

InceptionV3 311 61 0.0262 0.9916 0.1508 0.9569 14 

DenseNet121 427 177 0.0159 0.9959 0.0506 0.9837 17 

 

 

Figure 4.36. Prediction of test images using fine-tuned MobileNetV2 model 

 

 

Figure 4.37. Test Accuracy for fine-tuned MobileNetV2 model 
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Figure 4.38. Classification report for MobileNetV2 fine-tuned model 

 

Figure 4.39. Prediction for test images with confidence 

 

 

Figure 4.40. Test Accuracy of fine-tuned EfficientNetB1 model 

 

 

Figure 4.41. Classification report for fine-tuned EfficientNetB1 model 
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Figure 4.42. Predictions for test images with confidence  

 

Figure 4.43. Test Accuracy of fine-tuned NASNetMobile model 

 

 

Figure 4.44. Classification report of fine-tuned NASNetMobile model 

 

 

Figure 4. 45. Predictions using fine-tuned InceptionV3 
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Figure 4. 46. Test Accuracy of fine-tuned InceptionV3 

 

Figure 4. 47. Classification Report of fine-tuned InceptionV3 

 

Figure 4. 48. Predictions using fine-tuned DenseNet121 

 

Figure 4. 49. Test Accuracy of fine-tuned DenseNet121 

 

Figure 4. 50. Classification report of fine-tuned DenseNet121 
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The results after fine-tuning of each model have been summarized in Table 4.5 and 4.6. 

Table 4.5. Test Accuracies after fine-tuning of each model 

 Test Accuracy 

MobileNetV2 0.9419 

EfficientNetB1 0.9425 

NASNetMobile 0.9343 

InceptionV3 0.9026 

DenseNet121 0.9255 

 

Table 4.6. F-1 Scores for all the models after fine-tuning 

 MobileNetV2 EfficientNetB1 NASNetMobile InceptionV3 DenseNet121 

Glioma 0.88 0.87 0.87 0.83 0.86 

Meningioma 0.91 0.92 0.91 0.89 0.90 

No Tumor 0.99 0.98 0.97 0.95 0.95 

Pituitary 0.98 0.98 0.97 0.93 0.97 

 

4.2 TEST CASES AND OUTCOMES 

Each model was analyzed and tested on the following parameters- 

 Training Accuracy and Loss 

 Validation Accuracy and Loss 

 Testing Accuracy 

 Precision, Recall and F-1 Score 

 

The details of the results on the basis of the above parameters have been shown in the 

previous section. 

On the basis of Test Accuracy. EfficientNetB1 was found to be the best model for 

classification of brain tumors. The test accuracy of the pre-trained model was 93.96% and 

after fine-tuning it increased to 94.25%. 

On the basis of F-1 Score, best models for different classes of tumors were MobileNetV2 

and EfficientNetB1 as these both models had competitive F-1 scores. 
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As a part of the testing process, 4 random images were taken from the test set and predictions 

for those were obtained. The predictions and their confidence have been summarized in 

Table 4.7 and after fine tuning the models, the summary has been presented in Table 4.8. 

 

Table 4.7. Predictions after 30 epochs 

Sr. 

No. 

Original 

Class 

MobileNetV2 EfficientNetB1 NASNetMobile InceptionV3 DenseNet121 

Predicted 

Class 

Conf. 

(%) 

Predicted 

Class 

Conf. 

(%) 

Predicted 

Class 

Conf. 

(%) 

Predicted 

Class 

Conf. 

(%) 

Predicted 

Class 

Conf. 

(%) 

1. Pituitary Pituitary 99.44 Pituitary 99.71 Pituitary 92.53 No tumor 80.13 Glioma 43.50 

2. No tumor No tumor 99.98 No tumor 100 Glioma 100 No tumor 71.22 No tumor 99.58 

3. Mening. Mening. 100 Mening. 99.96 Mening. 99.71 Mening. 100 Mening. 99.72 

4. Glioma Mening. 94.12 Pituitary 38.62 Pituitary 99.11 No tumor 95.43 No tumor 95.24 

 

Table 4.8. Predictions after fine tuning the models 

Sr. 

No. 

Original 

Class 

MobileNetV2 EfficientNetB1 NASNetMobile InceptionV3 DenseNet121 

Predicted 

Class 

Conf. 

(%) 

Predicted 

Class 

Conf. 

(%) 

Predicted 

Class 

Conf. 

(%) 

Predicted 

Class 

Conf. 

(%) 

Predicted 

Class 

Conf. 

(%) 

1. Pituitary Pituitary 100 Pituitary 99.26 Pituitary 99.73 Pituitary 98.31 Pituitary 99.43 

2. No tumor No tumor 100 No tumor 100 Glioma 100 No tumor 99.85 No tumor 100 

3. Mening. Mening. 100 Mening. 100 Mening. 99.98 Mening. 100 Mening. 100 

4. Glioma Mening. 99.64 Mening. 33.28 Pituitary 99.54 No tumor 82.97 No tumor 98.93 

 

Images used for the above purpose have been shown through the following figures. 

 

Figure 4.51. Test image – Pituitary class 
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Figure 4.52. Test image – No Tumor class 

 

 

Figure 4.53. Test image – Meningioma Class 

 

 

Figure 4.54. Test image – Glioma class 
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CHAPTER 5: RESULTS AND EVALUATION 

 

5.1 RESULTS 

On the basis of Testing Accuracy, EfficientNetB1 model proved to be the best out of all the 

three models implemented and tested. 

The testing was carried out in a rigorous manner and thus, evaluation was not just based on 

the accuracy. In terms of class of tumors, i.e. Glioma, Meningioma, Pituitary and No Tumor, 

class specific performance analysis was done with the help of Classification Reports. The 

summary is presented below in the Table 5.1. 

 

Table 5.1. Analysis based on specific class of tumors 

 Best Model w.r.t. F-1 Score 

Glioma EfficientNetB1 

Meningioma MobileNetV2 

No Tumor EfficientNetB1/NASNetMobile 

Pituitary Tumor MobileNetV2 

 

The prime objective of this project work was to use light-weight architectures and complete 

the task in minimum possible time. Also, it is clear by the findings presented that all the three 

models have very competitive performance. So in such a case, it also becomes important to 

compare the consumption of time by all the models. This has been presented in Table 5.2. 

Table 5.2. Comparison of Time Consumption 

 Time per epoch (s) 

MobileNetV2 270 

EfficientNetB1 600 

NASNetMobile 390 

InceptionV3 650 

DenseNet121 810 
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CHAPTER 6: CONCLUSIONS AND FUTURE 

SCOPE 

 

6.1 CONCLUSION 

The key findings of this project work are based on two major parameters – Performance and 

Cost. 

Hence, on the basis of performance in terms of accuracy, EfficientNetB1 has been found to 

be the best model for classification of brain tumors. On the other hand, in terms of different 

classes and their corresponding F-1 scores, MobileNetV2 and EfficientNetB1 are 

comparable. 

From the angle of cost, MobileNetV2 were easily outperforms other models in terms of time 

as well as space consumption. Time and space requirements of MobileNetV2 are almost near 

to 30-35% less than the corresponding highest figures. 

Since the MobileNetV2 also gives a tough competition in terms of performance, it can be 

considered an appropriate model for deployment if the performance requirements are not 

very stringent. Else, EfficientNetB1 is the best model in any case. 

This project work has made an immense contribution to the field of medical diagnosis with 

the help of CAD systems. Until now, the systems used for such purpose were very costly in 

terms of time and space requirements, but this project work eliminates this drawback of the 

current systems in place. 

A possible limitation of this project works is that the performance of the models can be 

enhanced further to the best possible accuracy. 

 

6.2 FUTURE SCOPE 

In the presented work through this project, while fine tuning, 54 last layers out of 154 were 

made trainable in MobileNetV2, 90 last layers out of 340 in EfficientNetB1, 169 last layers 

out of 769 in NASNetMobile, 61 last layers out of 311 in InceptionV3 and 177 last layers 

out of 427 in DenseNet121. Future Scope can be to increase the number of trainable layers 
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and try to enhance the performance. The concept of layers freezing, according to which only 

specific layers are freezed to use pre-trained weights and others are trainable, can be 

leveraged, provided the availability of requisite computational power. Also, as a part of the 

future scope, the extensiveness of the dataset can further be enhanced. This particular project 

has faced difficulties in the classification of Glioma class of tumors. The dataset related 

enhancements can cater to the increased correctness and accuracy in the predictions.  
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