
ChatCoat
Chatting Application

A major project report submitted in partial fulfillment of the requirement

for the award of degree of

Bachelor of Technology

in

Computer Science & Engineering / Information Technology

Submitted by

Tavishi Chauhan (201384)

Sejal Thakur (201377)

Under the guidance & supervision of

Dr. Kushal Kanwar

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology, Waknaghat,

Solan - 173234 (India)



Candidate’s Declaration

I thus certify that the work submitted in this report, titled "ChatCoat Chatting Application"

partially satisfies the requirements for the award of a Bachelor of Technology in Computer

Science & Engineering and is submitted to the Department of Computer Science &

Engineering and Information Technology at Jaypee University of Information Technology,

Waknaghat. This work was conducted under the supervision of Dr. Kushal Kanwar, Assistant

Professor (SG), CSE, and spans the period from August 2023 to December 2023.

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

(Student Signature with Date)

Student Name: Tavishi Chauhan

Roll No.: 201384

Student Name: Sejal Thakur

Roll No.: 201377

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature with Date)

Supervisor Name: Dr. Kushal Kanwar

Designation: Assistant Professor (SG)

Department: CSE

Dated:

I



Certificate

This certifies that the work being submitted in the project report titled "ChatCoat Chatting
Application," which was turned in to the Department of Computer Science and Engineering
at Jaypee University of Information Technology, Waknaghat, in partial fulfillment of the
requirements for the award of a B.Tech in Computer Science and Engineering, is an authentic
record of the work completed by Tavishi Chauhan (201384) and Sejal Thakur (201377)
between August 2023 and November 2023, under the direction of Dr. Kushal Kanwar of the
Department of Computer Science and Engineering at Jaypee University of Information
Technology, Waknaghat.

Tavishi Chauhan (201384)
Sejal Thakur (201377)

The above statement made is correct to the best of my knowledge.

Dr. Kushal Kanwar
Assistant Professor(SG)
Computer Science & Engineering and Information Technology
Jaypee University of Information Technology, Waknaghat,

II



Acknowledgement

Our sincere gratitude and deepest debt of gratitude are extended to our supervisor, Dr. Kushal
Kanwarf Jaypee University of Information Technology in Waknaghat. To complete this
project, my supervisor must have deep knowledge of and a strong interest in the field of
information security. This endeavor has been made possible by his unending patience,
scholarly direction, constant encouragement, frequent and energetic supervision, constructive
criticism, insightful advice, reviewing several subpar draughts and fixing them at every stage.

We would like to sincerely thank Dr. Kushal Kanwar, Assistant Professor (SG), for all of his
help and advice during this endeavor. We also thank Jaypee University of Information
Technology for giving us access to all the tools we needed to

Tavishi Chauhan (201384)
Sejal Thakur (201377)

III



Table Of Contents

Title Page
No.

Abstract VII
Chapter-1 (Introduction) 1
Chapter-2 (Literature Survey) 5
Chapter-3 (System
Development)

10

Chapter-4 (Testing) 26
Chapter-5 (Results and
Evaluation)

38

Chapter-6 (Conclusion and
Future Scope)

30

References 31
Appendix IX

IV



List Of
Tables

Table Number Page No.

Table (i) 5
Table(ii) 6
Table(iii) 7
Table(iv) 8
Table(v) 9

V



List Of Figures

Figure Number Page No.

Figure(i) 13
Figure(ii) 14
Figure(ii) 14
Figure(iv) 15
Figure(v) 16
Figure(vi) 17
Figure(vii) 18
Figure(viii) 19
Figure(ix) 19
Figure(x) 20
Figure(xi) 21
Figure(xii) 22
Figure(xiii) 23
Figure(xiv) 24

VI



List Of Abbreviations

Word Abbreviation
MERN Stack MongoDB, Express.js,

React.js, Node.js

API Application
Programming
Interface

UI User Interface

UX User Experience

JWT JSON Web Token

TLS Transport Layer
Security

DB Database

VCS Version Control
System

VII



Abstract

In an era dominated by the need for instant connectivity, ChatCoat emerges as a dynamic and
innovative Full Stack Chat application designed to revolutionize real-time communication.
Leveraging advanced technologies such as Socket.io for instant messaging and MongoDB for
secure data storage, ChatCoat not only solves the challenges of existing solutions, but also
changes the face of messaging applications.

This project report explores the complexity of ChatCoat's development journey, starting with
exploring the challenges facing modern communication platforms. The project aims to focus
on real-time communication, robust security, and a feature-rich user experience. The
importance and motivation behind the creation of ChatCoat lies in its ability to improve user
interaction through enhanced privacy, versatility and innovation.

The report's systematic approach involves a literature review that provides insight into
technologies, trends, and gaps available over the past five years. The system development
department studied requirements, analysis, design principles, architecture, and data
preparation, providing a comprehensive understanding of the technical basis of the project.
Code snippets are strategically presented to highlight important features, including real-time
messaging, user authentication, and group chat functionality.

The testing phase is complete and shows the complex testing strategy used and the results
obtained from extensive test cases. The findings and insights from the pilot phase led to a
comparative analysis with existing solutions, making ChatCoat a leader in user experience,
security and innovative features.

Results and evaluations provide unique insight into project performance metrics, user
feedback, and iterative improvements. The conclusion reflects the main findings, limitations
and contributions of ChatCoat from conceptualization to implementation.

By looking to the future, exploring potential developments, emerging technologies, and
continuous improvement strategies, it forms the basis for ChatCoat's evolution in the real
communication industry.

ChatCoat is a testament to modern technology, user-centered design, and a commitment to
reinventing the way individuals interact and communicate in the digital age.

VIII



Chapter 1: Introduction

1.1 Introduction
With its revolutionary Full Stack Chatting App, ChatCoat aims to transform real-time
communication. ChatCoat appears as a solution to give consumers a seamless and safe instant
messaging platform in a world where connectivity is essential. ChatCoat was developed in
response to the growing need for effective communication solutions. It provides a feature-rich
experience that goes beyond standard messaging apps.

The Need for ChatCoat
Instantaneous and dependable communication channels are essential for both individuals and
enterprises in the fast-paced digital world of today. While useful, current messaging apps could
be lacking in some areas or provide security risks. By combining the capabilities of MongoDB
for safe user data storage and Socket.io for real-time communication, ChatCoat solves these
problems.

Key Features

● Real-Time Communication: ChatCoat uses Socket.io to guarantee rapid message
delivery, resulting in a responsive and dynamic user experience.

● Authentication:To protect user information and improve the general privacy of
discussions, secure user authentication is used.

● Group Chats and One-to-One Messaging:Individual and group messaging ChatCoat
meets a range of communication needs, from one-on-one discussions to group projects.

● Search Functionality: Search Functionality: Users may quickly locate and establish
connections with other users, improving the platform's discoverability and accessibility.

User-Centric Approach
With an emphasis on usability, security, and simplicity, ChatCoat is created with the end user
in mind. The programme seeks to give users a forum for effective communication, whether for
group conversations, professional partnerships, or personal relationships.

Navigating the Introduction
This chapter gives a summary of the driving forces for ChatCoat's creation, the problems it
seeks to solve, and an outline of its main characteristics. The next parts will go more deeply
into the particulars of the project, providing a thorough overview of ChatCoat's development
from idea to execution.

1



1.2 Problem Statement
The need for effective and secure real-time communication has become more than ever in the
modern digital environment. The user experience of traditional messaging programmes may be
hampered by issues including latency, a lack of sophisticated features, and privacy concerns.
The idea behind ChatCoat came from the necessity for a complete solution.

Challenges in Existing Solutions
The following major issues may not be adequately addressed by current chat apps:

● Latency Issues: A lot of messaging applications have trouble sending messages
instantly, which causes conversation to stall and take longer than expected.

● Privacy Concerns: Protecting the privacy of user data is crucial. Sensitive information
may be exposed on some platforms since they may not have strong security
mechanisms in place.

● Limited Features: Certain messaging apps don't have sophisticated features like
cross-device seamless integration, group chat, or search capabilities.

● Scalability: This becomes an issue as user bases increase. Some platforms could find it
challenging to manage a lot of users at once.

ChatCoat is a dependable, feature-rich, and secure platform for real-time communication that
seeks to address these issues head-on.

1.3 Objectives
The main goals of ChatCoat are carefully designed to solve the problems found and provide a
remarkable user experience:

Key Objectives
● Real-Time Communication:To guarantee immediate message delivery, put in place a

reliable real-time messaging system utilizing Socket.io.

● Security and Authentication: Put user data security first by putting safe
authentication systems in place to safeguard user accounts and chats.

● Feature-Rich Interface: Provide a feature-rich interface with user search capabilities,
group chat features, one-to-one messaging, and an easy-to-use interface.

● Scalability:Create a scalable platform that can accommodate an increasing user base
● without sacrificing functionality.

2



● Cross-Platform Compatibility: Make sure ChatCoat is available on a range of
platforms and devices, giving consumers a smooth experience on their chosen devices.

1.4 Significance and Motivation of the Project Work
The idea behind ChatCoat was the realization of how important communication is to
day-to-day living. Successful and safe communication is essential in both personal and
business contexts. In addition to addressing the shortcomings of current solutions, ChatCoat
offers a platform that puts user privacy, responsiveness, and versatility first in an effort to
improve communication.

Importance of ChatCoat
● Enhanced User Experience: ChatCoat prioritizes providing a user-centric experience

by fusing simplicity and efficiency.

● Privacy and Security: ChatCoat offers a safe communication environment for users
to interact without jeopardizing their sensitive information, in response to the growing
concern over data privacy.

● Versatility and Innovation:C hatCoat seeks to surpass traditional messaging apps by
integrating cutting-edge features, offering a varied and inventive

1.5 Organization of Project Report
The format of this project report is designed to give readers a thorough knowledge of
ChatCoat's development process. Chapters that follow focus on particular facets, moving from
the project's conception to its execution, testing, and assessment. The report's structure is
intended to provide readers with a clear and logical flow of information as they progress
through ChatCoat's development.

Report Structure Overview
● Introduction: The introduction provides a summary of the project, outlining its goals,

significance, problem description, and report structure.

● Literature Survey: Examines the body of knowledge on real-time chat apps in the
literature, pointing out any important gaps.

● System Development: System development includes information on the specifications,
analysis, design, architecture, data preparation, implementation, and difficulties
encountered.

● Testing: Talks about the methods, resources, test cases, and results of the testing
process.

● Results and Evaluation:Summarizes the findings, provides an interpretation, and, if
necessary, contrasts ChatCoat with other solutions already in place.

3



● Conclusions and Future Scope: Highlights major conclusions, restrictions, and
contributions while outlining possible improvements in the future.

Readers can obtain a comprehensive grasp of ChatCoat's development processes and evolution
by adhering to this well-organized framework.

4



Chapter 2: Literature Survey

2.1 Overview of Relevant Literature

S. No. Paper Title
[Cite]

Journal/
Conferen

ce
(Year)

Tools/
Techniques/
Dataset

Results Limitations

1. Chat Application using
Server-Side Scripting,
Compression and
End-to-End Encryption
[1]

May, 2022 HTML, CSS,
JavaScript,
MySql, PHP

A chat application
has essential parts
- server and client.

Scalability and
server load
management may
be challenging
during high user
traffic periods.

2. Chat Application
[2]

April, 2022 MEAN stack,
web sockets,
and Angular's 2
way binding

Python-based
global chat/file-
sharing app with
client-server, TCP,
and chat features.

Limited platform
compatibility as
Python may not
be available or
convenient on all
devices.

Table (i)

5



S. No. Paper Title
[Cite]

Journal/
Conferen

ce
(Year)

Tools/
Techniques/
Dataset

Results Limitations

3. Internet Chat
Application
[3]

2021 Forwarding
data, point to
point
connection
between
browsers, and
Threads from
Multithreading.

The research paper
presents the
development of a
browser-based
real-time chatting
tool that can be used
directly through a
web browser
without requiring
additional client
software.

May lack
advanced
features and
integrations
available in
dedicated chat
clients.

4. Group Chat
Application
[4]

2021 Java, multi
threading, and
client server
concept

The research paper
outlines a chat
system implemented
in Java, leveraging
multi-threading and
network concepts.

Java-based
applications may
require users to
have Java
Runtime
Environment
installed, which
can be a barrier
for some.

Table (ii)

6



S. No. Paper Title
[Cite]

Journal/
Conferen

ce
(Year)

Tools/
Techniques/
Dataset

Results Limitations

5. Multi-User Chat
Application
[5]

2020 Java
multithreading
and network
concept

The research paper
describes a chat
application where
clients can enter
their names, send
messages to all
users or specific
users, and exit the
chat.

User anonymity
may be limited as
clients must
enter their
names.

6. Realtime Chat
Application using
Client-Server
Architecture
[6]

2019 TCP
attachment,
Socket, Client,
GUI, Local
Host, Tkinter

The research paper
presents an
application
consisting of a
server and multiple
client connection
points.

The attachment
module may
introduce
complexity and
potential bugs in
the
communication
process.

Table (iii)

7



S. No. Paper Title
[Cite]

Journal/
Conferen

ce
(Year)

Tools/
Technique

s/
Dataset

Results Limitations

7. Professional chat
application based
on natural language
processing
[7]

2018 (NLP)
techniques

The research paper
describes the
development of a
professional chat
application designed
to prevent users
from sending
inappropriate or
improper messages
to other participants.

The effectiveness of
the content filtering
algorithms and AI
in identifying
inappropriate
content is not
detailed.

8. A Secure Chat
Application Based
on Pure
Peer-to-Peer
Architecture
[8]

2015 socket
programming,
user profile
database,
hash function,
cryptographic
algorithm.

The research paper
presents a
decentralized chat
application that has
undergone testing in
a local area network.

User needs to
register n number
of times in order to
warrant
communication
with n different
peers and user
needs to

Table (iv)

8



S. No. Paper Title
[Cite]

Conference
(Year)

Tools
Used

Results Limitations

9. Enhanced Chat
Application
[9]

2012 LAN,
Client-S
erver
architect
ure.

The research paper
highlights a chat
application with a
primary focus on
facilitating
communication through
the use of diagrams and
figures.

Accessibility and
ease of use for
users who may not
be familiar with
diagrammatic
communication
methods.

10. UDP based chat
application
[10]

2010 socket
program
ming,
User
Datagra
m
Protocol
(UDP),
and Java

The research paper
introduces a method
for creating a chat room
using socket-based
communication,
specifically based on the
User Datagram
Protocol (UDP).

UDP, while
lightweight and
suitable for
real-time
communication,
does not guarantee
the order or
reliability of
message delivery,
which can lead to
message loss or
out-of-order

Table (v)

9



Chapter 3: System Development

3.1 Requirements and Analysis
Navigating the Blueprint: ChatCoat's Development Journey

Requirement Gathering
An extensive investigation of the functional and non-functional requirements served as the
foundation for the development of ChatCoat. This section delineates the multifarious
requirements of users, spanning from the complexities of group chat functionality to real-time
texting capabilities. Determining these needs set the foundation for a reliable and easy-to-use
programme.

Stakeholder Input and Collaboration
Working together with stakeholders was essential in determining ChatCoat's features. The
development team made decisions based on feedback from administrators, other stakeholders,
and potential users to make sure the end product met user expectations and industry standards.

Analysis Phase
During the analysis step, the requirements were broken down into particular details.
Determining the scalability needs to support an expanding user population, creating
communication protocols, and defining user responsibilities were all part of this process.

MERN Stack
● MongoDB

The project's NoSQL database, MongoDB, offers a scalable and adaptable way to store
user data. Making use of MongoDB's document-oriented structure enables effective
administration and retrieval of data.

● Express.js
The backend framework used to construct the server and manage HTTP requests is
called Express.js. Because of its flexibility and small weight, it's the perfect option for
managing server-side logic and building reliable APIs.

● React.js
The client-side of ChatCoat is powered by React.js, which provides a declarative and
effective user interface building tool. Because of its component-based architecture,
creating dynamic and responsive user interfaces for smooth chat experiences is made
easier.

10



● Node.js
Server-side JavaScript can be executed since Node.js functions as the server's runtime
environment. Its event-driven, non-blocking architecture guarantees peak performance
while managing real-time communication using Socket.io.

Socket.io
● Real communication

Socket.io is a critical component to enable real-time, two-way communication between
client and server. It facilitates instant messaging, indexing and other real-time features,
improving the overall user experience.

● WebSocket protocol
Socket.io uses the WebSocket protocol to provide a low-latency and efficient
communication channel. This ensures fast and reliable data exchange, making it ideal
for applications that require real-time updates.

● API testing and development
Mail becomes a comprehensive API development and testing tool that enables teams to
efficiently design, test, and document APIs. An intuitive interface lets you create
requests, verify endpoints, and validate API responses.

● Automated testing
Mail also supports automated testing, which allows teams to create and run a batch of
API requests to test the functionality of multiple endpoints. This ensures the reliability
and consistency of the API during the development and testing phase.

○
Additional technology

● Heroku (deployment)
Heroku is used to host the ChatCoat application on the Internet. The
platform-as-a-service (PaaS) model makes it easy to deploy, scale, and manage
applications by providing access to users over the Internet.

● npm (node ​​package manager)
npm is a package manager for Node.js that makes it easy to install and manage project
dependencies. It manages adding, updating, and removing packages, contributing to
project continuity.

● Git and GitHub (version control)
Git is used for version control, which allows collaboration between team members and
tracking changes to the code base. GitHub functions as a remote repository, providing a
centralized platform for code deployment, collaboration, and tracking.

11



● This comprehensive suite of technologies provides the robustness, scalability and
real-time capabilities required for ChatCoat projects. Each technology plays a specific
role in creating rich and reliable chat applications.

● ChakraUI
Chakra UI is an open source React component library that provides a set of accessible
and customizable UI components for building web applications. It is designed to be
highly modular, so developers can easily add or remove the components they need to
create a custom UI design.

● JWT
JWT stands for JSON Web Tokens, a popular open standard for securely transferring
data between parties as JSON objects. JWT is often used for authentication and
authorization in web applications.

Technical requirements (tools)
● CPU: Intel Core i3 or higher, 64-bit, dual-core, 1.30 GHz
● GPU: AMD Radeon R5 or higher, 64-bit, 320 bit, 0.86 GHz
● Ram: 4 GB or more
● Hard disk: 5 GB available space or more.
● Display: Dual XGA (1024 x 768) or high resolution monitor
● Operating system: Windows

12



3.2 Project Design and Architecture
Blueprints of Innovation: Creating Chat Coats Design

Design Principles
The requirements for an aesthetically beautiful layout, smooth navigation, and an intuitive user
interface served as the foundation for ChatCoat's design philosophy. This section explores the
design concepts that influenced the interactive and visual components of the programme.

Figure(i)

13



User Experience (UX) Design
The design choices were made with the user experience in mind. ChatCoat's UX design placed
a high priority on accessibility and usability, from deliberate feature placement to
straightforward navigation, ensuring that users could interact with the programme with ease.

Figure(ii) Main Screen

Figure(iii) Chat Page Interface

14



System Architecture
This section explores the nuances of ChatCoat's system architecture and describes the
interactions between the client (React JS), server (Node JS, Express JS), and database
(MongoDB). The selection of technologies and their functions in developing an application
that is both responsive and scalable are covered.

Front-End Development

Back-End Development

Figure(iv) Database Management

15



3.3 Data Preparation
Property protection: user data on ChatCoat

Data storage and encryption
A description of how user data is processed and stored is integral to understanding ChatCoat's
commitment to user privacy. This section describes the encryption methods used to protect
sensitive user data, highlighting the importance of data security.

user profile management
The process of creating and managing user profiles is explored, shedding light on the strategy
used to ensure data accuracy, integrity, and user autonomy in controlling profile data.

3.4 Implementation (code snippets, algorithms, tools and methods, etc.)
Symphony of Code: Behind the Scenes of ChatCoat

Technology suite
A deep dive into the technologies used in the ChatCoat implementation are React JS for the
client, Node JS and Express JS for the server, and MongoDB for the database. This section
provides a high-level overview of the role each technology plays in practice.

code snippet
Key sections of the codebase provide insight into the implementation of key features such as
real-time messaging, user authentication, and group chat functionality. Code snippets are
accompanied by comments to make them easy to understand.

16



Figure(v) Login and Sign Up form

17



Figure(vi) Encryption of password before sending it to the database

18



Figure(vii) Backend Directory

19



Figure(viii) Frontend Directory

20



Figure(ix) Server.js

21



Figure(x) chatRoute.js

22



Figure(xii) State Diagram for server and client model of socket

23



CODE

Directory: Controllers/chatController

24



25



26



27



28



29



30



Directory: Controllers/messageController

31



32



Directory: Controllers/userController

33



34



35



Directory: Backend/server.js

36



37



38



Algorithms and Techniques
This section explores the technological details that make ChatCoat a reliable and effective
programme, from the algorithms controlling message delivery to the methods used for user
identification.

AES: Essentially, AES works by organizing each plaintext block into a 4x4 matrix and
applying a series of operations on it repeatedly. We do 10, 12, or 14 rounds, depending on the
key length (an additional parameter selected by NIST), and refer to each iteration as a round:
With ten rounds, a 128-bit key
12 cycles for a key of 196 bits
A 256-bit key requires 14 rounds.

We create a round key for every round based on the main key.
The 4x4 matrix has four operations.

We shall define the following four operations on the 4x4 matrix:

subBytes()
moveRows()
combineColumns()
includeRoundKey()
Making a Public Key:
Choose two prime numbers.
Assume that Q = 59 and P = 53.
The public key's first portion is now as follows: n = P*Q = 3127.
We additionally require a tiny exponent, let's say e:
But an integer must be exist.
Not modified to Φ(n).
1 < e < Φ(n)
We use n and e to create our public key.

To generate the private key, we must compute Φ(n):
such that (P-1)(Q-1) = Φ(n)
Consequently, Φ(n) = 3016
Proceed to compute the Private Key, d: d = (k*Φ(n) + 1) / e, where k is an integer.
2011 is the value of d for k = 2.

39



Figure(xiii) AES Encryption Flowchart

40



Figure(xiv) Flowchart for RSA encryption and decryption

3.5 Key Challenges (discuss the challenges faced during the development
process and how these are addressed)

Navigating Challenges: Challenges in ChatCoat development

The challenge of expansion
It discusses the challenges of scaling, and how the development team anticipated and
addressed potential problems with the growing number of users.

The challenge of integration
Challenges faced during the integration of various components, such as integrating Socket.io
for real-time communication and ensuring smooth compatibility across different devices and
platforms.

security challenges
It explores the challenges of ensuring the highest security standards, especially in the
management of user data. Measures taken to reduce security risks are discussed.

41



Chapter 4: Testing

4.1 Testing Strategy (discuss the testing strategy/tools used in the project)

● Unit Testing:
○ Objective: Confirm that each of the application's sections or parts functions as

intended.

● Components to Test:

○ Server-side operations (such as Socket.io event handlers and Express.js routes).
○ To render UI elements, use React components.
○ Tools: Jest and Enzyme can be used for testing Node Js
○

● Integration Testing:
○ Objective: Make sure that the application's many sections or modules function

as a cohesive whole.

● Components to Test:

○ communication between the client and server via API calls.
○ integrating Socket.io to facilitate communication in real time.
○ Tools:Socket.io testing tools for real-time communication, and Supertest for

API integration testing.

● End-to-End Testing:
○ Objective: Test the application's whole flow by modeling actual user situations.

● Scenarios to Test:

○ Authentication and user registration.
○ one-on-one conversation features.
○ Creating and interacting in group chats.
○ Cypress or Selenium are good tools for end-to-end

● Performance Testing:
○ Objective: Goal: Evaluate the application's stability, scalability, and

responsiveness under various load scenarios.

● Scenarios to Test:

○ Assume a sizable number of people conversing in real time at the same time.
○ Measure reaction times when there are several demands.
○ Tools: artillery.io or Apache JMeter.

42



● Security Testing:
○ Objective: The goal is to locate and fix any possible security holes in the

programme.

● Areas to Test:

○ Validate input to stop injection attacks.
○ mechanisms for authentication.
○ secure data transfer via HTTPS.
○ Tools: SonarQube or OWASP ZAP.

4.2 Test Cases and Outcomes

● Test Case Design:
Create test cases for every scenario that the testing strategy identifies. To cover a
variety of eventualities, include test cases that are both positive and negative.

● Test Execution:
Utilize the appropriate testing frameworks and tools to carry out the test cases.
Keep track of and document every test case's results, including any errors or strange
behavior.

Outcomes and Adjustments:
● Examine the test data to find and address any problems.

● Make changes to the codebase in light of the testing's lessons learned.

This thorough testing approach ensures that the ChatCoat application is secure, dependable,
and resilient by examining many aspects of it. Adapt the details to the special attributes and
capabilities of your application.

43



Chapter 5: Results and Evaluation

5.1 Results (presentation of findings, interpretation of the results, etc.)
Unlocking Concepts: ChatCoat Results and Conclusions

Presentation of results
This section presents the results obtained from extensive testing and evaluation of ChatCoat.
Metrics, statistics, and user feedback are combined to provide a comprehensive picture of
program performance.

Interpretation of results
Explore the interpretation of results, performance metrics results, user satisfaction scores, and
identified areas for improvement. This section aims to offer a nuanced understanding of the
data generated during testing.

Analysis of user feedback
Positive and constructive user feedback unlocks the user experience. This section shows how
user feedback and preferences align with ChatCoat's intended goals and the adjustments made
based on this valuable input.

Iterative development
Discuss the iterative addition to ChatCoat based on the results obtained. From minor UI
tweaks to significant back-end optimization, this section shows the evolution of the application
in response to the testing phase.

5.2 Comparison with Existing Solutions (if applicable)
Navigating the landscape: ChatCoat in messaging apps

Check available solutions
Take a look at today's messaging app landscape, identifying the key players and their key
features. This section sets the stage for a comprehensive comparison with ChatCoat.

Attribute analysis
Conduct a feature-by-feature analysis comparing ChatCoat to existing solutions. Learn how
ChatCoat is different in terms of user experience, security, scalability, and all the innovative
features that set it apart.

44



Compare user experience
Explore the user experience offered by ChatCoat compared to other messaging apps. Evaluate
intuitive design, responsiveness, and overall user satisfaction, draw conflicts, and identify
areas for improvement.

Security and privacy considerations
Evaluate the security measures implemented in ChatCoat compared to other messaging
applications. Note any innovative security features and their impact on protecting user data.

45



Chapter 6: Future Scope

The possibility
The project can be de[ployed on Heroku this can be considered as a future scope

Emerging technologies
We can also integrate use of emojis and gifs while chatting the make the experience more
personalized

User engagement strategy
Explore strategies to engage users more, such as gamification elements, multimedia sharing
capabilities, or collaboration features that go beyond traditional messaging apps.

Continuous improvement
Emphasizes the importance of continuous improvement in the rapidly evolving landscape of
communications technology. Discuss how ChatCoat aims to stay at the forefront of innovation
and adapt to the changing needs and expectations of its users.

46



References
[1] Patel, A., Khanna, M. S., & Shyam, R. (2022). Chat Application using Server-Side
Scripting, Compression and End-to-End Encryption. Journal of Web Development and Web
Designing, 7(2), 8-12.

[2] Kolambe, M., Sable, S., Kashivale, V., & Khaire, P. Chat Application.

[3] Kumar, T. S., Reddy, V., DL, S., & Rananavare, L. (2021). INTERNET CHAT
APPLICATION. International Journal of Advanced Research in Computer Science,

[4] Tsai, T. C., Liu, T. S., & Han, C. C. (2017). WaterChat: A Group Chat Application Based
on Opportunistic Mobile Social Networks. J. Commun., 12(7), 405-411.

[5]Gayathri, R., & Kalieswari, C. (2020). Multi-User Chat Application.

[6] Henriyan, D., Subiyanti, D. P., Fauzian, R., Anggraini, D., Aziz, M. V. G., & Prihatmanto,
A. S. (2016, October). Design and implementation of web based real time chat interfacing
server. In 2016 6th International Conference on System Engineering and Technology (ICSET)
(pp. 83-87). IEEE.

[7] Karthick, S., Victor, R. J., Manikandan, S., & Goswami, B. (2018, February). Professional
chat application based on natural language processing. In 2018 IEEE International Conference
on Current Trends in Advanced Computing (ICCTAC) (pp. 1-4). IEEE.

[8] Mohamad Afendee, M., Abdullah, M., & Mustafa, M. (2015). A secure chat application
based on pure peer-to-peer architecture. Journal of Computer Science, 11(5), 723-729.

[9]. Bamane, A., Bhoyar, P., Dugar, A., & Antony, L. (2012). Enhanced Chat Application.
Global Journal of Computer Science and Technology Network, Web & Security, 12(11), 1-7.

[10] Malhotra, A., Sharma, V., Gandhi, P., & Purohit, N. (2010, April). UDP based chat
application. In 2010 2nd International Conference on Computer Engineering and Technology
(Vol. 6, pp. V6-374). IEEE.

47



48


