

Serverless Web Application

A major project report submitted in partial fulfillment of the requirement

for the award of degree of

Bachelor of Technology

in

Computer Science & Engineering / Information Technology

Submitted by

Arjit Upadhyay (201420)

Archit Kaushal (201429)

Under the guidance & supervision of

Dr. Pankaj Dhiman

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology,

Waknaghat, Solan - 173234 (India)

I | P a g e

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled ‘Serverless Web Application’

in partial fulfilment of the requirements for the award of the degree of Bachelor of Technology

in Computer Science & Engineering / Information Technology submitted in the

Department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology, Waknaghat is an authentic record of my own work

carried out over a period from August 2023 to December 2023 under the supervision of Dr.

Pankaj Dhiman (Assistant Professor (SG), Department of Computer Science & Engineering

and Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

Student Name: Arjit Upadhyay Student Name: Archit Kaushal

Roll No.: 201420 Roll No.:201429

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature with Date)

Supervisor Name: Dr. Pankaj Dhiman

Designation: Assistant Professor (SG)

Department: Computer Science & Engineering and Information Technology

Dated:

II | P a g e

 ACKNOWLEDGEMENT

First, we express our heartfelt thanks and gratitude to Almighty God for His divine

blessing that made it possible to complete the project work successfully.

We are really grateful and wish our profound indebtedness to Dr. Pankaj Dhiman,

Assistant Professor (SG), Department of CSE & IT, Jaypee University of

Information Technology, Waknaghat. Deep knowledge and keen interest of our

supervisor in the field of “cloud computing” to carry out this project. His endless

patience, scholarly guidance, continual encouragement, constant and energetic

supervision, constructive criticism, valuable advice, and reading many inferior

drafts and correcting them at all stages have made it possible to complete this

project.

We would also generously welcome each one of those individuals who have

helped us straightforwardly or in a roundabout way in making this project a win.

In this unique situation, we might want to thank the various staff individuals, both

educating and non-instructing, who have developed their convenient help and

facilitated my undertaking.

Finally, we must acknowledge with due respect the constant support and patience of

our parents and siblings.

Archit Kaushal

Project Group No. 191

Roll No.: 201429

 Arjit Upadhyay

 Project Group No. 191

 Roll No.: 201420

III | P a g e

TABLE OF CONTENT

TITLE 1

CANDIDATE’S DECLARATION I

ACKNOWLEDGEMENT II

LIST OF TABLES 1-1

LIST OF FIGURES 2-2

ABSTRACT

1 - 1

CHAPTER 1: INTRODUCTION 2- 9

CHAPTER 2: LITERATURE SURVEY 9- 18

CHAPTER 3: SYSTEM DEVELOPMENT 19-33

CHAPTER 4: TESTING 34-49

CHAPTER 5: RESULTS AND EVALUATION

50-62

CHAPTER 6: CONCLUSION AND FUTURE SCOPE 63-68

REFRENCES 69-73

iv | P a g e

LIST OF TABLES

 Page No. Table 2.2.1: List of the Literature Surveys 13-18

Table 5.2.2: Comparison with Existing Solutions 38-37

Table 5.2.3: Comparison with Existing Solutions 39-40

v | P a g e

LIST OF FIGURES

 Page No.

Figure 1.1: Traditional Vs Serverless Architecture. 3

Figure 3.1.1: System Design. 22

 Figure 3.1.2: System Design. 23

Figure 3.1.3: System Design. 24

 Figure 3.1.4: System Design. 25

Figure 3.4.2: Both the figures show the snippets to connect to 25

console and create the repositories

Figure 3.4.3: Both the figures shows the implementation of 29

above mentioned commands on Window Powershell

Figure 3.4.4: Both the figures shows the implementation of 30

above mentioned commands on Window Powershell

Figure 5.1.2.1Events on AWS. All events listed on AWS are 32

displayed in the left column, while all events listed on the Serverless

Framework are displayed in the right column.

Figure 5.1.3: AWS Dashboard when the serverless application is deployed 35

0 | P a g e

 ABSTRACT

In recent years, serverless applications have grown in popularity. The developer cannot access

the settings or usage of the server. It is promoted as a technique to shorten development times

and simplify the process. The cost of the programme is determined by the real time and resource

utilisation, and it is automatically scaled based on usage. Since cloud infrastructure may be

viewed like code, development can be accelerated with the help of a framework. Regardless of

the underlying platform, it simplifies the deployment process and makes it easier to deploy the

same application to numerous serverless providers.

In the serverless space, two phrases that are frequently used are Function-as-a-Service (FaaS)

and Backend-as-a-Service (BaaS). By segmenting an application into its component parts,

FaaS enables the re-deployment of a single function without requiring the re-deployment of

the entire application. Application development can be accelerated by using BaaS services,

such as databases and authentication, that are provided by serverless providers.

The distinctions between serverless and conventional server-oriented development are

examined in this thesis. An empirical study is carried out in which a serverless application is

deployed to three providers—AWS, Azure, and Google—using the Serverless Framework. It

looks into whether BaaS services can be used instead of outside solutions for database and

authentication. The purpose of the thesis is to determine which provider is most suited for a

front-end React application that is connected to a smaller back-end API. The comparison of

setup and deployment similarities and differences tries to determine the degree of code reuse

throughout serverless providers.

The outcome demonstrates that AWS is the target of the Serverless Framework by default. For

the Azure and Google project to interface with the functions and events of each provider, a

function plugin is needed. A back-end application was developed in AWS using the BaaS

services Cognito User Pool for authentication and DynamoDB for database management.

There were relatively few BaaS services defined in the documentation from Google and Azure,

and no BaaS services could be implemented.

1 | P a g e

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The serverless notion is promoted as a means of reducing both the complexity and the amount

of time needed to construct an application. When selecting serverless for a smaller back-end

application, many of the advertised advantages—such as scalability and pay-as-you-go—are

disadvantages. For developers who are new to serverless, it may take some time to become

comfortable with Function as-a-Service (FaaS) and Backend-as-a-Service (Baas). FaaS refers

to the division of an application into smaller functions, each of which often has a particular

purpose, such adding a post to a database. It is significantly simpler to individually re-deploy

these functions. Less code is possible when using BaaS services from serverless providers, and

you can take advantage of their experience setting up things like databases and user

authentication. It does, however, result in vendor lock-in, making it potentially challenging to

move to a different supplier. Learning new services and configurations would be necessary

when moving providers because the necessary setups and knowledge for the services used will

vary depending on the provider.

The phrase "serverless" has gained popularity in the last several years. It explains a novel

approach to application publishing in which developers are not aware of the server utilisation.

The code is automatically resized according to usage and executed on demand. The billing is

determined by the real-time execution of the code. The cloud resource provider is in charge of

autoscaling, resource allocation, and deployment. Google Cloud, Microsoft Azure, and

Amazon Web Services (AWS) are a few popular serverless computing services.

The names FaaS and BaaS are frequently used in the serverless context. Developers can use

provider-managed services like file storage, cloud-accessible databases, and authentication

with BaaS. Developers can install their own code (functions) on servers or containers that the

cloud provider manages thanks to FaaS. These two phrases, which occasionally get confused,

describe the developer's level of freedom and control over the code that is deployed. BaaS may

speed up application development but results in increased vendor lock-in and less control over

the code utilized.

2 | P a g e

Fig 1.1 Traditional Vs Serverless Architecture.

 As traditional development uses fixed resources and that's why it’s harder and more

expensive to maintain them, scale them. The other issue is downtime. The main aim of the

project is to deal with these issues and provide best applications of cloud computing by using

serverless web applications that provides us auto scalability, cost efficiency as it works on pay

per use model, high availability and fault tolerance and it also helps in reducing the

development time and providing complex infrastructure management.

3 | P a g e

1.2 PROBLEM STATEMENT

Provisioning and managing dedicated server resources are part of traditional hosting

methods for web applications. This frequently results in either under-provisioning during

traffic spikes, which results in subpar performance and dissatisfied users, or

overprovisioning during peak traffic, which raises operational expenses. By tackling the

following crucial problems, serverless web applications seek to address these difficulties:

1. Scalability: To adapt to changing user loads, traditional programmes require manual

resource adjustments. The serverless architecture allows seamless resource allocation

based on demand and automatic scaling. By doing away with anticipatory provisioning,

performance and user experience are improved.

2. Efficiency in terms of costs: Over-provisioning servers to handle peak traffic might

result in resource waste and irrational expenses. Serverless applications ensure optimal

resource utilization while minimizing operational costs by dynamically allocating

resources as needed.

3. Operational Complexity: Scaling servers requires complex setups and upkeep. Server

management is abstracted away by serverless web applications, freeing developers to

concentrate entirely on writing business logic without worrying about infrastructure

maintenance.

4. Reduced Latency: In serverless architecture, cold start latency, or the delay

encountered on the first invocation of a function, is a typical worry. Applications

become more responsive as a result of solving this problem, which enhances user

experience.

5. Flexibility: Microservices-based composition provided by serverless architecture

allows for the creation of modular applications that may be independently created,

deployed, and scaled. Iterative development is facilitated and adaptability is improved.

4 | P a g e

6. Resource Distribution: Serverless technologies distribute resources automatically

according to workload demands, negating the need for human modifications. By doing

this, programmes may manage variable loads without suffering performance

degradation.

7. Developer Productivity: With serverless, developers can concentrate on writing code

because the cloud provider is in charge of maintaining the infrastructure underneath.

This increases developer productivity and shortens the time it takes to construct an

application.

8. Innovation: Serverless architecture fosters innovation and experimentation by

abstracting away infrastructure-related concerns. Developers may swiftly iterate and

develop new features by prototyping and deploying them.

9. Global Reach: Without the hassles of managing server clusters, serverless apps can be

distributed across numerous geographical areas. This improves the accessibility and

responsiveness of the programme for a global user base.

10. Automatic Failover: Serverless solutions frequently come with built-in failover and

redundancy methods, boosting application resilience and reducing downtime in the

event of failures.

1.3 OBJECTIVES

1. Eliminating server management complexities: Serverless computing eliminates

the need for businesses to manage their own servers. This frees up developers to

focus on their core business logic and reduces the risk of human error.

2. Optimizing resource allocation and utilization: Serverless computing allows

businesses to pay for the resources they use, which can help to reduce operational

5 | P a g e

expenses. Additionally, serverless computing can automatically scale resources up

or down based on demand, which can help to improve efficiency.

3. Achieving automatic and seamless resource scaling: Serverless computing can

automatically scale resources up or down based on demand, which ensures that

applications always have the resources they need to perform at their best. This can

be especially beneficial for businesses with fluctuating workloads.

4. Minimizing cold start latency: Cold start latency is the delay that occurs when a

serverless function is first invoked. Serverless providers can minimize cold start

latency by pre-warming functions or using warm start functions. This can help to

improve the performance of serverless applications.

5. Enabling modular development and independent scaling of microservices:

Serverless computing can help businesses to develop and scale microservices

independently. This makes it easier to build and maintain complex applications.

1.4 SIGNIFICANCE/MOTIVATION OF PROJECT WORK

Both the demand for and availability of serverless apps has grown, as has the number of service

providers. The product is positioned as a means of cutting down on both the amount of time

needed to develop an application and its complexity. This study will look at whether the method

is now developed sufficiently for smaller applications and whether it can eventually take the

place of traditional back-end development. It will include putting serverless apps into practise.

As stated in the essay Why, When, and How of Serverless Applications? To help software

developers create serverless solutions, additional empirical research on serverless use is

required.

The bar for serverless configurations has lowered recently thanks to the rise in popularity of

serverless frameworks. Still, is it still too difficult for smaller apps or projects to achieve the

barrier needed to set up FaaS and BaaS within a serverless framework? Anyone exploring the

6 | P a g e

use of serverless computing can benefit from reading this report. It will look into which of the

providers is worth spending money and time developing.

1.5 ORGANIZATION OF PROJECT REPORT

This report is divided into 6 different chapters covering all the aspects of the project we have

worked on; it is extremely important to know the structure/ organization of the project because

it helps us understand the methodology and the ideology of the project better. Let us discuss

about the various chapters briefly:

Chapter 1: This chapter contains the 1.1 INTRODUCTION, 1.2 PROBLEM STATEMENT, 1.3

OBJECTIVES, 1.4 SIGNIFICANCE/ MOTIVATION OF THE PROJECT which tells us in detail about

what the project is, why did we take up this project, why is this monitoring of this project is

crucial and also how will our project make a difference and impact from it. It also clearly

defines the objectives we want to achieve from the project and since we further want to convert

this project into a web application The major objective of this Project is to Get practical

experience with serverless architecture and create applications that are scalable and

economical. Boost application performance, time to market, and development agility.

Investigate real-world serverless systems and develop a useful application that integrates cloud

services. With the help of Cloud and AWS technology, get practical knowledge about AWS's

serverless architecture: Use the event-driven compute service AWS Lambda to create and

implement serverless web apps with ease. Create scalable and affordable applications by

utilizing AWS services: Employ AWS services like Amazon DynamoDB, Amazon Cognito,

and Amazon API Gateway to build scalable, affordable online apps. Boost time to market and

development agility with AWS Amplify: Use the serverless web and mobile app development

framework AWS Amplify to expedite development and speed to market.

Chapter 2: This chapter contains the 2.1 OVERVIEW OF RELEVANT WORK, 2.2 KEY GAPS IN

LITERATURE, HIGHLIGHTING the work other people have done in this particular field and the

gaps we have found that lead us to make this project and stand this out of the other work any

other researcher has done in this domain.

7 | P a g e

Chapter 3: This chapter contains the 3.1 REQUIREMENT AND ANALYSIS, 3.2 PROJECT

DESIGN AND ARCHITECTURE, 3.3 DATA PREPARATION, 3.4 IMPLEMENATION, 3.5

KEY CHALLENGES which will show the system development process. How we have

gathered the data and how we will move forward with the preparation, splitting, augmentation,

preprocessing of the data and while we were developing the system what were the key

challenges we have faced recently and how did we overcome those. We have used various AWS

technologies like (AWS lambda, AWS API gateway, AWS congnito) in the project along with

transfer learning approach and we will have to show the detailed architecture of the model and

also the requirement analysis for the project, whether they are the functional or the

nonfunctional requirements in the hierarchy.

Chapter 4: This chapter contains the 4.1 TESTING STRATEGY, 4.2 TEST CASES AND

OUTCOMES, it is extremely crucial to a model how we test the outcomes and how we train it.

Adopt a thorough testing strategy: To guarantee the general dependability and quality of the

serverless application, use a mix of unit, integration, performance, and security testing.

Leverage automation frameworks: To increase testing productivity, guarantee consistent test

execution, and automate repetitious test cases, make use of frameworks such as Jest or Mocha.

Include testing in the continuous integration and delivery (CI/CD) pipeline to automate test

execution and deployment. This will enable quick feedback loops and quicker release cycles.

Use cloud-based testing tools: To test serverless functions in a realistic setting, make use of

cloud-based testing tools such as AWS Lambda Test or Azure Functions Test. Think about UAT

(user acceptance testing): Real users should participate in UAT to provide input on usability,

performance, and overall user experience.

Chapter 5: This chapter contains the 5.1 RESULTS (PRESENTATION FINDINGS) , 5.2

COMPARISON WITH EXISTING SOLUTION which is why we have done this project to

have seen how it is better than the other models or how is there a different solution or path of

reaching the solution with same accuracy with less parameters and effort. The major objective

of this Project is to Get practical experience with serverless architecture and create applications

that are scalable and economical. Boost application performance, time to market, and

8 | P a g e

development agility. Investigate real-world serverless systems and develop a useful application

that integrates cloud services.

Chapter 6: This chapter contains the 6.1 CONCLUSION, 6.2 FUTURE SCOPE which has

been deeply explained in the chapter.

9 | P a g e

CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Relevant Literature

In the following chapter, we have reviewed some of the papers that have been published by

some of the best researchers who are working in this respected field. Here we have mentioned

the papers and what technologies and trends they worked on. We have done a literature review

of papers that have worked on different applications, current trends, and obstacles in the field

of serverless computing.

1. In IEEE Internet Computing, Aloqaily and Zomaya [1] investigated "Serverless Computing:

Current Trends and Open Challenges" (Sept.-Oct. 2023). Their research adds to our

understanding of this dynamic field by addressing current trends and highlighting obstacles

in the ever-changing field of serverless computing. This paper tells us majorly about the

work done and currently being done in serverless computing and also about the various

problems that are being faced while working on it.

2. In the IEEE Transactions on Emerging Topics in Computing, Nguyen et al. [2] published "A

Survey on Serverless Computing: Architectures, Applications, and Future Trends" (Jan.-Feb.

2022). Offering a thorough overview of the industry, the review explores a variety of

serverless computing topics, such as architectures, applications, and future developments.

This paper gives an overview of the current and future applications of serverless computing.

We can see the architecture of serverless computing in this.

3. "Efficient Serverless Computing: A Survey of Recent Advances and Future Research

Directions" was presented by Patel and Shukla [3] in the December 2021 issue of ACM

Computing Surveys. Their survey offers insightful information for scholars and practitioners

by examining current developments and outlining potential future research avenues in the

field of effective serverless computing. In this paper the authors have briefly explained

current aspects and lead a foundation for future aspects of serverless computing.

10 | P a g e

4. An examination into "Serverless Computing: Deployment Models and Their Use Cases" that

was published in IEEE Cloud Computing (March–April 2022) was carried out by Ahmad,

Abrol, and Buyya [6]. Their research delves into different deployment strategies and their

applications, offering valuable perspectives on the dynamic field of serverless computing.

5. " Anwar, Khattak, and Chen [7] presented a comprehensive review of scalability in

serverless computing in the IEEE Transactions on Cloud Computing (July 2021). The paper

investigates serverless computing's scalability qualities, offering a thorough analysis that

enhances knowledge in this important field.

6. A survey named "Machine Learning on the Edge" was carried out by Wang et al. [8] and

published in IEEE Access (2022). Their research delves into the nexus of edge computing

and machine learning, offering a thorough rundown of this rapidly developing field.

7. In August 2021, the IEEE Internet of Things Journal released a survey on "FaaS for Edge

Computing" that Yao, Zhang, Liu, and Wang [9] did. Understanding this synergy is aided by

the paper's insights on the application of Function-as-a-Service (FaaS) in the context of edge

computing.

8. "Serverless Computing: A Framework for Distributed Systems" was presented by Leitner,

Venticinque, and Crichton [10] in the October 2020 issue of ACM Computing Surveys. Their

work adds to a thorough grasp of this paradigm by establishing a framework for comprehending

serverless computing in the context of distributed systems

9. "Serverless Computing: Current Trends and Open Problems" by B. Cheng, H. Zhang, and

K. Zhang: This paper may explore the current trends and challenges in serverless computing,

shedding light on open research problems. It could cover aspects such as scalability,

performance, and the overall impact of serverless architectures on web applications.

10 . "Efficient Serverless Computing in Cloud for Processing Internet of Things Data" by Y.

Xu, X. Qi, and C. Hu: This paper might focus on the efficiency of serverless computing

specifically concerning Internet of Things (IoT) data processing. It could delve into how

serverless architectures handle the dynamic workloads associated with IoT devices and the

implications for web applications.

11 | P a g e

11. "Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a

Large Cloud Provider" by A. Tumanov, A. Povzner, and E. Gurevich: This paper could provide

insights into the real-world usage of serverless computing at a large scale. It might discuss

workload characteristics, optimization strategies, and the practical implications for deploying

web applications in a serverless environment.

12. "A Performance Study of Docker Containers on Bare-Metal Systems" by T. Feller, C.

Morin, and R. Ranjan: Although not explicitly focused on serverless, this paper might be

relevant as it discusses performance aspects related to containerization, a technology often used

in serverless platforms. It could provide insights into the performance implications of

deploying web applications in a serverless containerized environment.

13. "Towards Serverless Event-Driven Architectures for IT Service Management" by S.

Nastic, B. Maxim, and S. Dustdar: This paper might explore the application of serverless

architectures in event-driven scenarios, potentially focusing on IT service management. It

could discuss the benefits and challenges of using serverless for building event-driven web

applications in enterprise contexts.

2.2 Key Gaps in the Literature

S.

No.

Paper Title

[Cite]

Journal/

Conference

(Year)

Tools/

Techniques/

Dataset

Results

Limitations

1. "Serverless

Computing:

Current

Trends and

Open

Challenges"[

1]

IEEE

Internet

Computing

(2023)

N/A Trends in

serverless

adoption.

Lacks specific

implementatio

n details.

12 | P a g e

2. "A Survey on

Serverless

Computing:

Architectures

,

Applications,

and Future

Trends"[2]

IEEE

Transactions

on Emerging

Topics in

Computing

(2022)

N/A Comprehensi

ve overview

of serverless.

Focuses more

on survey than

experimental

results.

3. "Efficient

Serverless

Computing:

A Survey of

Recent

Advances

and Future

Research

Directions"[3

]

ACM

Computing

Surveys

(2021)

N/A Summarizes

efficiency

improvement

s.

Limited

discussion on

real-world

deployments.

4. "Performance

Benchmarkin

g of

Serverless

Computing

Platforms"[4]

ACM

Transactions

on Internet

Technology

(2020)

AWS

Lambda,

Azure

Functions,

Google Cloud

Functions

Comparative

performance

analysis.

May not

consider the

latest

serverless

updates.

5.

"Serverless

Security: A

Survey and

Research

Directions"[5

]

IEEE

Transactions

on Services

Computing

(2023)

N/A Overview of

serverless

security

challenges.

Lacks detailed

case studies or

practical

solutions.

13 | P a g e

6. ."Serverless

Computing:

An

Investigation

of

Deployment

Models and

Their Use

Cases"[6]

IEEE Cloud

Computing

(2022)

N/A Discusses

various

serverless

deployment

models.

Limited

empirical

validation of

use cases.

7. "Scalability

in Serverless

Computing: A

Comprehensi

ve

Review"[7]

IEEE

Transactions

on Cloud

Computing

(2021)

N/A Examines

scalability

aspects in

serverless.

May not cover

the very latest

scalability

techniques.

8. "Machine

Learning on

the Edge: A

Survey"[8]

IEEE Access

(2022)

Edge

computing,

serverless

Compares

edge and

serverless for

ML.

Focuses on

broader edge

computing

aspects.

9.

"A Survey on

FaaS for

Edge

Computing"[

9]

IEEE

Internet of

Things

Journal

(2021)

Serverless for

edge

computing

Discusses

potential use

cases and

challenges.

Limited

discussion on

real-world

implementatio

ns.

14 | P a g e

10. "Serverless

Computing: A

Framework

for

Distributed

Systems"[10]

ACM

Computing

Surveys

(2020)

N/A Framework

for building

distributed

systems.

Limited

discussion on

specific use

cases.

11. "Serverless

Computing:

An

Exploration

of Current

Trends and

Open

Research

Questions"[1

1]

ACM

Computing

Surveys

(2019)

N/A Identifies

research gaps

and

challenges.

More focused

on future

research

directions.

12. "An

Empirical

Investigation

into

Function-asa-

Service

Performance

and Cost"[12]

ACM

Transactions

on the Web

(2019)

AWS

Lambda,

Azure

Functions

Empirical

performance

and cost

analysis.

Limited to

specific cloud

providers and

older data.

15 | P a g e

13. "Survey on

Serverless

Computing"[

33]

Journal of

Cloud

Computing,

vol. 9, no. 1,

2021

N/A Comprehensi

ve overview

of serverless

computing

landscape,

covering key

concepts and

trends.

Not specified

in the provided

information.

14. "Construct a

Serverless

Web

Application

with AWS

Lambda,

Amazon API

Gateway,

AWS

Amplify,

Amazon

DynamoDB,

and Amazon

Cognito"[34]

International

Journal of

Innovative

Research in

Technology,

vol. 11, no.

2, 2023

AWS

Lambda,

Amazon API

Gateway,

AWS

Amplify,

Amazon

DynamoDB,

Amazon

Cognito

Detailed

guide on

building a

serverless

web

application

using AWS

services.

Not specified

in the provided

information.

15. "Experimenta

l Analysis of

the

Application of

Serverless

Computing to

IoT

Platforms"[3

5]

Sensors, vol.

21, no. 7,

2021

N/A Experimental

analysis of

applying

serverless

computing to

IoT

platforms.

Not specified

in the provided

information.

16 | P a g e

16. "A Research

Paper on

Serverless

Computing"[

36]

International

Journal of

Engineering

Research &

Technology,

vol. 10, no.

3, 2022

N/A Research

paper on

serverless

computing,

likely

covering

concepts and

trends.

Not specified

in the provided

information.

17. "Serverless

Computing

for Web

Applications:

A

Review"[37]

ACM

Computing

Surveys, vol.

52, no. 5,

2020

N/A Review of

serverless

computing's

application

in web

applications.

Not specified

in the provided

information.

18. "Serverless

Web

Applications:

A

Performance

and Cost

Analysis"[38]

IEEE

Transactions

on Cloud

Computing,

vol. 7, no. 4,

2019

N/A Performance

and cost

analysis of

serverless

web

applications.

Not specified

in the provided

information.

19. "Security

Challenges in

Serverless

Computing"[

39]

IEEE

Security &

Privacy, vol.

16, no. 4,

2018

N/A Identification

and analysis

of security

challenges in

serverless

computing.

Not specified

in the provided

information.

17 | P a g e

20. "Serverless

Computing

for Scientific

Computing"[

40]

Computing in

Science &

Engineering,

vol. 19, no.

3, 2017

N/A Exploration

of serverless

computing's

applicability

to scientific

computing.

Not specified

in the provided

information.

 Table-2.2.1 Key gaps in the literature review.

18 | P a g e

CHAPTER 3

SYSTEM DEVELOPMENT

3.1 Requirements and Analysis

Here are the features and capabilities that the application has to have in order to satisfy the

demands of its users and stakeholders which are the functional requirements for serverless web

applications. A collection of typical functional specifications for serverless web applications is

provided below:

Authorization and Authentication of Users:

● User setup and access.

● Role-based access control.

● Account recovery and password reset procedures.

● Database and Data Storage.

CRUD functions for data entities (Create, Read, Update, Delete).

● Integration with serverless databases, such as Cosmos DB and DynamoDB.

● Validation and integrity checks of data.

● Functions without a server.

Serverless function implementation (e.g., AWS Lambda, Azure Functions).

● Carrying out particular actions in response to events or triggers.

● Asynchronous process management. ● Scalability

Serverless operations that automatically scale according to demand.

● Load balancing to effectively divide traffic.

19 | P a g e

● Both Microservices and APIs.

Data Flow and System Design:

● Describe the flow of data within the system.

● Present system diagrams or flowcharts to visually represent the architecture.

The user interface, or UI:

● a user-friendly UI that is both responsive. ++

● support for many screen sizes and devices.

● Features that guarantee inclusion through accessibility.

Functionality in real time:

● alerts and changes in real time.

● Support for bidirectional communication using WebSockets.

Managing Files and Media:

● File management, downloads, and uploads.

● Integration with cloud-based storage services (such Azure Blob Storage, Amazon S3,

etc.).

Looking for and Sorting:

● Use the search feature to find pertinent information.

● Options for sorting and filtering data are provided.

Recording and Observation:

● capturing faults and events for troubleshooting.

● performance tracking for serverless functions.

● Integration with services for monitoring and logging.

20 | P a g e

Quality Control and Testing:

● both integration and unit testing.

● A/B testing to enhance the user interface.

● Pipelines for continuous deployment and integration, or CI/CD.

Functioning Offline:

● support for data syncing and offline use.

● techniques for caching data to boost efficiency.

3.2 Project Design and Architecture

We utilized an S3 bucket to hold the ReactJS, as seen in Figure 2. Using its own web server,

the S3 bucket will process the requests and provide the application. The S3-based ReactJS

application will leverage Amazon Cognito for user authentication and storage in order to

safeguard user data and provide a login mechanism. In order to protect the API requests made

via ReactJS, the API Gateways will also authenticate against Cognito concurrently.

21 | P a g e

 Fig-3.1.1 Connections in AWS

Serverless applications represent a paradigm shift in the world of cloud computing, offering a novel

approach to building and deploying software without the need for traditional server infrastructure

management. In a serverless architecture, developers focus solely on writing code while the

underlying infrastructure, scaling, and maintenance are abstracted away. This model enables efficient

resource utilization, cost savings, and enhanced scalability.

22 | P a g e

Fig-3.1.2 Project Design of the project

We have placed an Amazon CloudFront service in front of the S3 bucket in order to serve the

ReactJS application. This improves the website's delivery speed and provides the necessary

reroutes for ReactJS to function on an S3 bucket. Adjacent to the S3, We have Amazon API

Gateways with REST APIs, one of which has Python Lambdas for the CSV report and NodeJS

Lambdas for the customer-facing APIs. The required data is finally stored and retrieved by

connecting both APIs to a DynamoDB database.

Serverless applications operate on the principle of "pay-as-you-go," where users are billed

based on the actual compute resources consumed during the execution of functions or events.

This eliminates the need for maintaining and paying for idle server capacity, making it a

costeffective solution. Furthermore, serverless platforms automatically scale resources in

response to increased demand, ensuring optimal performance without manual intervention.

This dynamic scalability is particularly beneficial for applications with variable workloads.

23 | P a g e

Fig-3.1.3: Connection of the web app to the API Gateway

Event-Driven Architecture: Serverless architecture is inherently event-driven, meaning

functions are triggered by specific events or requests. Events can include HTTP requests,

changes to data in a database, file uploads, or custom events defined by the developer. This

event-driven nature enhances flexibility and responsiveness, allowing applications to adapt

quickly to changes in the environment. Developers can focus on writing small, modular

functions that respond to specific events, promoting a microservices-like approach.

Reduced Operational Overhead: One of the key advantages of serverless applications is the

significant reduction in operational overhead. Traditional server management tasks, such as

provisioning, configuring, and scaling infrastructure, are handled by the cloud provider. This

allows developers to concentrate on writing code and building features rather than managing

the underlying infrastructure. Additionally, automatic updates, security patches, and

maintenance tasks are handled seamlessly by the serverless platform, further streamlining the

development process.

Challenges and Considerations: While serverless computing offers numerous benefits, it is

essential to consider its limitations and challenges. Cold start latency, where there may be a

delay in function execution if it has been idle, is a common concern. Additionally, certain

applications with long-running processes or specific infrastructure requirements may not be

suitable for a serverless architecture. Developers must carefully assess the nature of their

24 | P a g e

applications and workloads to determine if serverless is the right fit, considering factors such

as execution time, resource requirements, and third-party dependencies. Despite these

challenges, serverless applications continue to gain popularity as a powerful and efficient

approach to cloud computing.

Fig-3.1.4 API Gateway connection example with post-tweets and other specifications

25 | P a g e

3.3 Data Preparation

As this is a cloud-based project so we will not be needing a lot of data. The only data required

is the one that will be used by the website that we will be hosting on the cloud. Rest there will

not be a lot of need for data preparation.

3.4 Implementation (include code snippets, algorithms, tools

and techniques, etc.)

Tools Used:

1. Serverless Frameworks: AWS SAM (Serverless Application Model)

2. Cloud Providers: Amazon Web Services (AWS)

3. Function as a Service (FaaS) Languages: Node.js, Python, JavaScript (for browser-based

interactions)

4. Front-end Frameworks: React.js, HTML/CSS/JavaScript (for traditional web interfaces)

5. Database and Storage: Amazon DynamoDB, Amazon S3 (for file storage)

6. API Gateway: AWS API Gateway

7. Testing: Jest

8. Version Control: Git, GitHub

9. Development Tools: Visual Studio Code

Creating a serverless web application using AWS SAM (Serverless Application Model) with

Amazon Web Services (AWS) involves a comprehensive approach that integrates various

AWS services and development tools. Let's delve deeper into each aspect of building a

serverless application with AWS SAM:

26 | P a g e

AWS Infrastructure

Amazon Web Services (AWS) offers a vast array of cloud services, ranging from compute,

storage, and networking to databases, machine learning, and analytics. AWS provides a

reliable and scalable infrastructure that enables businesses to develop, deploy, and scale

applications globally without the burden of managing physical servers.

Function-as-a-Service (FaaS) Languages

Serverless applications often leverage Function-as-a-Service (FaaS) to execute specific

functions in response to events or triggers. AWS Lambda supports multiple programming

languages such as Node.js, Python, Java, and others. Python is popular for its simplicity and

versatility in event-driven architectures, while JavaScript is commonly used for frontend

interactions and backend logic in serverless applications.

Front-end Development

For the frontend, React.js is a widely adopted JavaScript library used to build dynamic user

interfaces with reusable components. React's component-based architecture allows

developers to efficiently manage complex UI components, enhancing the responsiveness and

interactivity of web applications. HTML, CSS, and JavaScript complement React.js,

providing a broad range of browser compatibility, accessibility, and interactivity.

Storage and Database

AWS offers scalable and managed services for data storage and management. Amazon

DynamoDB is a fully managed NoSQL database that provides high performance and

scalability for serverless applications. It's suitable for handling structured and semi-

structured data at any scale. Amazon S3 (Simple Storage Service) is an object storage service

used for storing and retrieving large amounts of unstructured data such as images, videos,

and backups.

27 | P a g e

API Gateway

AWS API Gateway acts as a central entry point for creating, publishing, maintaining, and

securing APIs at scale. It enables developers to expose serverless functions as HTTP

endpoints, facilitating integration with frontend applications and external services. API

Gateway provides features such as request validation, authentication, rate limiting, and

response caching.

Testing

Testing is crucial for ensuring the reliability and quality of serverless applications. Jest is a

popular JavaScript testing framework known for its simplicity and powerful features. It

supports unit testing, integration testing, and snapshot testing for JavaScript code, React

components, and Node.js applications. Automated testing helps detect and prevent issues

early in the development lifecycle.

Version Control

Git is a widely adopted distributed version control system used to track and manage code

changes efficiently. Platforms like GitHub provide additional collaboration features such as

pull requests, code reviews, issue tracking, and continuous integration (CI) pipelines.

Version control ensures transparency, accountability, and collaboration among development

teams working on serverless applications.

Development Tools

Visual Studio Code (VS Code) is a versatile code editor with extensive capabilities for

editing, debugging, and managing code projects. VS Code supports extensions for various

programming languages and frameworks, facilitating a seamless development experience

for building and maintaining modern serverless applications. It integrates with Git and

CI/CD tools, enabling developers to streamline the development and deployment workflows.

28 | P a g e

By combining these technologies and best practices, developers can architect, develop, and

deploy scalable and resilient serverless web applications on AWS. AWS SAM simplifies the

provisioning and management of serverless resources, allowing teams to focus on building

business logic and delivering value to end-users efficiently. Serverless architecture on AWS

offers scalability, cost-efficiency, and reduced operational overhead, making it an attractive

choice for modern cloud-native applications.

Snippets of Implementation

Fig 3.4.1 Image showing snippets of implementation

29 | P a g e

Fig 3.4.2 Both the figures shows the snippets to connect to aws console and create the

repositories

30 | P a g e

Fig 3.4.3 some steps in the implementation

Fig 3.4.4 Both the figures shows the implementation of above mentioned commands on

Window Powershell.

31 | P a g e

3.5 Key Challenges (discuss the challenges faced during the development

process and how these are addressed)

We confronted unique hurdles when creating serverless web apps. In order to guarantee the

application's effective deployment and functioning, these issues have to be resolved. The

following are some of the main obstacles we encountered when creating serverless web apps,

along with some possible solutions:

Latency of Cold Start:

Problem: When a serverless function is called for the first time, it might get cold started, which

increases latency.

Resolving: To reduce cold start times, optimize function code, employ provided concurrency,

and take warming techniques into account.

Restricted Time of Execution:

Problem: Function execution times on serverless systems are limited, which might be an issue

for lengthy jobs.

Addressing: Use asynchronous processing, divide up large jobs into smaller ones, and think

about other options for activities that take longer than expected to complete.

Lack of state:

Challenge: Applications that need to preserve session state may find it difficult to use serverless

functions because they are by nature stateless.

Using stateful services, such as databases or external storage, and designing stateless functions

or utilizing state management strategies, such JWT tokens, are the recommended approaches.

Monitoring and Debugging:

Challenge: Monitoring distributed serverless apps can be difficult, and traditional debugging

techniques might not be immediately relevant.

32 | P a g e

Addressing: advantage serverless architecture-specific monitoring tools, implement extensive

logging, and make advantage of cloud provider capabilities for debugging and tracing.

Lock-in of the vendor:

Challenge: Vendor lock-in might arise from relying too much on a particular cloud provider's

serverless capabilities.

Addressing: Follow portability best practices, use serverless frameworks that abstract away

provider-specific elements, and, if practical, take into account a multi-cloud approach.

33 | P a g e

CHAPTER 4

TESTING

4.1 Testing Strategy

As it is a cloud-based project and we have worked on the cloud part this semester, so there is

no testing part for the project yet. We will be working on the main website part and the more

complex cloud part in the upcoming semester and will conclude the testing part then.

This time we utilized various aws tools during the app and they all worked fine. They provided

different functionalities and contributed to various stages to the serverless web application

phase. All these tools were present at the AWS management console and were used at that place

only. Combining various tools, steps, and processes we can host a Serverless Web Application.

Write unit tests for individual functions or Lambda instructors using testing fabrics like

Jest(forNode.js JavaScript) or pytest(for Python).

Test input/ affair confirmation, error running, and edge cases to ensure functions bear as

anticipated.

Integration Testing

Test the integration of serverless functions with other AWS services (e.g., DynamoDB, S3, API

Gateway) using tools like AWS SDK or original development surroundings (e.g., AWS SAM

CLI).

Validate relations between factors, similar as API requests responses and data continuity.

Integration testing in the context of serverless web applications refers to the process of testing

the interactions and interfaces between different components or services within the application.

Since serverless applications are composed of various serverless functions, APIs, databases,

and external services, integration testing ensures that these components work together correctly

as a cohesive system.

Here's a breakdown of integration testing within a serverless context:

34 | P a g e

Testing Service Interactions: Serverless applications often rely on multiple AWS services like

AWS Lambda (for functions), API Gateway (for APIs), DynamoDB (for databases), and S3

(for storage). Integration testing verifies that these services interact correctly according to the

defined specifications and that data flows smoothly between them.

API Endpoint Testing: In a serverless architecture, APIs play a crucial role in enabling

communication between frontend and backend components. Integration testing ensures that

API endpoints behave as expected, handling requests and responses correctly, and adhering to

defined protocols (e.g., RESTful conventions).

Function-to-Function Interaction: Serverless applications are typically composed of multiple

functions that trigger each other based on events (e.g., S3 upload event triggering a Lambda

function). Integration testing verifies the interactions between these functions, ensuring that

data is passed correctly and that the overall flow of operations functions as intended.

External Service Integration: Serverless applications often integrate with external services such

as third-party APIs (e.g., payment gateways, authentication providers). Integration testing

validates the integration points with these external services, checking for proper authentication,

data formatting, error handling, and response parsing.

Data Integrity and Consistency: With serverless applications relying on managed services like

DynamoDB or S3 for data storage, integration testing validates data integrity, consistency, and

transactional behavior across different parts of the application. This includes testing data

retrieval, modification, and deletion operations.

Event-Driven Testing: Serverless applications are event-driven by nature, where various events

trigger functions or processes. Integration testing involves simulating these events (e.g., S3

events, API requests) to ensure that the application responds correctly and that event-driven

workflows function as expected.

End-to-End Scenario Testing: Integration testing often includes end-to-end scenario testing to

validate critical paths and user workflows within the serverless application. This type of testing

ensures that all components work harmoniously together to deliver the intended functionality

to end-users.

35 | P a g e

End- to- End(E2E) Testing

Perform automated E2E tests to pretend stoner relations with the front- end using tools like

Selenium, Cypress, or Puppeteer.

Test stoner workflows, UI rudiments, form cessions, and API calls to insure the entire operation

functions rightly.

End-to-End (E2E) testing in the context of serverless web applications involves testing the

entire application flow from start to finish, simulating real user interactions and verifying that

all components work together seamlessly. E2E testing ensures that the application behaves as

expected from the user's perspective, including frontend interactions, backend logic, and

external service integrations.

Here's a detailed explanation of E2E testing in the context of serverless web applications:

Scenario Simulation: E2E testing involves simulating user scenarios or workflows that span

across different components of the serverless application. This could include actions such as

user registration, data submission, content retrieval, or transaction processing.

User Interface (UI) Interactions: E2E tests interact with the application's user interface (UI) just

like a real user would. This includes clicking buttons, filling out forms, navigating between

pages, and validating the UI elements' behavior and responsiveness.

Frontend to Backend Communication: E2E tests validate the communication between the

frontend (e.g., React.js components) and the backend (serverless functions, APIs). This ensures

that data is correctly sent and received, and that any business logic implemented in the backend

is executed as expected.

API Integration: E2E tests verify the integration of APIs with the frontend and other backend

services. This includes testing API endpoints, request and response payloads, authentication

mechanisms, and error handling.

36 | P a g e

Data Flow and Storage: E2E tests validate the flow of data through the application, including

data retrieval, modification, and persistence in storage services such as DynamoDB or S3. This

ensures data integrity and consistency throughout the application.

Event-Driven Testing: E2E tests simulate various events that trigger serverless functions or

processes within the application. This includes testing event handlers and ensuring that the

application responds correctly to different types of events (e.g., file uploads, user actions).

External Service Integration: E2E tests validate the integration of the serverless application

with external services such as third-party APIs (e.g., payment gateways, social media

platforms). This ensures that external service interactions are properly handled and do not

impact the overall application performance.

Error and Edge Case Handling: E2E tests include scenarios that test error handling and edge

cases, such as network failures, input validation errors, or unexpected responses from external

services. This helps identify potential failure points and ensures graceful degradation under

adverse conditions.

Performance and Scalability: While primarily focused on functionality, E2E tests can also

include aspects of performance and scalability testing to ensure that the application can handle

expected user loads and data volumes effectively.

Performance Testing

Use cargo testing tools like Apache JMeter, Artillery, or AWS cargo Testing Tools to pretend

concurrent stoner business and dissect system performance under different loads.

Measure response times, outturn, and resource application (e.g., Lambda function duration,

DynamoDB capacity) to identify performance backups.

37 | P a g e

Performance testing in the context of serverless web applications involves evaluating the

application's responsiveness, scalability, and resource utilization under various load conditions.

The goal of performance testing is to identify and address performance bottlenecks, ensure

optimal resource allocation, and optimize the application's efficiency to deliver a reliable and

responsive user experience.

Here's an in-depth look at performance testing for serverless web applications:

Types of Performance Testing:

1. Load Testing: This type of testing involves applying a simulated load to the application

to measure its performance under expected and peak usage conditions. Load testing

helps identify how the application handles concurrent user requests, transactions, and

data processing.

2. Stress Testing: Stress testing pushes the application beyond its normal operating limits

to determine its breaking point and assess its behavior under extreme load conditions.

This helps identify performance bottlenecks, scalability issues, and potential failure

points.

3. Concurrency Testing: Concurrency testing evaluates how the application performs

when multiple users or processes access it simultaneously. This type of testing helps

identify synchronization issues, resource contention, and thread safety problems.

4. Endurance Testing: Also known as soak testing, endurance testing evaluates the

application's performance over an extended period to ensure its stability and reliability

under sustained load. This helps identify memory leaks, database connection leaks, and

other issues that may arise over time.

Key Performance Metrics:

1. Response Time: Measures the time taken by the application to respond to user requests.

Lower response times indicate better performance and responsiveness.

2. Throughput: Represents the rate at which the application can process user requests or

transactions. Higher throughput indicates better performance under load.

3. Concurrency Limits: Identifies the maximum number of concurrent users or requests

that the application can handle without performance degradation or errors.

38 | P a g e

4. Resource Utilization: Monitors CPU, memory, and other resource usage during load

testing to ensure optimal resource allocation and identify potential resource bottlenecks.

5. Scalability: Evaluates how the application scales with increasing load by adding more

serverless instances or resources. This helps assess the application's ability to handle

dynamic workloads and scale on-demand.

Tools and Techniques:

1. AWS CloudWatch: Provides monitoring and metrics for serverless applications,

allowing developers to track performance metrics such as Lambda function invocations,

execution duration, and error rates.

2. Load Testing Tools: Tools like Apache JMeter, Locust, and Artillery can be used to

simulate load and measure performance metrics such as response time, throughput, and

error rates.

3. Performance Monitoring: Implementing logging and monitoring solutions (e.g., AWS

X-Ray, New Relic, Datadog) helps monitor application performance in real-time and

identify performance issues during testing and production.

Best Practices for Performance Testing:

1. Define Performance Goals: Establish clear performance objectives based on expected

user traffic and workload patterns.

2. Use Realistic Test Scenarios: Design test scenarios that closely resemble real-world

usage patterns to ensure accurate performance evaluation.

3. Incremental Testing: Start with smaller loads and gradually increase the load to

identify performance thresholds and scalability limits.

4. Automate Testing: Integrate performance tests into the CI/CD pipeline to automate

testing and ensure continuous performance monitoring.

5. Optimize and Iterate: Use performance testing results to optimize application

architecture, resource allocation, and code efficiency iteratively.

Security Testing

39 | P a g e

Conduct security assessments to identify and alleviate vulnerabilities similar as injection

attacks, insecure configurations, or data exposure.

Perform static law analysis, dynamic scanning, and penetration testing using tools like OWASP

ZAP, SonarQube, or AWS Security tools (e.g., AWS Inspector).

Security testing is crucial for ensuring the integrity, confidentiality, and availability of

serverless web applications. Given the distributed and event-driven nature of serverless

architectures, it's essential to implement robust security measures and conduct thorough

security testing to identify and mitigate potential vulnerabilities. Here's an in-depth overview

of security testing for serverless web applications:

Types of Security Testing:

1. Vulnerability Assessment: This involves scanning the application and its

dependencies for known vulnerabilities, misconfigurations, and outdated libraries.

Tools like AWS Inspector, Snyk, and Nessus can be used to perform vulnerability

assessments.

2. Penetration Testing (Pen Testing): Penetration testing involves simulating real-world

attacks to identify security weaknesses in the application. This includes testing for

common vulnerabilities such as SQL injection, cross-site scripting (XSS), and cross-

site request forgery (CSRF).

3. Access Control Testing: Verifies that access controls (e.g., authentication,

authorization) are properly implemented and enforced throughout the application. This

includes testing user permissions, role-based access controls (RBAC), and privilege

escalation scenarios.

4. Data Protection Testing: Ensures that sensitive data (e.g., user credentials, personal

information) is securely handled, stored, and transmitted within the application. This

involves testing encryption methods, data masking, and secure communication

protocols (e.g., HTTPS).

5. Configuration Management Testing: Evaluates the security of cloud services and

7configurations used in the serverless application (e.g., AWS IAM policies, Lambda

function permissions). Ensures that resources are properly secured and least privilege

principles are followed.

40 | P a g e

6. Serverless-specific Security Testing: Focuses on security considerations unique to

serverless architectures, such as event injection attacks, function cold starts, and secure

integration with external services (e.g., API Gateway, DynamoDB).

Key Security Considerations for Serverless Applications:

1. Least Privilege Principle: Apply the principle of least privilege to IAM roles and

permissions to limit access to only necessary resources and actions.

2. Secure Code Practices: Implement secure coding practices to prevent common

vulnerabilities such as injection attacks, buffer overflows, and insecure deserialization.

3. Secure Environment Variables: Avoid hardcoding sensitive information (e.g., API

keys, database credentials) in function code and use environment variables or secure

storage solutions (e.g., AWS Secrets Manager, AWS Parameter Store) instead.

4. Logging and Monitoring: Implement comprehensive logging and monitoring to detect

and respond to security incidents in real-time. Use AWS CloudTrail, AWS CloudWatch

Logs, and third-party monitoring tools for enhanced visibility.

5. Continuous Security Testing: Integrate security testing into the CI/CD pipeline to

automate security checks and identify vulnerabilities early in the development process.

Tools and Resources for Security Testing:

1. AWS Security Services: Leverage AWS security services such as AWS Identity and

Access Management (IAM), AWS Web Application Firewall (WAF), and AWS

Security Hub for monitoring and managing security configurations.

2. Third-Party Security Tools: Use third-party security tools like Burp Suite, OWASP

ZAP, and SonarQube for vulnerability scanning, penetration testing, and code analysis.

3. Static Application Security Testing (SAST) Tools: Perform static code analysis using

tools like Checkmarx, Veracode, and Fortify to identify security flaws in serverless

function code.

4. Dynamic Application Security Testing (DAST) Tools: Conduct dynamic security

testing with tools like OWASP ZAP and Acunetix to identify vulnerabilities in running

applications through simulated attacks.

41 | P a g e

5. Security Best Practices and Guidelines: Follow AWS Well-Architected Framework

security best practices, OWASP Serverless Top 10, and CIS Benchmarks for securing

serverless applications.

Adaptability and Fault Tolerance Testing

Test fault forbearance by bluffing AWS service failures or winters (e.g., using AWS Fault

Injection Simulator) and validating the operation's response and recovery mechanisms.

estimate how the operation handles flash crimes, retries, and graceful declination under varying

network conditions.

Adaptability and fault tolerance testing are essential aspects of ensuring the reliability and

resilience of serverless web applications. Serverless architectures are designed to be highly

scalable and resilient to failures, but they require thorough testing to validate their adaptability

to changing conditions and their ability to recover from faults gracefully. Here's an in-depth

explanation of adaptability and fault tolerance testing in the context of serverless applications:

Adaptability Testing:

Adaptability testing focuses on evaluating how well a serverless application can adjust to

changes in workload, traffic patterns, and resource demands. The goal is to ensure that the

application can dynamically scale resources up or down based on demand while maintaining

performance and availability.

Key aspects of adaptability testing include:

1. Load Testing with Scaling: Simulating varying levels of user traffic and workload to

test how the application scales in response to increasing or decreasing demand. This

includes testing auto-scaling features of serverless services like AWS Lambda to ensure

timely provisioning of resources.

2. Concurrency and Burst Testing: Evaluating the application's ability to handle

concurrent requests and sudden spikes in traffic. This involves stressing the system with

high levels of concurrent users to assess its responsiveness and scalability.

42 | P a g e

3. Resource Utilization Optimization: Testing resource allocation and optimization

mechanisms to ensure efficient utilization of serverless resources (e.g., memory, CPU)

under different load scenarios.

4. Cold Start Performance: Assessing the impact of cold starts (initial function

invocations) on application performance and response times. This helps identify

potential latency issues and optimize warm-up strategies.

Fault Tolerance Testing:

Fault tolerance testing aims to validate the application's ability to recover from failures, errors,

and unexpected events without impacting user experience or causing downtime. Serverless

architectures inherently support fault tolerance through built-in redundancy and automatic

recovery mechanisms, but thorough testing is necessary to identify and address potential failure

scenarios.

Key aspects of fault tolerance testing include:

1. Failure Injection Testing: Intentionally introducing failures (e.g., network timeouts,

function errors) into the system to observe how the application responds and recovers.

This helps validate error handling, retries, and fallback mechanisms.

2. State Management and Recovery: Testing stateful operations (e.g., database

transactions) to ensure data consistency and integrity in the event of failures.

Implementing retry logic and idempotent operations can help mitigate transient errors.

3. Eventual Consistency Testing: Verifying eventual consistency in distributed systems

by testing data replication and synchronization across multiple services or regions. This

ensures data integrity and availability despite network partitions or service disruptions.

4. Health Monitoring and Alerts: Implementing health checks, monitoring solutions

(e.g., AWS CloudWatch), and automated alerts to detect and respond to failures

proactively. This enables rapid incident response and minimizes downtime.

Tools and Techniques:

1. Chaos Engineering Tools: Tools like AWS Fault Injection Simulator (FIS), Chaos

Monkey, and Gremlin can be used to perform controlled chaos experiments to validate

fault tolerance and resilience in serverless applications.

43 | P a g e

2. Automated Testing Frameworks: Implementing automated testing scripts and

frameworks (e.g., AWS Lambda Load Testing Framework) to simulate real-world

scenarios and assess adaptability and fault tolerance.

3. Continuous Integration/Continuous Deployment (CI/CD): Integrating adaptability

and fault tolerance tests into the CI/CD pipeline to automate testing and ensure

consistent performance across development, staging, and production environments.

4.2 Test Cases and outcomes

Availability and Cross-Browser Testing

insure the operation complies with availability norms(e.g., WCAG) by using availability testing

tools like Axe, Lighthouse, or WAVE.

Perform cross-browser testing across different cybersurfs(e.g., Chrome, Firefox, Safari) and

bias to corroborate comity and harmonious geste .

Availability and cross-browser testing are critical aspects of ensuring that serverless web

applications are accessible and functional across different environments and devices. These

types of testing focus on verifying the application's availability, usability, and compatibility

across various browsers, devices, and platforms to deliver a consistent user experience. Let's

delve deeper into availability and cross-browser testing in the context of serverless web

applications:

Availability Testing:

Availability testing focuses on assessing the application's ability to remain accessible and

responsive under normal and peak usage conditions. The goal is to identify and mitigate

potential bottlenecks, performance issues, and downtime scenarios to ensure continuous

availability for end-users.

Key aspects of availability testing include:

1. Load Testing and Stress Testing: Simulating user traffic and workload to evaluate the

application's performance under different load levels. This helps identify scalability

limits, resource constraints, and potential points of failure.

44 | P a g e

2. High Availability Architecture: Verifying the resilience of serverless components

(e.g., AWS Lambda functions, API Gateway) and cloud services (e.g., DynamoDB, S3)

to ensure redundancy, failover capabilities, and automatic recovery mechanisms.

3. Failover and Disaster Recovery Testing: Testing failover scenarios and disaster

recovery processes to ensure data integrity, continuity of operations, and minimal

downtime in case of service disruptions or failures.

4. Monitoring and Alerting: Implementing real-time monitoring solutions (e.g., AWS

CloudWatch, synthetic monitoring tools) to detect performance anomalies, errors, and

availability issues. Setting up automated alerts and notifications ensures prompt

incident response and resolution.

Cross-Browser Testing:

Cross-browser testing validates the compatibility and consistency of the application across

different web browsers, versions, and devices. This ensures that users have a consistent

experience regardless of their choice of browser or device platform.

Key aspects of cross-browser testing include:

1. Browser Compatibility Testing: Testing the application's functionality, layout, and

performance across popular web browsers such as Google Chrome, Mozilla Firefox,

Microsoft Edge, Safari, and Opera. This includes testing on different browser versions

to identify and address compatibility issues.

2. Responsive Design Testing: Verifying that the application's layout and user interface

(UI) adapt seamlessly to various screen sizes, resolutions, and device orientations (e.g.,

desktops, laptops, tablets, smartphones). This involves testing responsive design

features using tools like Chrome DevTools, BrowserStack, or responsive design testing

frameworks.

3. CSS and JavaScript Compatibility: Ensuring consistent rendering and behavior of

CSS styles, JavaScript interactions, and dynamic content across different browsers.

Addressing browser-specific quirks and implementing polyfills or fallbacks for

unsupported features.

4. Accessibility Testing: Checking the application's accessibility features (e.g., screen

reader compatibility, keyboard navigation) to ensure compliance with web accessibility

45 | P a g e

standards (e.g., WCAG). This helps make the application usable by individuals with

disabilities.

Tools and Techniques:

1. Browser Testing Tools: Using automated cross-browser testing tools like Selenium

WebDriver, Puppeteer, or TestCafe to run tests across multiple browsers and platforms.

2. Device Emulators and Simulators: Leveraging device emulators (e.g., Android

Virtual Device, iOS Simulator) and responsive design testing tools (e.g., Responsinator,

CrossBrowserTesting) to simulate various device configurations and screen sizes.

3. User-Agent Switching: Testing browser compatibility by switching user-agent strings

to emulate different browsers and devices directly within development tools or testing

frameworks.

4. Cloud-Based Testing Platforms: Utilizing cloud-based testing platforms (e.g.,

BrowserStack, Sauce Labs) to perform cross-browser testing on a wide range of

browsers, devices, and operating systems without the need for physical hardware.

Nonstop Testing

Integrate testing into your CI/ CD channel using services like AWS Code Pipeline, GitHub

conduct, or Jenkins for automated testing and deployment.

Run retrogression tests, bank tests, and acceptance tests as part of each law change to maintain

operation quality and trustability.

"Nonstop testing" refers to the concept of continuous testing throughout the software

development lifecycle, particularly in the context of continuous integration/continuous

deployment (CI/CD) pipelines. It involves automating tests to run continuously and

automatically validate changes made to the application code, ensuring that software quality is

maintained and defects are identified early.

Here's a detailed overview of nonstop testing and its importance in modern software

development:

46 | P a g e

Key Aspects of Nonstop Testing:

1. Continuous Integration (CI):

• Integration of automated tests into CI pipelines to validate code changes as soon

as they are committed to version control repositories (e.g., GitHub, GitLab,

Bitbucket).

• Automated build and test processes triggered by code changes, ensuring that

new features or bug fixes do not introduce regressions.

2. Continuous Deployment (CD):

• Automated deployment of tested and validated code to production or staging

environments after passing all predefined tests.

• Integration of automated acceptance tests, performance tests, and security tests

into CD pipelines to ensure that deployed applications meet quality and

performance criteria.

3. Automated Testing:

• Implementation of automated unit tests, integration tests, end-to-end (E2E)

tests, and other types of tests to cover different layers and aspects of the

application.

• Use of testing frameworks and tools (e.g., Jest, Selenium, Postman, JMeter) to

automate test execution and generate test reports.

4. Shift-Left Testing:

• Early involvement of testing activities in the development process, starting from

requirements gathering and design phases.

• Collaboration between developers, testers, and other stakeholders to define test

cases, scenarios, and acceptance criteria upfront.

5. Feedback Loop:

• Continuous feedback mechanism to provide developers with immediate insights

into test results and quality metrics.

47 | P a g e

• Utilization of test reporting tools and dashboards (e.g., SonarQube, TestRail,

Jenkins) to monitor test execution and track testing progress.

Benefits of Nonstop Testing:

1. Early Bug Detection:

• Identification of defects and issues in the codebase at an early stage, minimizing

the cost and effort of fixing bugs later in the development cycle.

2. Improved Code Quality:

• Continuous validation of code changes against predefined quality standards,

ensuring that only high-quality and well-tested code is promoted to production.

3. Faster Time-to-Market:

• Automation of testing processes reduces manual effort and accelerates the

development and deployment of features, enabling faster release cycles.

4. Increased Confidence in Releases:

• Regular execution of automated tests builds confidence in the stability and

reliability of software releases, reducing the risk of post-release failures or

incidents.

5. Continuous Improvement:

• Continuous monitoring of test results and performance metrics enables teams to

identify areas for improvement and optimize testing strategies over time.

Tools and Technologies:

1. CI/CD Platforms:

• Utilization of CI/CD platforms like Jenkins, GitLab CI/CD, CircleCI, or GitHub

Actions to orchestrate automated build, test, and deployment workflows.

2. Testing Frameworks and Tools:

48 | P a g e

• Adoption of testing frameworks and tools for different types of tests (e.g., unit

testing, integration testing, performance testing) based on the technology stack

and requirements of the application.

3. Containerization and Orchestration:

• Use of containerization technologies (e.g., Docker, Kubernetes) to create

reproducible test environments and facilitate seamless deployment and scaling

of test infrastructure.

4. Infrastructure as Code (IaC):

• Definition of test environments and infrastructure using IaC tools (e.g.,

Terraform, AWS CloudFormation) to automate provisioning and configuration

management.

Nonstop testing is a fundamental practice in DevOps and agile development methodologies,

enabling teams to deliver high-quality software continuously and respond quickly to changing

business needs and customer feedback. By integrating automated testing into CI/CD pipelines

and embracing a culture of quality assurance, organizations can achieve faster delivery cycles,

reduce risk, and deliver value to end-users more effectively.

49 | P a g e

CHAPTER 5

RESULTS AND EVALUATION

5.1 Results (presentation of findings, interpretation of the results, etc.)

The main goal of the Serverless Framework is to be deployed on the AWS cloud. By default,

that is what their documentation says. A few pages go on deployment and configuration on

Google and Azure. An overview of what has been tested at each provider using the Serverless

Framework is shown in Table 5.1. The parts that follow go into further detail regarding the

implementations. The Serverless Framework Dashboard allows for the development,

deployment, testing, security, and monitoring of serverless applications. This software as a

service (SaaS) solution has a graphical user interface for managing all deployments. Because

everything can be done via the Serverless dashboard and no special provider interface needs to

be learned, development and deployment are made simpler. The dashboard can be used to read

log outputs for deployed functions or configure data for the services. Thus far, the dashboard

is limited to enabling AWS application setup and monitoring. They must be deployed in

specific regions and be Node.js or Python applications. The format of the routes in Section 5.1

is /route-path. The deployed application base URL is the baseurl in this case, and it implicitly

describes the route baseurl/route-path.

Table 5.1.1: An overview of the Serverless Framework implementations that have been tested

at each cloud provider

50 | P a g e

AWS

The Getting Started With Serverless Framework guide is a great place to start when using the

Serverless Framework. As previously stated, AWS is the target audience for both the Serverless

Frameworks documentation and the framework's starting guide [52]. It explains how to install

the Serverless Framework and create an AWS account. It goes on to detail how to monitor a

Node.js application using the Serverless Dashboard and how to set it up. By the end of the

tutorial, a DynamoDB database has been connected to a http-endpoint for data persistence. An

mistake occurred in the guide, when the function that should have been modified with

createCustomer was given the incorrect code. The guide provides a link to the Github

repository, which has the right implementation. By following these instructions, one can

construct a /test route that can be used to deliver the message "This is a test route on AWS!"

when a GET request is made. In the functions portion of the serverless.yml file, under path, a

functions route is set.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠:

𝑡𝑒𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:

ℎ𝑎𝑛𝑑𝑙𝑒𝑟: 𝑠𝑟𝑐/𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠/𝑡𝑒𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 𝑡𝑒𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒𝑣𝑒𝑛𝑡𝑠:

− ℎ𝑡𝑡𝑝:

𝑚𝑒𝑡ℎ𝑜𝑑: 𝑔𝑒𝑡

𝑝𝑎𝑡ℎ: /𝑡𝑒𝑠𝑡

Amazon Web Service account

An AWS Free Tier account is the one that was stated in the previous section. For a whole year,

the user can utilise a free account, and many functions are still free after that. For instance, 1

million free Lambda queries per month and 25 GB of DynamoDB storage are always free. For

the first 12 months, 5 GB of S3 storage is also included.

51 | P a g e

BaaS Services

The majority of AWS's BaaS solutions that are listed on the Serverless Framework match those

that AWS provides, as does the comparison between AWS's event documentation and the

Serverless AWS Event documentation. The DynamoDB database and the Cognito User Pool,

which are utilised for user authentication, are two of the BaaS services that are provided. Both

will be covered in more detail below. Backend-as-a-Service (BaaS) services provide

developers with pre-built backend functionalities and infrastructure components that can be

easily integrated into their applications, allowing them to focus on frontend development and

business logic without the need to manage backend infrastructure. BaaS offerings typically

include features like user authentication, database management, cloud storage, push

notifications, and serverless functions, among others. These services abstract away the

complexities of backend development, enabling faster development cycles and reducing

operational overhead for development teams.

One of the key benefits of BaaS services is their ability to accelerate application development

by providing ready-to-use backend components through APIs or SDKs. Developers can

leverage BaaS platforms like Firebase (from Google), AWS Amplify (from Amazon Web

Services), or Backendless to quickly implement common backend functionalities such as user

management, data storage, and real-time data synchronization. This approach enables rapid

prototyping, iteration, and deployment of applications, particularly for mobile and web

applications where backend services are essential but can be time-consuming to build from

scratch.

Another advantage of BaaS services is their scalability and flexibility. BaaS platforms are built

on cloud infrastructure, allowing applications to scale automatically based on demand without

requiring manual intervention from developers. This scalability ensures that applications can

handle varying workloads and traffic patterns efficiently. Additionally, BaaS services often

provide integrations with other cloud services and third-party APIs, enabling developers to

extend the capabilities of their applications with minimal effort and overhead. This ecosystem

of services fosters innovation and enables developers to focus on delivering unique value to

end-users without being bogged down by backend complexities.

In summary, Backend-as-a-Service (BaaS) services empower developers to build and deploy

applications faster by providing pre-built backend functionalities and infrastructure

52 | P a g e

components. BaaS platforms abstract away the complexities of backend development, allowing

developers to focus on frontend features and business logic. These services offer scalability,

flexibility, and integration capabilities, enabling developers to leverage cloud resources

efficiently and deliver innovative applications that meet the demands of modern users and

businesses.

Database

An example of utilising DynamoDB may be found in section 5.1.2 of the AWS get started

handbook. When looking through tutorials and instructions, the majority of AWS guides that

use a database use DynamoDB [72]. Because there are numerous examples accessible, this the

recommended option.

Figure 5.1.2. Events on AWS. All events listed on AWS are displayed in the left column, while

all events listed on the Serverless Framework are displayed in the right column.

53 | P a g e

User authentication

Figure 5.1 illustrates that one of AWS's BaaS services is the Cognito User Pool, which is

explained in the Serverless Frameworks documentation's event section. In AWS Cognito, a

user directory is called a user pool. It offers services for signing up and logging in, managing

user profiles and directories, as well as a user interface for signing in via Facebook, Google,

and other social networks.

Implementation

Limited information about Cognito (authentication) is available in the Serverless Framework

documentation, which also points to AWS's own documentation. One of the tutorials and

instructions available for the Serverless Framework explains how to set up a Cognito User

Pool. With two secured endpoints—a GET and a POST—found on the route /user/profile, the

tutorial configures a Cognito User Pool and App Client.

While connecting to a front-end application through the app client, the user data will be

stored in the user pool. Only users who have already registered are able to access the two

created endpoints (routes). The tutorial explains how to manually create a user on AWS's

website in the User Pool. The hosted user interface (UI) in the user pool can be used to obtain

a token to access the secured routes when the user is manually joined to the user pool.

The Cognito guide mentioned above served as a foundation. For the user pool and the two

secured routes to function, this is all that is required on the back end. However, adding new

users and logging in as an existing user requires the front-end to establish a connection with

the Cognito User Pool. As previously noted, the Cognito User Pool's Serverless Frameworks

page also links to AWS's documentation. After learning about the lambda trigger feature for

sign-up, We came across a sign-up tutorial (this one in Javascript, but it's also available for

iOS and Android) that explains how to use the amazon-cognito-identity-js SDK for

authentication to set up the front-end for registration, login, and much more. By using use

cases 1 and 4 in the tutorial, the front-end may be configured to support user registration and

sign-in.This method of accessing the back-end does not use the routes /user/login or /user for

login and registration. Instead it uses the SDK mentioned in combination with the Cognito

User Pool ID and the App Client ID, which can be found in the Cognito User Pool dashboard.

In this The thesis just required registration and login, but generally speaking, Cognito user

54 | P a g e

registration calls for user validation. A validation code is included in an email that is sent to

users upon registration of a new profile.

The user profile cannot be activated until this is verified. The email in this thesis was

manually approved using the dashboard of the Cognito user pool. Either the back-end needs

to be set up so that the validation step is not necessary, or one more page needs to be added to

the front-end to validate users (use case 2 in the previously described guidance). The second

choice ought to be feasible, however it needs more investigation in the AWS documentation.

CORS needs to be set up because the front-end and back-end are not hosted on the same

domain. When the front-end routes are attempted to be accessed without CORS configured,

an error notice stating that the CORS header "Access-Control-Allow-Origin" is missing

appears. To add the code cors: true to the provider part of the serverless.yml-file, follow the

instructions in the CORS Setup section of the Serverless Frameworks guide to the HTTP API

event.

The project's DynamoDB database was added using the getting started instructions. In order

to display every customer in a DynamoDB collection, a /test-route was made. This route was

assigned the index path / instead of /test in the guide. For testing reasons, a /customer-route

was established to POST new customers to the DynamoDB collection. The index /-path for

this /customer-route had been assigned by the guide. To comply with the Method, the secured

GET-route from the Cognito guide /user/profile was modified to be found on the /auth-path.

Serverless Dashboard

AWS deployments can be used with the dashboard included with the Serverless Framework.

Thus, this can be used to monitor the deployed application (see Figure 5.2). An overview of

the functions that have been used is provided by this. You don't need to understand AWS's

setup or logs to track and resolve any mistakes that arise when using the functions. You can

publish the application to the dashboard if it hasn't already by running the serverless

command in the same folder as the serverless.yml file. This will update the serverless.ymlfile

with the lines org: <org name> and app: <appname>.

A serverless dashboard is a centralized platform or tool that provides developers and

operations teams with insights, monitoring, and management capabilities for serverless

applications deployed on cloud platforms like AWS Lambda, Azure Functions, or Google

55 | P a g e

Cloud Functions. The dashboard offers a comprehensive view of serverless resources,

functions, events, and performance metrics, allowing users to monitor the health and behavior

of their serverless applications in real-time. Here's an in-depth look at the components and

benefits of a serverless dashboard:

1. Monitoring and Metrics: A serverless dashboard aggregates and displays key

performance metrics such as invocation counts, latency, error rates, and resource

utilization for individual functions and entire applications. It provides visualizations

like charts, graphs, and logs to help users monitor the behavior and performance of

their serverless functions. Monitoring tools integrated into the dashboard, such as

AWS CloudWatch, Azure Monitor, or Google Cloud Monitoring, track application

metrics and provide alerts for anomalies or performance degradation.

2. Function Management: Serverless dashboards enable users to manage serverless

functions directly from a single interface. Developers can view, deploy, update, and

configure functions without navigating through different cloud provider consoles.

This centralized function management streamlines development workflows and

allows for quick iteration and deployment of serverless applications. Users can also

set up triggers, event sources, and environment variables for functions through the

dashboard.

3. Cost Optimization: Serverless dashboards provide insights into resource

consumption and cost implications of serverless functions. By visualizing usage

patterns and cost breakdowns, developers can optimize resource allocation, choose

appropriate service tiers, and identify opportunities for cost reduction. This

transparency empowers organizations to make informed decisions about resource

provisioning and budget allocation for serverless applications.

4. Security and Access Control: A serverless dashboard enhances security by offering

granular access controls and monitoring capabilities. Users can configure permissions,

roles, and policies to restrict access to sensitive data and functions. The dashboard

may also integrate with security monitoring tools to detect and respond to security

incidents in real-time. This proactive approach to security ensures that serverless

applications remain protected from unauthorized access and potential threats.

56 | P a g e

Figure 5.1.3: AWS Dashboard when the serverless application is deployed

Fig 5.1.4 Recently visited AWS bucket

57 | P a g e

Fig-5.1 Following are the repositories used

Fig-5.1.6 Creating a repository

58 | P a g e

5.2 Comparison with Existing Solutions (if applicable)

Criteria

AWS Lambda

+ API

Gateway AWS Amplify AWS SAM

Microsoft

Azure

Functions

Google Cloud

Functions

Serverless

Framework

Deployment

Ease High High Medium High High Medium

Scalability Excellent Excellent Good Excellent Excellent Excellent

Cold Start

Performance <100ms <100ms 100-300ms <100ms <100ms 100-300ms

59 | P a g e

Supported

Languages

Node.js,

Python, Java

JavaScript,

TypeScript

Node.js,

Python

C#, F#, Java,

Node.js,

PowerShell

Node.js,

Python

Node.js,

Python

Database

Integration

DynamoDB,

RDS, Aurora

GraphQL,

DynamoDB

DynamoDB,

RDS

Cosmos DB,

SQL

Database

Cloud

Firestore,

Cloud SQL

Various (e.g.,

MongoDB,

DynamoDB)

Monitoring and

Logging

 CloudWatch,

X-Ray

CloudWatch,

X-Ray

CloudWatch,

X-Ray

Application

Insights Stackdriver

Various (e.g.,

ELK Stack)

Auto-scaling

Dynamic

scaling

Dynamic

scaling

Dynamic

scaling

Dynamic

scaling

Dynamic

scaling

Dynamic scaling

Cost Efficiency

Pay-

perexecution

Pay-perusage Pay-

perexecution

Pay-

perexecution

Pay-

perexecution

Pay-

perexecution

Development

Tools

AWS CLI,

SDKs

Amplify CLI,

Console

AWS CLI,

IDEs

Azure CLI,

Visual Studio

Cloud SDK,

Cloud

 Console

CLI, IDEs, VS

Code plugin

Community

Support

Active

community

Growing

community

Active

community

Active

community

Active

community

Active

community

Security

Features

IAM, VPC,

KMS

Cognito,

AppSync

IAM, VPC,

KMS

Azure Active

Directory,

Key Vault

Identity and

Access

Management

IAM, VPC,

KMS, Plugin

system

Serverless

Framework Supported N/A Integrated N/A N/A

Core part of the

solution

Table-5.2.2 The above table has clearly described the comparisons.

60 | P a g e

Criteria

AWS Lambda + API

Gateway AWS Amplify AWS SAM

Deployment Ease High High Medium

Scalability Excellent Excellent Good

Cold Start

Performance <100ms <100ms 100-300ms

Supported Languages Node.js, Python, Java

JavaScript,

TypeScript Node.js, Python

Database Integration DynamoDB, RDS, Aurora

GraphQL,

DynamoDB DynamoDB, RDS

Monitoring and

Logging CloudWatch, X-Ray CloudWatch, X-Ray

CloudWatch, X-

Ray

Auto-scaling Dynamic scaling Dynamic scaling Dynamic scaling

Cost Efficiency Pay-per-execution Pay-per-usage Pay-per-execution

Development Tools AWS CLI, SDKs

Amplify CLI,

Console AWS CLI, IDEs

Community Support Active community Growing community Active community

Security Features IAM, VPC, KMS Cognito, AppSync IAM, VPC, KMS

Serverless Framework Supported N/A Integrated

Table-5.2.3 comparison b/w various AWS technologies

61 | P a g e

Conclusions Summary:

1. Deployment Ease: AWS Lambda with API Gateway provides high deployment ease,

while AWS Amplify simplifies the process further for certain use cases. AWS SAM

offers a balance between ease and control.

2. Scalability: All options provide excellent scalability, with AWS Lambda and API

Gateway being particularly robust in handling variable workloads.

3. Cold Start Performance: AWS Lambda and Amplify demonstrate impressive cold start

performance, with Lambda having an edge in sub-100ms cold starts.

4. Database Integration: AWS offers versatile database integration options, including

DynamoDB, RDS, and Aurora, providing flexibility based on application requirements.

5. Monitoring and Logging: CloudWatch and X-Ray are well-integrated across all options,

offering comprehensive monitoring and debugging capabilities.

6. Auto-scaling: Dynamic scaling is a common feature across all AWS options, ensuring

efficient resource utilization.

7. Cost Efficiency: AWS Lambda's pay-per-execution model and Amplify's pay-perusage

model contribute to cost efficiency. AWS SAM also follows a pay-per-execution model.

8. Development Tools: Each option provides different development tools, catering to

different developer preferences and workflows.

9. Community Support: AWS enjoys a strong and active community across its serverless

offerings, fostering knowledge sharing and support.

10. Security Features: IAM, VPC, and KMS are integral security features across all AWS

options, ensuring robust security for serverless applications.

 5.2 Comparison with existing results

We have picked a unique project and with different methodology so there is no existing solution

to it.

62 | P a g e

CHAPTER 6

CONCLUSIONS & FUTURE SCOPE

6.1 Conclusion

Scalability and pay-as-you-go are just two of the many perks of becoming serverless that would

be advantageous for a smaller back-end application. For developers who are new to serverless

programming, it may take some time to become comfortable with Function-as-a-Service

(FaaS) and Backend-as-a-Service (Baas). Serverless computing is promoted as a means of

reducing application development time and complexity. Configurations would probably take

more time for developers who are new to serverless development than the actual coding. This

thesis used the Serverless Framework to compare deployment on AWS, Azure, and Google. In

light of this, it can be concluded that AWS is the best option for developing a more compact

back-end application. By default, the Serverless Framework is designed with AWS in mind and

supports the majority of AWS events. Thus, developers unfamiliar with serverless development

can construct BaaS services with the help of tutorials and documentation.

The DynamoDB database and Cognito User Pool were used in this thesis for authentication.

Monitoring and troubleshooting are made simpler by the Serverless Dashboard; familiarity

with AWS's proprietary tools is not necessary. Finding instructions, documentation, and

support for Serverless Framework deployments to Google and Azure is more challenging. BaaS

services could not be set up in Google or Azure because the Serverless Framework did not

support them. On all three providers, basic http routes were set up, allowing for a comparison

of function syntax. While there were many similarities, each method of expressing the route

path was unique. For instance, Azure required an AUTH Level for each function in order to

decide whether or not an API key was necessary. Utilising BaaS services has the benefit of

requiring less code management.

However, it makes it challenging to roll out the same application with a different supplier. Since

most code cannot be reused, switching to a different BaaS service provider would need moving

users and databases. According to the thesis, there is less vendor lock-in when utilising third-

party solutions for database and authentication than when using BaaS solutions. Modifications

63 | P a g e

to the function configuration, as previously noted, and adjustments to the configuration file

serverless would still be necessary for third-party solutions. Deploying to a different provider

shouldn't need significant modifications to the handler files (containing the actual code). Using

proprietary front-end solutions or additional code may be necessary when using BaaS services

back-end. When using Cognito for AWS login, this was the situation.

Deployment Ease

AWS Lambda with API Gateway Provides us the straightforward deployment of the serverless

functions as HTTP endpoints which is Ideal for microservices infrastructures and API- driven

operations. AWS Amplify Simplifies the deployment for frontend operations which offers a

streamlined process for hosting static which means, managing backend coffers, and enabling

CI/ CD workflows which is especially suited for web and mobile apps. AWS SAM Strikes a

balance by furnishing a declarative way to define serverless operations with structure as law(

IaC), offering control and scalability while simplifying deployment and operation.

Scalability

AWS Lambda and API Gateway Designed for high scalability, automatically scaling coffers

to match demand, handling thousands to millions of requests per second without homemade

intervention. AWS Amplify erected for scalable web and mobile apps, furnishing structure

provisioning, CDN caching, and automatic scaling grounded on business patterns.

Cold launch Performance

AWS Lambda Optimized for fast cold launch times, especially with optimized runtime

surroundings and provisioned concurrency, pivotal for real- time operations and services taking

rapid-fire response times. AWS Amplify Offers effective cold launch performance, particularly

for web and mobile apps, icing quick cargo times and responsiveness.

Database Integration

AWS DynamoDB A completely managed NoSQL database, ideal for scalable and high-

performance operations with flexible data models. AWS RDS and sunup give managed

relational database options, offering comity with being SQL- grounded operations and support

for complex querying and deals

64 | P a g e

Monitoring and Logging

AWS CloudWatch Offers us the centralized logging, covering, and waking for serverless

functions, APIs, and other AWS coffers which enables visionary troubleshooting and

performance optimization of our application. AWSX-Ray provides us the tracing and

remedying of distributed operations, furnishing perceptivity into request overflows, and

performance backups.

Bus- scaling

All AWS serverless options support dynamic scaling, automatically conforming coffers

grounded on workload demand, icing effective resource application and cost optimization.

Cost effectiveness

AWS Lambda works on a pay- per- prosecution model which is charging only for the cipher

time used which makes it cost-effective for event- driven workloads. AWS Amplify Use a pay-

per- operation model that is charging grounded on coffers consumed, suitable for scalable web

and mobile apps with variable business requirements. AWS SAM Aligns with Lambda's pay-

per- prosecution model, contributing in cost effectiveness by spanning coffers grounded as per

the demand.

Development Tools

Each AWS option offers a range of development tools similar as AWS CLI, AWS SDKs, AWS

CloudFormation(for IaC), AWS Code Pipeline/ Code Build(for CI/ CD), and IDE

integrations, feeding to different inventor workflows and preferences.

Community Support

AWS benefits from a vast and active community, furnishing forums, attestation, tutorials, and

stylish practices across its serverless immolations, fostering collaboration, literacy, and

knowledge sharing.

65 | P a g e

Security Features

AWS IAM Manages the access control and warrants for AWS coffers which secure identity

operation. VPC(Virtual Private pall) Offers network insulation and control over coffers, which

enhance the security for serverless operations. AWS KMS(Key Management Service)

Facilitates the encryption and crucial operation, contributing in data confidentiality and

integrity in serverless surroundings

6.2 Future Scope

The implementation of a serverless back-end API to various providers via the Serverless

Framework was the main goal of this thesis. Although there were many parallels between the

deployments, there were also notable distinctions. Serverless best practises are continuously

incorporated into new products. Although AWS is presently the most often used option for

serverless apps, this could change in the future. Over time, the use of BaaS services and code

structure may be streamlined by several large providers, potentially reducing vendor lock-in.

A few years from now, a similar study to this thesis might provide a different outcome. If a

framework wasn't used, perhaps the deployment settings would be more alike.

It may be necessary to improve the Serverless Framework (or create a new framework) to better

handle providers other than AWS. Using the same nonproprietary database and authentication

technologies across all three providers would be an additional strategy. It is possible to

determine how much of the code base can be shared throughout providers by looking at the

code. When using serverless apps, two crucial topics to consider are security and permissions.

These are crucial components of the serverless design, and it would be intriguing to see how

other suppliers handle them. AWS deployment monitoring and troubleshooting are supported

by the Serverless Dashboard. There were significant variations in the logging and

troubleshooting options offered by Google, Azure, and the Serverless Dashboard. The topic of

logging has not been further examined in this thesis because it can be challenging to understand

in greater detail. Maybe more research in this field could help establish standards for a more

universal answer.

66 | P a g e

Serverless web operations are poised for their significant growth and invention across different

domains due to their scalability, cost- effectiveness, and ease of development. Here is their

contribution in different sectors.

E-commerce and Retail

Serverless armature enablese-commerce platforms to handle unforeseen harpoons in business

during peak shopping seasons efficiently.

Integration with AI and machine literacy for substantiated product recommendations, force

operation, and fraud discovery.

Giving Real- time analytics for client analysis, price optimization, and targeted marketing .

Healthcare

Serverless operations grease secure and biddable storehouse, processing, and sharing of

sensitive healthcare data. Perpetration of telemedicine platforms with real- time

communication, patient monitoring, and medical record operation. Integration with IoT bias

for remote case monitoring, data collection, and analysis.

Finance and Banking

Serverless results offer robust security and compliance measures for fiscal deals, data

processing, and identity verification. Development of fintech operations for payment

processing, loan blessings, threat assessment, and fraud forestallment.Integration with

blockchain technology for smart contracts, digital means operation, and decentralized finance(

DeFi) operations.

Education and-Learning

Serverless platforms enable scalable and interactive-learning gests with features like quizzes,

assessments, and live streaming. Individualized literacy paths, happy recommendation

machines, and adaptive literacy algorithms powered by machine literacy.

Collaboration tools for virtual classrooms, videotape conferencing, pupil- schoolteacher

relations, and performance shadowing.

Internet of effects(IoT)

67 | P a g e

Serverless armature supports IoT operations for device operation, data processing, and real-

time analytics at scale. Perpetration of smart home robotization, artificial IoT(IIoT) results,

and asset shadowing systems.

Integration with edge computing for low- quiescence processing, reduced bandwidth operation,

and offline capabilities.

Media and Entertainment

Serverless platforms enable happy streaming, videotape transcoding, and on- demand media

delivery with high performance and scalability. individualized happy recommendations, stoner

engagement analytics, and happy distribution networks(CDNs) optimization. Interactive gests

similar as live events streaming, virtual reality(VR), and stoked reality(AR) operations.

Supply Chain and Logistics

Serverless operations streamline force chain operation with real- time force shadowing,

logistics optimization, and force- demand soothsaying. Integration with geolocation services,

route optimization algorithms, and delivery shadowing for enhanced effectiveness and

visibility. Blockchain- grounded results for force chain translucency, traceability, and secure

deals.

68 | P a g e

REFERENCES

[1] "Serverless Computing: Current Trends and Open Challenges"

Citation: [1] M. A. N. A. R. Aloqaily and A. Zomaya, "Serverless Computing: Current Trends

and Open Challenges," in IEEE Internet Computing, vol. 27, no. 5, pp. 8-17, Sept.-Oct. 2023.

[2] "A Survey on Serverless Computing: Architectures, Applications, and Future Trends"

Citation: [2] H. A. Nguyen, D. Phung, L. D. Nguyen, and S. Venkatesh, "A Survey on

Serverless Computing: Architectures, Applications, and Future Trends," in IEEE Transactions

on Emerging Topics in Computing, vol. 10, no. 1, pp. 100-119, Jan.-Feb. 2022.

[3] "Efficient Serverless Computing: A Survey of Recent Advances and Future Research

Directions"

Citation: [3] R. B. Patel and A. K. Shukla, "Efficient Serverless Computing: A Survey of Recent

Advances and Future Research Directions," in ACM Computing Surveys, vol. 54, no.

6, pp. 1-35, Dec. 2021.

[4] "Performance Benchmarking of Serverless Computing Platforms"

Citation: [4] M. Shill and M. A. Hossain, "Performance Benchmarking of Serverless

Computing Platforms," in ACM Transactions on Internet Technology, vol. 20, no. 3, pp. 1-24,

July 2020.

[5] "Serverless Security: A Survey and Research Directions"

Citation: [5] M. R. Khattak, J. G. Chen, and A. Anwar, "Serverless Security: A Survey and

Research Directions," in IEEE Transactions on Services Computing, vol. 16, no. 1, pp. 115130,

Jan.-Feb. 2023.

[6] "Serverless Computing: An Investigation of Deployment Models and Their Use Cases"

Citation: [6] M. Ahmad, S. Abrol, and R. Buyya, "Serverless Computing: An Investigation of

Deployment Models and Their Use Cases," in IEEE Cloud Computing, vol. 9, no. 2, pp. 5666,

Mar.-Apr. 2022.

[7] "Scalability in Serverless Computing: A Comprehensive Review"

Citation: [7] A. Anwar, M. R. Khattak, and J. G. Chen, "Scalability in Serverless Computing:

A Comprehensive Review," in IEEE Transactions on Cloud Computing, vol. 9, no. 4, pp.

12671281, July 2021.

69 | P a g e

[8] "Machine Learning on the Edge: A Survey"

Citation: [8] S. Wang, M. You, X. Zhang, and K. Zhang, "Machine Learning on the Edge: A

Survey," in IEEE Access, vol. 10, pp. 41606-41623, 2022.

[9] "A Survey on FaaS for Edge Computing"

Citation: [9] C. Yao, Y. Zhang, C. Liu, and X. Wang, "A Survey on FaaS for Edge Computing,"

in IEEE Internet of Things Journal, vol. 8, no. 16, pp. 13216-13233, Aug. 2021.

[10] "Serverless Computing: A Framework for Distributed Systems"

Citation: [10] S. Leitner, S. Venticinque, and C. Crichton, "Serverless Computing: A

Framework for Distributed Systems," in ACM Computing Surveys, vol. 53, no. 5, pp. 1-41,

Oct. 2020.

[11] "Serverless Computing: An Exploration of Current Trends and Open Research Questions"

Citation: [11] S. J. Vaughan-Nichols, "Serverless Computing: An Exploration of Current

Trends and Open Research Questions," in ACM Computing Surveys, vol. 52, no. 3, pp. 1-

23, June 2019.

[12] "An Empirical Investigation into Function-as-a-Service Performance and Cost"

Citation: [12] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. A. Theisen, and A. Adams, "An

Empirical Investigation into Function-as-a-Service Performance and Cost," in ACM

Transactions on the Web, vol. 13, no. 3, pp. 1-24, June 2019.

[13] Amazon AWS, “The aws serverless documentation,” https://aws.amazon.com/ serverless/,

accessed: 2022-04-02.

[14] M. Amundsen, What Is Serverless?, 1st ed. O’Reilly Media, 2020, ch. 1. [15] O. Andell,

“Architectural implications of serverless and function-as-a-service,”

Master’s thesis, Linköping University, 2020.

[16] AWS, “Amazon cognito,” https://docs.aws.amazon.com/cognito/latest/

developerguide/cognito-user-identity-pools.html, accessed: 2022-04-10.

[17] “Amazon cognito user pools,” https://console.aws.amazon.com/cognito/ home, accessed:

2022-05-30.

[18] “Aws free tier,” https://aws.amazon.com/free, accessed: 2022-06-02.

70 | P a g e

[19] “Aws provider events,” https://docs.aws.amazon. com/serverless-application-

model/latest/developerguide/ sam-property-function-eventsource.html, accessed: 2022-

05-30.

[20] “Serverless auth with aws http apis,” https://www.serverless.com/blog/ serverless-auth-

with-aws-http-apis, accessed: 2022-04-10.

[21] AWS Amplify, “Amazon cognito identity sdk for javascript,” https://github.com/aws-

amplify/amplify-js/tree/master/packages/ amazon-cognito-identity-js, accessed: 2022-05-

31.

[22] Azure, “Authentication and authorization in azure app service and azure functions,”

https://docs.microsoft.com/en-us/azure/app-service/ overview-authentication-

authorization, accessed: 2022-04-20.

[23] “Azure functions triggers and bindings concepts,” https://docs.microsoft.

com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=csharp, accessed: 2022-05-

30.

[24] “Azure portal,” https://portal.azure.com/, accessed: 2022-04-15.

[25] “Build in the cloud with an azure free account,” https://azure.microsoft.

com/en-us/free/, accessed: 2022-06-02.

[26] “Create an azure function that connects to an azure cosmos db,”

https://docs.microsoft.com/en-us/azure/azure-functions/scripts/ functions-cli-create-

function-app-connect-to-cosmos-db, accessed: 2022-04-20.

[27] “Httptrigger.authlevel method,” https://docs.microsoft.com/en-us/

java/api/com.microsoft.azure.functions.annotation.httptrigger.authlevel?view= azure-

java-stable, accessed: 2022-06-16.

[28] “Management levels and hierarchy,” https://docs.microsoft.

com/en-us/azure/cloud-adoption-framework/ready/azure-setup-guide/organize-

resources#management-levels-and-hierarchy, accessed: 2022-04-

20.

[17] “Multicloud solutions with the serverless framework,” https:

//docs.microsoft.com/en-us/azure/architecture/example-scenario/serverless/ serverless-

multicloud, accessed: 2022-04-12.

71 | P a g e

[18] N. Dabit, Full Stack Serverless, 1st ed. O’Reilly Media, 2020, ch. Introduction.

[19] Full Stack Serverless, 1st ed. O’Reilly Media, 2020, ch. 1.

[20] S. Eismann and J. Scheuner Et al, “Serverless applications: Why, when, and how?” IEEE

Software, vol. 38, no. 1, 2020.

[21] Emma Edlund, “Aws node http api with cognito authorizer,” https://github.

com/emeu17/serverless-aws-cognito, accessed: 2022-06-16.

[22] “Serverless azure project,” https://github.com/emeu17/serverless-azure, accessed: 2022-

06-16.

[23] “Serverless google project,” https://github.com/emeu17/serverless-google, accessed:

2022-06-16.

[24] “Thesis aws serverless backend,” https://github.com/emeu17/ serverless-aws, accessed:

2022-06-16.

[25] “Thesis react application,” https://github.com/emeu17/serverless-react, accessed: 2022-

06-16.

[26] “Thesis react application with cognito,” https://github.com/emeu17/ serverless-react-

cognito, accessed: 2022-06-16.

[27] Gareth McCumskey, “Fullstack course,” https://github.com/serverless/ fullstack-course,

accessed: 2022-04-15.

[28] Github issues, “cosmosdb bindings: Error: Binding direction/name/-

databasename/collectionname not supported,” https://github.com/serverless/ serverless-

azure-functions/issues/507, accessed: 2022-04-15.

[29] Google Cloud, “Authentication overview,” https://cloud.google.com/docs/ authentication,

accessed: 2022-04-20.

[30] “Events and triggers,” https://cloud.google.com/functions/docs/ concepts/events-triggers,

accessed: 2022-05-30.

[31] “Free tier products,” https://cloud.google.com/free, accessed: 2022-06-02. [32] “Google

cloud console,” https://console.cloud.google.com, accessed: 2022- 04-25.

[33] Hassan B. Hassan, Saman A. Barakat & Qusay I. Sarhan "Survey on serverless

computing," Journal of Cloud Computing, vol. 9, no. 1, pp. 1-15, 2021.

[34] Karan Anand, "Construct a Serverless Web Application with AWS Lambda, Amazon

API Gateway, AWS Amplify, Amazon DynamoDB, and Amazon Cognito," International

Journal of Innovative Research in Technology, vol. 11, no. 2, pp. 45-59, 2023.

72 | P a g e

[35] Priscilla Benedetti,Mauro Femminella,Gianluca Reali,Kris Steenhaut, "Experimental

Analysis of the Application of Serverless Computing to IoT Platforms," Sensors, vol. 21, no.

7, pp. 1-20, 2021.

[36] Vaishnavi Kulkarni, "A Research Paper on Serverless Computing," International

Journal of Engineering Research & Technology, vol. 10, no. 3, pp. 40-52, 2022.

[37] Mohammadreza Rahnama, Hossein Taheri, and Alireza Abhari, "Serverless Computing

for Web Applications: A Review," ACM Computing Surveys, vol. 52, no. 5, pp. 1-27, 2020.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING AND INFORMATION

TECHNOLOGY (CSE & IT) 20 References

[38] Yanyong Zhang, Yingjie Zhang, and Xiaolin Wang, "Serverless Web Applications: A

Performance and Cost Analysis," IEEE Transactions on Cloud Computing, vol. 7, no. 4, pp.

750-763, 2019.

[39] Yusheng Zhou,Yue Zhang,Huiqiong An, "Security Challenges in Serverless

Computing," IEEE Security & Privacy, vol. 16, no. 4, pp. 33-41, 2018.

[40] Matthew N. O. Sadiku,Shumon Alam,Sarhan M. Musa, "Serverless Computing for

Scientific Computing," Computing in Science & Engineering, vol. 19, no. 3, pp. 60-73, 2017.

73 | P a g e

74 | P a g e

