
Phishing Website Detection

A major project report submitted in partial fulfilment of the

requirement for the award of a degree of

Bachelor of Technology

in

Computer Science & Engineering / Information
Technology

Submitted by

Naman Sharma (201362)

Swastik Jha (201368)

Under the guidance & supervision of

Dr. Nishant Sharma

Department of Computer Science &

Engineering and Information Technology

Jaypee University of Information Technology,

Waknaghat, Solan - 173234 (India)

CERTIFICATE

This is to certify that the work which is being presented in the project report

titled “Phishing Website Detection” in partial fulfilment of the requirements

for the award of the degree of Bachelor of Technology in Computer

Science & Engineering / Information Technology submitted to the

Department of Computer Science And Engineering, Jaypee University of

Information Technology, Waknaghat is an authentic record of work carried

out by Naman Sharma(201362) and Swastik Jha(201368) during the

period from August 2023 to May 2024 under the supervision of Dr. Nishant

Sharma,(Assistant Professor(SG), Department of Computer Science and

Engineering, Jaypee University of Information Technology).

Naman Sharma Swastik Jha

Roll No.: 201362 Roll No.: 201368

The above statement made is correct to the best of our knowledge.

Supervisor Name:

Dr. Nishant Sharma

Designation: Assistant Professor (SG)

Department: CSE/IT

 II

DECLARATION

We at this moment declare that the work presented in this report entitled

‘Phishing Website Detection’ in partial fulfilment of the requirements for

the award of the degree of Bachelor of Technology in Computer Science &

Engineering / Information Technology submitted in the Department of

Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology, Waknaghat is an authentic record of

our work carried out over a period from August 2023 to May 2024 under the

supervision of Dr. Nishant Sharma (Assistant Professor(SG), Department

of Computer Science & Engineering and Information Technology).

The matter embodied in the report has not been submitted for any other

degree or diploma award.

 Naman Sharma Swastik Jha

Roll No.: 201362 Roll No.: 201368

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

Supervisor Name:

Dr. Nishant Sharma

Designation: Assistant Professor (SG)

Department: CSE/IT

 III

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for

His divine blessing to make it possible to complete the project work

successfully.

We are grateful and wish out profound indebtedness to Supervisor Dr

Nishant Sharma, Assistant Professor (SG), Department of CSE Jaypee

University of Information Technology, Waknaghat. Deep Knowledge & keen

interest of our supervisor in the field of “Information Security” to carry out

this project. His endless patience, scholarly guidance, continual

encouragement, constant and energetic supervision, constructive criticism,

valuable advice, reading many inferior drafts and correcting them at all stages

have made it possible to complete this project.

We would also generously welcome each one of those individuals who have

helped me straightforwardly or in a roundabout way in making this project a

win. In this unique situation, we want to thank the various staff individuals,

both educating and non-instructing, who have developed their convenient

help and facilitated our undertaking.

Finally, we must acknowledge with due respect the constant support and

patience of our parents.

Naman Sharma (201362)

Swastik Jha (201368)

IV

[Type here] [Type here] [Type here]

TABLE OF CONTENT

Content Page No.

Certificate II

Declaration III

Acknowledgment IV

Table of Content V

List of Figures VI

List of Tables IX

Abstract X

1. Chapter No. 1: INTRODUCTION 1

1.1 Problem Statement 2

1.2 Objective 2

1.3 Methodology 3

1.4 Organization 4

2. Chapter No. 2: Literature Survey 5

3. Chapter No. 3: System Development 7

3.1 Analysis of the algorithm 7

3.2 Design 15

3.3 Flow Chart 18

3.4 Model Development 30

4. Chapter No. 4: Performance Analysis 31

4.1 Predicting the result 31

4.2 Result 43

5. Chapter No. 5: Conclusion 49

5.1 Conclusion 49

5.2 Future Scope

6. REFERENCE

50

51

 V

[Type here] [Type here] [Type here]

LIST OF FIGURES

Fig
No.

Title Page No.

1.1 Flow of Methodology 3
3.1 Regression 8
3.2 Classification 8
3.3 Random Forest 9
3.4 Decision Tree 10
3.5 SVM 11
3.6 MLP 13
3.7 KNN 14
3.3.1 Flow Chart 18
3.3.2 Libraries 19
3.3.3 Dataset Features 19

3.3.4 IP Address 20
3.3.5 Long URL Extraction 20

3.3.6 Short URL Extraction 20

3.3.7 @ Symbol Extraction 21

3.3.8 Redirection of ‘//’ Symbol 21
3.3.9 Prefix and Suffix Extraction 21

3.3.10 Sub Domains 22
3.3.11 Extraction of Https 22
3.3.12 Domain Length 22

3.3.13 Favicon 23

 VI

[Type here] [Type here] [Type here]

3.3.14 Std Port Extraction 23

3.3.15 Domain URL Extraction 23
3.3.16 Request URL 24

3.3.17 Anchor URL Extraction 24
3.3.18 Script Link Tags 25

3.3.19 Server Handler Captioning 25

3.3.20 Email Information 26
3.3.21 Abnormal URL Extraction 26
3.3.22 Website Forwarding Response 26
3.3.23 Status Bar Finder 27
3.3.24 Disable Right Click 27
3.3.25 Popping Window 27
3.3.26 Redirection of IFrame 28
3.3.27 Age Domain Handler 28
3.3.28 DNS Recording Handler 28
3.3.29 Page Rank Response Checker 29
3.3.30 Google Index Handler 29
3.3.31 No of Links Pointing 29
3.3.32 Matching Stats Report 30
4.1.1 Importing Libraries 31
4.1.2 Data Distribution 32
4.1.3 Splitting Dataset 32
4.1.4 Decision Tree Accuracy 33
4.1.5 Accuracy vs depth 33
4.1.6 Random Forest 34
4.1.7 Accuracy vs Test Accuracy 34
4.1.8 Gradient Boost Classifier 35
4.1.9 Accuracy vs Test Accuracy 36
 VII

[Type here] [Type here] [Type here]

4.1.10
4.1.11

Multi Layer Accuracy
Naive Bayes Accuracy

36
37

4.1.12 SVM Accuracy 38
4.1.13 KNN Accuracy 39
4.1.14 Training Accuracy vs Test Accuracy 40
4.1.15 Logistic Regression Accuracy 41
4.1.16 Saving the Model 43
4.2.1 UI 43
4.2.2 Dataset Features 44
4.2.3 Heat Map 45
4.2.4 Feature Importance 45
4.2.5 Pair Plot of Features 46
4.2.6 Pie Chart Phishing Count 46
4.2.7 Final Accuracy 47
4.2.8 AWS Console 47
4.2.9 EC2 Instance 47
4.2.10 Docker File 48
4.2.11 Docker Container 48

 VIII

[Type here] [Type here] [Type here]

LIST OF TABLES

Table
No.

Description Page No.

4.1 Comparison of Accuracy 42

 IX

ABSTRACT

Online phishing is one of the most common attacks on the modern internet.

The goal of phishing website uniform resource locators is to steal personal

data including login credentials and credit card numbers. As technology

keeps growing, phishing strategies began to develop rapidly. The aim of

phishing site URLs is to collect the private information like the user's

identity, passwords and online money related exchanges. Phishers use the

sites which are visibly and semantically like those of authentic websites.

Since the majority of the clients go online to get to the administrations given

by the government and money related organizations, there has been a vital

increment in phishing threats and attacks since some years. There has been a

vital increment in phishing threats and attacks since some years.

As technology is growing, phishing methods have started to progress rapidly.

It can be avoided by making use of anti-phishing techniques such as Deep

CDR, Endpoint Compliance to detect phishing. Machine learning and deep

learning is an authoritative tool that can be used to aim against phishing

assaults. The machine learning approaches to detect phishing websites have

been proposed earlier and have been implemented. The central aim of this

project is to implement the system with high efficiency, accuracy and cost

effectively.

 X

1

Chapter 01: INTRODUCTION

In the current digital era, security experts are increasingly concerned about phishing. This

is due to the fact that it is comparatively simple for attackers to produce phony websites

that closely mimic authentic ones. Although experts are able to recognize these fraudulent

websites, many users are not, leaving them open to phishing scams. The main objective of

cybercriminals frequently involves pilfering confidential data, like login credentials for

bank accounts. The following is a condensed description of how hackers execute phishing

attacks: Usually, they send spam emails stating that your password for the university

network is about to expire. The email provides a link to update your password, but

clicking on it redirects you to a hacker-controlled server where they can steal your online

data. In our project, we aim to predict whether a website is a phishing site or a legitimate

one. We've collected the dataset from Kaggle [1]. URLs with no malicious detection are

labeled as '-1' (benign), while those with detections are labeled as '1' (malicious).

We're exploring various machine learning algorithms to analyze the characteristics of

these URLs. By understanding the features that indicate phishing, we hope to improve

detection strategies. Phishing attacks often succeed due to a lack of consumer awareness,

exploiting weaknesses in users.

One common technique is updating blacklisted URLs and IPs in antivirus databases,

known as the "blacklist" method. However, attackers constantly find ways to bypass

blacklists through tactics like URL obfuscation, fast- flux (rapidly changing proxies), and

algorithmically generating new URLs. To lure people in, phishers send mass emails,

prompting users to visit a spoofed website. These sites often trick users into running

software or downloading files. Malicious URLs can be detected using machine learning

techniques, providing a more efficient solution compared to traditional methods. For

better protection against phishing, it's essential for individuals to understand how these

websites appear in their browsers. High-end companies can employ machine learning and

deep neural network algorithms to proactively blacklist or detect phishing websites

early.Machine learning helps catch phishing websites by learning from examples of both

real and fake sites. It looks for signs like strange web addresses or tricky content that are

common in phishing. Once it learns what to look for, it can quickly decide if a new

2

website seems like a phishing threat or not. This smart system works faster than older

ways of finding phishing sites, making it better at keeping users safe from online scams.

Essentially, machine learning acts like a smart detective that's always learning and staying

one step ahead of the tricks that hackers use to create fake websites

Machine Learning in addition has proven to be the best approach to deal with such

important aspects of Machine learning serves as a transformative paradigm in

constructing real-life models by enabling computational systems to autonomously learn

and derive insights from data, subsequently facilitating informed decision-making. This

methodology obviates the need for explicit programming, allowing models to discern

intricate patterns and extrapolate predictions.

1.1 Problem Statement

Online phishing is one of the most common attacks on the modern internet. Phishers

use the sites which are visibly and semantically like those of authentic websites.

The problem is derived after making a thorough observation and study about the

method of classification of phishing websites that makes use of machine learning

techniques. We must design a system that should allow us to:

• Accurately and efficiently classify the websites into legitimate or phishing.

• Time consumed for detection should be less and should be cost effective.

1.2 Objective

- Phishing websites' most popular social engineering approach imitates reliable

URLs and web pages.

- The study aims to train machine learning models and deep neural nets on a

dataset designed to detect phishing websites.

- The website's benign and phishing URLs are gathered to create a dataset, from

which necessary URLs and content-based features are retrieved

- Every model's efficiency is measured and contrasted.

- A phishing internet site most common social engineering approach that

mimics trustful URLs and web pages.

3

1.3 Methodology

In this project, our primary focus has been on leveraging machine learning techniques and

deep learning techniques to assess and classify links as either "good" or "bad." The core of

our approach lies in the utilization of various algorithms for training and prediction

purposes. To implement this, we have employed the Flask framework, a powerful Python

web framework, and seamlessly integrated multiple libraries catering to diverse

functionalities. Our choice of algorithms encompasses a comprehensive set, including

Random Forest, Decision Tree, Support Vector Machine (SVM), K-Nearest Neigbhor,

Naive Bayes, Gradient Boost and Multi-layer Perceptron. These algorithms serve as the

backbone of our predictive model each contributing unique strengths to the overall

accuracy of link classification.

The implementation involves a two-step process: training the algorithms on a labeled

dataset to learn the patterns associated with good and bad links, and subsequently, utilizing

trained models for real-time prediction of new links. By employing this combination of

machine learning algorithms and performance evaluation metrics, we aim to provide a

robust and accurate solution for link classification, ensuring the reliability and efficiency of

our system in distinguishing between good and bad links.

Figure 1.1 Flow of Methodology

4

1.4 Organization

CHAPTER 1 - INTRODUCTION: This chapter serves as a project and launching pad to

provide a comprehensive background for secure cloud backup and recovery. It includes an

introduction to the project, defines the problem, outlines the objectives, reflects the

purpose and motivation of the project and decides the organization of the project preview

report.

CHAPTER 2 - LITERATURE SURVEY: This chapter focuses on extensive research and

integrates information from a variety of reputable sources, including standard books,

journals, websites, and technical publications. The pertinent literature is printed, prior

research on the subject is highlighted, and vital traits in cloud storage, backup, healing,

and encryption are mentioned.

CHAPTER 3 - SYSTEM DEVELOPMENT: This chapter discusses the technical

additives in the order of requirements and evaluation, venture planning, and architecture.

It covers the statistics education and implementation system and introduces the most vital

parts which include code samples, algorithms, equipment and strategies. The fundamental

difficulties of the development procedure and the way to remedy them are also examined.

CHAPTER 4 – PERFORMANCE ANALYSIS: This chapter discusses the trying out

technique, emphasizing the devices and strategies used to evaluate the platform and its

performance, emphasizing the platform and ensuring reliability. It presents a thorough

evaluation of the system with the aid of supplying a summary of take a look at instances

and their outcomes.

CHAPTER5 - CONCLUSIONS: This insightful chapter provides an overview of the

project and key findings, limitations and industry contributions. It follows with

recommendations for future research pathways, paving the way for more investigation and

innovation by providing guidelines for fine-tuning testing procedures, investigating

additional performance indicators, and addressing outstanding problems.

5

 Chapter 02: LITERATURE SURVEY

 Chunlin Liu, Bo Lang: Finding effective type for malicious URL detection [3]

 Chunlin et al. presented a technique in 2018 that primarily concentrates on particular

frequency aspects. Their method yields more accurate results in the classification of

dangerous URLs by combining machine learning techniques with statistical analysis of

URLs. By contrasting their suggested algorithm with six other machine learning

algorithms, they were able to determine how effective it was. The precision of 99.7%

was demonstrated in the results, and the false positive rate was kept far below 0.4%. This

suggests that their approach to correctly detecting and categorizing dangerous URLs is

quite dependable.

 Machine Learning to Combat Phishing Scams, FadiThabtah :

Fadi Thabtah and colleagues used real phishing datasets and a range of variables to

compare multiple machine learning approaches in their trials. The goal was to illustrate the

benefits and drawbacks of machine learning predictive models as well as show how well

they actually work to combat phishing scams. The findings showed that covering technique

models work better as anti-phishing defenses. Muhemmet Baykara and colleagues also

presented an Anti-Phishing Simulator application. This program advises on how to spot

phishing emails and sheds light on the difficulties associated with phishing detection. The

database is updated with spam emails through the use of a Bayesian algorithm. According

to the study, the best approach is to use the email text as a keyword for effective word

processing solely.

 Client-side detection of phishing websites, Ankit Kumar Jain, B. B. Gupta [4]:

Regarding the client-side detection of phishing websites by the application of machine

learning: Gupta et al. and colleagues presented a novel anti-phishing strategy in Springer

Science+Business Media, LLC, a division of Springer Nature 2017 that focuses

exclusively on extracting features from the client side. The study's overall accuracy in

6

identifying phishing websites was an amazing 99.09%. The method's limitation—that it

can only identify websites written in HTML—is acknowledged by the authors. This

method is ineffective for identifying websites that use non-HTML code.

 A Prior-based transfer learning techniques for the Phishing Detection, Yang Xin ,

Dan Li, Yangxi Ou [5]:

Specifically, they utilize a logistic regression as the basis of a concern-based transferable

learning method in our statistical machine learning classification for phishing website

identification based on specific URL attributes. We have presented many models, each

suited to a different phishing domain, due to the variable distribution of features in these

domains. When collecting sufficient data for a new area is not feasible to repair the

detection model and use transfer learning, our suggested workaround is to use a URL-based

method for phishing detection. We support the use of a transfer learning technique to solve

potential flaws in trait detection and build a more reliable and powerful model.

 Feature Extraction Method, Ahmad Abunadi, Oluwatobi Akanb [6]:

Feature Extraction Method: An Approach to Phishing Detection To make the solution

accessible, they developed a user-friendly Flask web application in 2013. The program

allows users to enter URLs and have the trained XGBoost model classify them in real time.

This user-friendly tool allows individuals and groups to assess URL properties and identify

potential security threats.

 Effective detection of phishing URLs based on machine learning, Sahingoz, O.K.,

Buber, E., Demir, O. and Diri, B., 2019 [7].

Effective detection of phishing URLs based on machine learning. 345–357 in Expert Systems

with Applications, 117. It's critical to identify phishing websites in order to shield users from

fraud. Individuals frequently fall victim to these frauds because they are ignorant of internet

addresses, are unable to determine which websites are reliable, are too busy to double-check, or

may not be able to view the entire address owing to deceptive tactics. To increase the accuracy

of this identification process, they used a variety of techniques, including random forests and

decision trees.

7

Chapter 03: SYSTEM DEVELOPMENT

3.1 Analysis of the Algorithms:

As supervised machine learning is the foundation of our entire project. A subset of

artificial intelligence and machine learning is supervised learning. The way it operates

is that we feed a model data and a label, and after the model is trained, it finds patterns

in the data, links the labels to those patterns, and generates new predictions. Supervised

learning has an enormous range of possible applications. A few of them may be used

for spam detection or spam detection. This is how we determine whether an email is

spam or not: if it's spam, it will be automatically deposited in a spam folder; otherwise,

it will be deposited in your inbox. Classifying objects is another, among many others.

Two types of supervised machine learning exist:

 Classification:

Not only does it assist in finding items that we can look up using keywords, but it

also finds our inventions that are extremely similar to ours. A section that is divided

into topic areas known as classes and subclasses. Predictive modeling is a sort of

problem that involves estimating the mapping characteristic from input variables to

discrete output variables. Take an email spam detector, for example. The main

objective of a classification algorithm, which is specially designed to forecast the

result for a given collection of data, is to choose the category for the dataset. An

algorithm that implements the type using a dataset is called a classifier. [8]

• Regression:

It is a supervised learning technique that makes it possible to determine the correlation

between variables and predict the continuous output variable based only on the most

basic or significant predictor variables. Prediction, forecasting, time collection

modeling, and determining the causal-impact relationship between variables are among

its specific uses. Regression involves creating a graph with the variables that best fits

the provided data points; by using this plot, the machine learning version of the data

can be predicted. [9]

8

Figure 3.1 Regression

Figure 3.2 Classification

We used the Python framework Flask in our project and imported numerous libraries

for various uses. Eight algorithms have been selected: Random Forest, Decision Tree,

SVM, Gradient Boost, Naive Bayes, K-Nearest Neighbor, Logistic Regression and

Multi-layer Perceptron. Thus, this contains a variety of URL types, including phishing,

benign, and spam URLs. We have taken dataset from Kaggle [1] which consists of

11,054 rows and 32 columns.

9

We examine various machine learning algorithms for analyzing the characteristic in order

to gain a thorough understanding of how the URLs that propagate phishing are

constructed. For this project, the supervised machine learning techniques and deep

learning techniques that we have selected are:

3.1.1 Random Forest:

Many random decision trees make up a random forest. The trees contain two different

kinds of randomness. Every tree is initially constructed using a random sample of the

initial data. Secondly, to produce the best split, a subset of features is randomly chosen

at each node in the tree. More trees will prevent the model's trees from being overly

fitted.

The majority of the data will remain accurate while the missing values are handled by

the random forest classifier.[10]

 Figure 3.3 Random Forest

10

3.1.2 Decision Tree:

A random forest is made up of several random decision trees. There are two distinct types

of randomness in the trees. Each tree is first built with a random subset of the original data.

Second, at each node in the tree, a subset of features is randomly selected in order to

generate the best split. The model's trees won't be unduly fitted with more trees. While

the random forest classifier fills in the missing values, the majority of the data will

continue to be accurate.[10]

 Figure 3.4 Decision Tree

3.1.3 SVM (Support Vector Machine):

Support vector machines (SVMs) are supervised machine learning algorithms that are

versatile and strong, and they are utilized for both regression and classification.

However, they are typically applied to classification issues. In essence, a hyper-plane

in multidimensional space, the Support Vector Machine (SVM) model represents

11

different classes. To reduce the error, the SVM will create the hyper-plane repeatedly.

SVM seeks to determine a maximum marginal hyper-plane (MMH) by classifying the

datasets. [12]

 Fig 3.5 Support Vector Machine

3.1.4 Gradient Boost:

Under the Gradient Boosting framework, XGBoost is an open-source software library

that implements optimized distributed gradient boosting machine learning algorithms.

Gaining a thorough understanding of the machine learning principles and techniques

that supervised machine learning, decision trees, ensemble learning, and gradient

boosting are based on is essential to comprehending XGBoost. XGBoost is the ideal

fusion of hardware and software capabilities created to optimize current boosting

methods with maximum speed and accuracy. It is, in general, this algorithm's

feasibility, accuracy, and efficiency. It contains algorithms for both tree learning and

linear model solving. Therefore, its ability to perform parallel computation on a single

machine is what gives it its speed.[13]

12

3.1.5 Flask

A lightweight Python web framework called Flask was created to make creating web

apps and APIs easier. The WSGI (Web Server Gateway Interface) standard is

adhered to, and it offers a simple and uncomplicated method for developing websites.

Fundamentally, Flask helps developers create web applications by providing

necessary tools and conventions, freeing them up to concentrate on writing

application logic instead of managing the intricate details of handling HTTP requests

and responses. The framework is a well-liked option for projects ranging from small

prototypes to larger-scale applications because of its simplicity, adaptability, and ease

of use. Because Flask has a modular architecture, developers can easily add more

features by integrating different extensions for things like form handling, database

interaction, and authentication.[14].

3.1.6 Naive Bayes

"Naive Bayes classifiers" refers to the class of classification algorithms that use Bayes'

Theorem as its foundation. Rather than being a single algorithm, it is actually a family of

algorithms built on the same principle: every pair of characteristics that is being classed

stands alone. It is based on the Bayes theorem. Based on the probability of a previous

occurrence, the Bayes Theorem determines the likelihood of a current event. Naive Bayes

classifiers are straightforward probabilistic frameworks in statistics that apply the Bayes

theorem. The likelihood of a hypothesis given the available information and some prior

knowledge forms the basis of this theorem. Given that each feature in the input data is

assumed to be independent of every other feature, the naïve Bayes classifier often

assumes that false in real-world situations. Despite this oversimplifying assumption of an

extra incident that has already happened, the naive Bayes classifier is still widely utilized

due to its effectiveness and high performance in several real-world applications. [16]

3.1.7 Multilayer Perceptron

An MLP comprises an input layer, one or more hidden layers, and a layer for output. It is a

specific type of feed forward artificial neural network. All of the layers are completely

interconnected. An essential idea in deep learning and neural networks will be covered in

13

this article: the Multiple-layer Perceptron Neural Network. The only direction in which the

Multilayer Perceptron (MLP) Neural Network may operate is forward. Every node is

completely linked to the network. Every node only transmits its value in a forward way to

the subsequent node. Backward propagation is an algorithm used by the MLP neural

network to improve training model accuracy. [17]

 Figure 3.6 Multilayer Perceptron

3.1.8 Logistic Regression

Logistic regression (LR) is a supervised machine learning technique used to assess the

likelihood of an event, a result, or an observation to resolve binary classification problems.

The model's output is usually binary, meaning it can be either true or false.

Logistic regression is a technique used to sort data according to the degree of correlation

between one or more independent variables. It is frequently used in predictive modeling, in

which an event's mathematical likelihood of falling into a particular category or not is

determined by the model. In binary classification problems, where the outcome variable

indicates one of the two categories (0 or 1), logistic regression is frequently utilized. The

sigmoid function, a logistic function, is used to map predictions in logistic regression.In

addition, if the estimated probability generated by the sigmoid function over a predefined

threshold on the graph, the model predicts that the instance belongs to that class. The

14

model states that if the computed probability is less than the preset threshold, the instance

does not belong in the class. [18]

3.1.9 K-nearest neighbor

A supervised, non-parametric learning technique is the k-nearest neighbors algorithm

(KNN). A data point's classification or grouping is predicted according to how close it is to

nearby points. KNN is a flexible technique that is frequently used in machine learning for a

range of regression and classification applications. KNN is an acronym for K-Nearest

Neighbor. It's an algorithm for supervised machine learning. Problem assertions involving

regression and classification can both be resolved by the algorithm. The sign "K" indicates

the number of closest neighbors to a new unknown variable that has to be classed or

forecasted. KNN determines the separation between every point in the vicinity of the

unknown data and eliminates those that have the shortest distances to it. [19]

Figure 3.7 K-Nearest Neighbor

3.1.10 Docker

The freely accessible Docker platform makes it possible to use containerization to automate

application deployment, scaling, and management. A lightweight substitute for classic

15

virtualization is termed containerization, in which programs are packed with their

dependencies and operate in separate contexts known as containers.

Regardless of the physical host system, containers offer apps a consistent and repeatable

environment to function in. The libraries, binaries, and configuration files needed for the

program to function properly are all contained in each container. Applications may operate

reliably in a variety of settings, from development to production, thanks to this separation.

This suggests that the program can function reliably in a variety of settings. Docker's speed

is a result of its utilization of containerization technologies. By isolating the program and

its dependencies from the host operating system, containerization enables effective

resource management. This indicates that the program can function reliably in a variety of

settings. Docker borrows all the resources from the base operating system. [20]

3.2 Design:

In our project, we focused on using machine learning techniques for link classification

(good or bad). We implemented this using Flask, a Python framework, and

incorporated algorithms like Random Forest, Decision Tree, KNN, Naive Bayes,

Logistic Regression, Multilayer Perceptron and Gradient Boost. The classification

report, featuring metrics such as recall and precision, evaluates the models'

performance. Our approach ensures accurate and reliable link classification by

leveraging diverse algorithms and thorough performance analysis. Alternatively, the

collection of phishing URLs is simple because of the open source supplier known as

Phish Tank. This supplier offers a set of phishing URLs that are updated hourly and

come in a few different formats, including CSV and JSON. The dataset is immediately

loaded into a Data Frame upon download.

We have used a comprehensive feature extraction process was undertaken to analyze the

dataset. The features were categorized into distinct groups: Address Bar Based Features,

Domain Based Features, and HTML and JavaScript Based Features. Our dataset includes

multiple features designed to evaluate the features of URLs for possible phishing activity.

These features include the use of an IP address, the length of the URL, the presence of

16

shortened URLs, symbols like '@' in the URL, double slashes in redirection, prefixes or

suffixes in the URL, the number of subdomains, the use of HTTPS, the duration since

domain registration, the presence of a favicon, the use of non-standard ports, the presence

of HTTPS in the domain part of the URL, request and anchor URLs, links in script tags,

type of server form handler, the presence of email addresses, indication of abnormal URLs,

website forwarding, customization of the status bar, right-click disable feature, usage of

popup windows and iframe redirection, and the age of the domain The information includes

the domain name system recording state, the anticipated traffic to the website, the page

rank, the Google indexing status, the number of links referring to the page, the availability

of a statistics report, and the label designating whether or not the URL is considered

phishing. This dataset offers an extensive range of features for phishing threat analysis and

URL classification. The combination of these three feature sets resulted in a comprehensive

dataset comprising 32 features, providing a multifaceted perspective for our machine learning models

to discern and classify URLs effectively based on their diverse attributes and characteristics.

The goal of this methodical feature combination and selection process was to improve

our model's robustness and accuracy in identifying phishing and genuine URLs. We used

machine learning algorithms to classify URLs after finishing feature extraction and

merging datasets, and in the end, we discovered that Gradient Boost produced the best

accuracy out of all the algorithms we looked at. The trained Gradient Boost model was

then stored for later use. We developed a Flask application with two HTML pages,

index.html and result.html, to create an easy-to-use user interface.

Users can enter URLs for classification using the index.html page, which also acts as an

input interface. The results of the classification are shown on the result.html page. The

Flask application, defined in the app.py file, was executed on our local system, providing a

practical platform for users to interact with the trained Gradient Boost model in real-world

scenarios. This cohesive solution, integrating the robust Gradient Boost model with the

Flask web application, offers a user-friendly tool for users to assess and categorize URLs

based on the machine learning model's predictions. [14]

17

Eight different algorithms were thoroughly compared, with an emphasis on how

accurately they could classify URLs. Random Forest, Decision Tree, Multi-layer

Perceptron, KNN, Logistic Regression, Support Vector Machine (SVM) and Gradient

Boost, were the algorithms that were being examined. Following the training and

assessment of every model, we discovered that Gradient Boost performed better than the

others, obtaining an astounding accuracy score of 97.4%. The comparison process

involved training each algorithm on labeled datasets, assessing their performance, and

selecting the model with the highest accuracy for further deployment. Gradient Boost,

with its ensemble learning approach and gradient boosting techniques, demonstrated

superior predictive power in distinguishing between different types of URLs, showcasing

its effectiveness in our specific use case.

The choice of Gradient Boost as the optimal model underscores its ability to handle

complex relationships within the data, providing a robust solution for URL classification

in our project. This high accuracy score serves as a testament to the efficacy of Gradient

Boost in addressing the challenges posed by diverse URL characteristics and categories.

The Dockerfile describes the processes required to containerize our application within the

Ubuntu EC2 environment. Beginning with a base Ubuntu image, we describe the

installation of critical dependencies, such as Python packages and any libraries needed for

our detection techniques. Next, we put our application code into the container and set up

the environment to guarantee a smooth execution. In addition, we may expose appropriate

communication ports and declare any runtime instructions required to begin our

program within the container. This Dockerfile encapsulates our phishing

detection system into a portable, self-contained entity, making deployment

easier and assuring consistent performance across several settings. Overall, by

using Docker and creating an efficient Dockerfile specific to our project's

needs, we improve the agility, scalability, and robustness of our phishing

detection system in the Ubuntu EC2 environment.

18

3.3 Flow Chart

 Figure 3.3.1 Flow Chart

We have predicted whether phishing websites are good or bad URLs in this project. We

searched online and discovered some datasets before running any code. We developed a

small piece of code to extract the feature after gathering the phishing and estimated

websites from open source platforms. Due to the fact that there are various kinds of URLs,

including malicious, phishing, spam, and benign URLs. We decided to take the dataset

from Kaggle. The datasets have been reviewed, pre-processed, and separated into training

and test sets. We employed machine learning algorithms and deep learning algorithm to

categorize URLs, ultimately finding that Gradient Boost yielded the highest accuracy

among the algorithms considered. Subsequently, we saved the trained Gradient Boost

model for future use. To create an intuitive user interface, we developed a Flask

application with two HTML pages: index.html and result.html. Flask application, defined

in the app.py file, was executed on our local system, providing a practical platform for

users to interact with the trained model. Further we have created a Dockerfile which offers

us several benefits such as consistency, portability, isolation and scalability. Docker helps

in ensuring that application behaves consistently across different environments and can be

19

easily deployed in productions.

We have carried out a number of training implementations for this project, and we

have predicted the legitimacy of phishing websites, some of the supervised algorithms

with deep learning algorithms have been used.

 Firstly, we imported some libraries such as pandas, numpy , matplotlib, Decision

Tree Classifier and many more.

Figure 3.3.2 Libraries

 We have taken the dataset from Kaggle which consists of 32 features.

Figure 3.3.3 Dataset Features

20

 Firstly we have performed feature extraction.

 Using IP

 Figure 3.3.4 IP Address

 Long URL

 Figure 3.3.5 Long URL Extraction

 Short URL

 Figure 3.3.6 Short URL Extraction

21

 Symbol@

Figure 3.3.7 @Symbol Extraction

 Redirection “//” in URL

Figure 3.3.8 Redirection of (//) Symbol

 Prefix Suffix

Figure 3.3.9 Prefix and Suffix Extraction

22

 Sub Domains

Figure 3.3.10 Sub Domains

 https

Figure 3.3.11 Extraction of https

 Domain Length

Figure 3.3.12 Domain Length

23

 Favicon

Figure 3.3.13 Favicon

 NontdPort

Figure 3.3.14 Std Port Extraction

 HTTPS Domain URL

Figure 3.3.15 Https Domain URL Extraction

24

 Request URL

Figure 3.3.16 Request URL

 Anchor URL

 Figure 3.3.17 Anchor URL Extraction

25

 Script Tags

 Figure 3.3.18 Script Link Tags

 Server Handler

 Figure 3.3.19 Server Handler Captioning

26

 Email Info

 Figure 3.3.20 Email Information

 Abnormal URL

Figure 3.3.21 Abnormal URL Extraction

 Website Forwarding

Figure 3.3.22 Website Forwarding Response

27

 Status

Figure 3.3.23 Status bar finder

 Disable Right Click

Figure 3.3.24 Disable Right Click

 Using Popup Window

Figure 3.3.25 Popping Window

28

 Iframe Redirection

Figure 3.3.26 Redirection of iframe

 Age of Domain

Figure 3.3.27 Age Domain Handler

 DNS Recording

Figure 3.3.28 DNS Recording Handler

29

 Page Rank

Figure 3.3.29 Page Rank Response Checker

 Google Index

Figure 3.3.30 Google Index Handler

 Links Pointing To Page

Figure 3.3.31 Number of Links Pointing

30

 Stats Report

Figure 3.3.32 Matching Stats Report

3.4 Development of the Phishing Model

In the development of our URL classification model, we conducted a thorough

exploration of machine learning algorithms and deep learning algorithms, with a focus on

Random Forest, Decision Tree, Support Vector Machine (SVM), Gradient Boost, Logistic

Regression, Naive Bayes, K-nearest Neighbor and multilayer Perceptron. Through

rigorous evaluation, Gradient Boost Classifier emerged as the most effective, achieving a

notable accuracy score of 97.4%. The feature extraction phase involved deriving 30

relevant features from address bar, domain-based, and HTML/JavaScript-based attributes.

This diverse dataset, encompassing both legitimate and phishing URLs, facilitated robust

model training. Moving forward, the model's future development can include refining its

capabilities with advanced machine learning techniques and continuous dataset updates

to adapt to emerging online threats. The Flask web application (app.py) can be enhanced

by incorporating features such as a more interactive user interface, detailed result

insights, and real-time threat updates. Additionally, deploying the application on cloud

services like AWS and using Docker can broaden its accessibility, allowing for global

user interaction. Docker helps in ensuring that application behaves consistently across

different environments and can be easily deployed in productions. Further improvements

may include user authentication, features for managing and tracking URL classifications,

and heightened security measures.

31

 Chapter 04: PERFORMANCE ANALYSIS

We have carried out a number of training implementations for this project, and we

have predicted the legitimacy of phishing websites. We have used some of the supervised

algorithms.

 To start, we imported a number of libraries, including matplotlib, pandas,

numpy, random forest classifier, decision tree classifier, and many more.

 We have examined and pre-process the dataset and have plot the data distribution.

Figure 4.1.1 Importing Libraries

32

Figure 4.1.2 Data Distribution

 After that we have split the dataset into test and train.

Figure 4.1.3 Splitting Dataset

 Now we have use Decision Tree Classifier, checking the feature importance in the

model.

33

Figure 4.1.4 Decision Tree Accuracy

 Figure 4.1.5 Accuracy vs Depth

 Now we have use the random forest classifier, check the feature importance of the

model.

34

Figure 4.1.6 Random Forest

Figure 4.1.7 Training Accuracy vs Test Accuracy

35

 Now we have used Gradient Boost Classifier.

Figure 4.1.8 Gradient Boost Accuracy

36

Figure 4.1.9 Training Accuracy vs Test Accuracy

 Now we have used Multilayer Perceptron

Figure 4.1.10 Multi-Layer Accuracy

37

 Now we have used Naive Bayes Classifier.

Figure 4.1.11 Naive Bayes Accuracy

38

 Now we have used Support Vector Classifier.

Figure 4.1.12 Support Vector Machine Accuracy

39

 Now we have used KNN Classifier Model.

Figure 4.1.13 K-Nearest Neighbor Accuracy

40

Figure 4.1.14 Training Accuracy vs Test Accuracy

 Now we have used Logistic Regression Model.

41

Figure 4.1.15 Logistic Regression Accuracy

When comparing the accuracy of different machine learning models, it's crucial to consider

several key points to ensure a meaningful and reliable evaluation. First, it's important to

choose appropriate evaluation metrics beyond just accuracy, such as precision, recall, F1-

score, or AUC-ROC, depending on the nature of the data and problem. Second, utilize

techniques like k-fold cross-validation to assess each model's performance robustness by

training and evaluating on multiple data subsets. Third, balance model complexity with

performance gains and interpretability, especially for real-world deployment. Some models

may be more complex but achieve higher accuracy, so it's essential to evaluate their

practical implications.

42

 At last we have made the comparisons of the model on the basis of accuracy.

 ML Model Accuracy F1_score Recall Precision

0 Gradient Boosting

Classifier

0.974 0.977 0.994 0.986

1 Multi-layer Perceptron 0.971 0.974 0.994 0.982

2 Random Forest 0.966 0.969 0.994 0.987

3 SVM 0.964 0.968 0.980 0.965

4 KNN 0.956 0.961 0.991 0.993

5 Logistic Regression 0.934 0.941 0.943 0.927

6 Decision Tree 0.959 0.964 0.980 0.965

7 Naive Bayes Classifier 0.605 0.454 0.292 0.997

Table 4.1 Comparison of Accuracy

43

 Now we have saved our model

Figure 4.1.16 Saving the Model

4.2 Result

Figure 4.2.1 UI

44

Figure 4.2.2 Dataset Features

45

Figure 4.2.3 Features Heat Map

Figure 4.2.4 Feature Importance

46

Figure 4.2.5 Pair Plot of Features

Figure 4.2.6 Pie Chart Phishing Count

47

 Figure 4.2.7 Final Accuracy

Figure 4.2.8 AWS Console

Figure 4.2.9 EC2 Instance

48

Figure 4.2.10 Docker File

Figure 4.2.11 Docker Container

49

Chapter 05: CONCLUSIONS

In conclusion, our project focused on the classification of URLs into different

categories, differentiating between legitimate and potentially malicious links. We

employed a comprehensive approach, utilizing machine learning techniques and

comparing four algorithms: Random Forest, Decision Tree, Support Vector Machine

(SVM), Gradient Boost, Logistic Regression, Naive-Bayes, KNN and Multilayer

Perceptron. After thorough evaluation, Gradient Boost emerged as the most effective

algorithm, achieving an impressive accuracy score of 97.4%. The success of Gradient

Boost underscores its suitability for the complexities of URL classification,

demonstrating robust performance in distinguishing between benign and harmful links.

The project encompassed key steps such as feature extraction, where 32 relevant

features were derived from address bar, domain-based, and HTML/JavaScript-based

attributes. Additionally, the incorporation of a diverse dataset, encompassing both

legitimate and phishing URLs, contributed to the model's comprehensive training and

performance evaluation. To make the solution accessible, we implemented a Flask web

application with an intuitive user interface. The application allows users to input URLs

for real-time classification using the trained Gradient Boost model. This user- friendly

tool serves as a practical means for individuals and organizations to assess the nature of

URLs and identify potential security threats.

We created a user-friendly Flask web application in order to make the solution

accessible. Users can input URLs into the application to have the trained Gradient

Boost model classify them in real time. With the help of this easy-to-use tool, people

and organizations can evaluate URLs' characteristics and spot possible security risks. In

essence, the project successfully addressed the challenge of URL classification,

providing a reliable and accurate solution for distinguishing between safe and

malicious links. The utilization of Gradient Boost, coupled with the Flask web

application, results in a versatile tool with practical applications for enhancing online

security and threat detection. At last we have created the Dockerfile which offers us

several benefits such as consistency, portability, isolation and scalability

50

5.2 Future Scope

The future scope of this project entails enriching the Flask web application (app.py) by

adding features like an enhanced user interface, detailed result insights, and real-time

threat updates. There's room for advancing the machine learning and deep learning

models, incorporating more sophisticated techniques, and maintaining an up-to-date

dataset to adapt to evolving online threats. Potential improvements include user

authentication, features for managing and tracking URL classifications, and enhanced

security measures. These developments will solidify the project's position as a valuable

tool for users seeking effective and reliable means of assessing the security of online

links.

51

REFERENCES

[1] https://www.kaggle.com/eswarchandt/phishing-website-detector .

[2] https://www.unb.ca/cic/datasets/url-2016.html.

[3] Chunlin Liu, Bo Lang : Finding effective classifier for malicious URL detection :

InACM,2018https://www.researchgate.net/profile/ErPurviPujara/publication/331198983

Phishing_Website_Detection_using_Machine_Learning_A_Review/links/5c6bd4ae4585

156b5706e727/ PhishingWebsite-Detection-using-Machine-Learning-A-Review.pdf

[4] Ankit Kumar Jain, B. B. Gupta : Towards detection of phishing websites

on client-side using machine learning based approach :In Springer

Science+Business Media, LLC, part of Springer Nature 2017

[5] https://Rishkesh_Mahajan/publication/328541785_Phishing_Website_De

tection_using_Machin

e_Learning_Algorithms/links/5d0397fd92851c9004394af4/Phishing-Website-

Detection-using-

Machine-Learning-Algorithms.pdf

[6] Ahmad Abunadi, Anazida Zainal, Oluwatobi Akanb: Feature Extraction

Process: A Phishing Detection Approach :In IEEE,2013,

https://www.irjet.net/archives/V3/i5/IRJET-V3I5420.pdf

[7] Sahingoz, O.K., Buber, E., Demir, O. and Diri, B., 2019. Machine

learning based phishing detection from URLs. Expert Systems with

Applications, 117, pp.345-357. https://avesis.yildiz.edu.tr/yayin/be703f82-6dbf-

4657-bf14-c671f1e89304/machine-learning-based- phishing-detection-from-urls

[8] https://www.datacamp.com/blog/classification-machine-learning

[9] https://www.researchgate.net/figure/Classification-vs-Regression_fig2_350993856

[10] https://medium.com/analytics-vidhya/random-forest-classifier-and-its-

hyperparameters-8467bec755f6

[11] https://www.javatpoint.com/machine-learning-decision-tree-classificatio-algorithm

[12] Sci-kit learn, SVM library. http://scikit-learn.org/stable/modules/svm.html.

52

[13] https://www.simplilearn.com/what-is-xgboost-algorithm-in-machine-learning-

article#:~:text=XGBoost%20is%20a%20robust%20machine,optimize%20their%20mach

ine%2Dlearning%20m

[14] https://pythonbasics.org/what-is-flask-python/

[15] https://www.unb.ca/cic/datasets/url-2016.html

[16] A. Ng, M. I. Jordan, "On Discriminative vs. Generative Classifiers: A Comparison

of Logistic Regression and Naive Bayes," in Proceedings of the 14th International

Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 2001, pp.

841-848.

[17] J. Friedman, T. Hastie, R. Tibshirani, "The Elements of Statistical Learning: Data

Mining, Inference, and Prediction," 2nd ed. New York, NY, USA: Springer, 2009.

[18] Y. LeCun, Y. Bengio, G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp.

436-444, May 2015.

[19] J. Wang, J. Yang, and Y. Xu, "A Comparative Study of K-Nearest Neighbor and

Support Vector Machine Algorithms for Classification," in Proceedings of the IEEE

International Conference on Data Mining, Washington, DC, USA, 2018, pp. 572-581

[20] https://nupmanyu.medium.com/why-docker-is-so-fast-7bd1f91cf21e

53

APPENDICES

Raw Code-

#importing required libraries

from flask import Flask, request, render_template

import numpy as np

import pandas as pd

from sklearn import metrics

import warnings,import pickle

warnings.filterwarnings('ignore')

from feature import FeatureExtraction

file = open("pickle/model.pkl","rb")

gbc = pickle.load(file)

file.close()

app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])

def index():

 if request.method == "POST":

 url = request.form["url"]

 obj = FeatureExtraction(url)

 x = np.array(obj.getFeaturesList()).reshape(1,30)

 y_pred =gbc.predict(x)[0]

 y_pro_phishing = gbc.predict_proba(x)[0,0]

 y_pro_non_phishing = gbc.predict_proba(x)[0,1]

 if(y_pred ==1):

 pred = "It is {0:.2f} % safe to go ".format(y_pro_phishing*100)

 return render_template('index.html',xx =round(y_pro_non_phishing,2),url=url)

 return render_template("index.html", xx =-1)

if __name__ == "__main__":

 app.run(debug=True)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: ………………………….

Type of Document (Tick):

Name: Department: Enrolment No

Contact No. E-mail.

Name of the Supervisor:

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters):

UNDERTAKING
I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism
and copyright violations in the above thesis/report even after award of degree, the University reserves the
rights to withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the
document mentioned above.
Complete Thesis/Report Pages Detail:

− Total No. of Pages =

− Total No. of Preliminary pages =

− Total No. of pages accommodate bibliography/references =
(Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at (%). Therefore,
we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

(Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

• All Preliminary
Pages

• Bibliography/Ima
ges/Quotes

• 14 Words String

Word Counts

Character Counts

Report Generated on

 Submission ID Total Pages Scanned

 File Size

Checked by
Name & Signature Librarian

………

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

Paper B.Tech Project Report M.Tech Dissertation/ Report PhD Thesis

mailto:plagcheck.juit@gmail.com

17%
SIMILARITY INDEX

11%
INTERNET SOURCES

3%
PUBLICATIONS

8%
STUDENT PAPERS

1 4%

2 1%

3 1%

4 1%

5 1%

6 1%

7 1%

8 1%

9 <1%

project report
ORIGINALITY REPORT

PRIMARY SOURCES

www.ir.juit.ac.in:8080
Internet Source

github.com
Internet Source

bmsit.ac.in
Internet Source

www.ijraset.com
Internet Source

www.mdpi.com
Internet Source

Submitted to Intercollege
Student Paper

Submitted to University of Sydney
Student Paper

Submitted to Queen Mary and Westfield
College
Student Paper

Submitted to Southeast University
Student Paper

	Microsoft Word - First pages
	Microsoft Word - test Report (1)
	bf324121a8c353f07b0a05fb87d781dc4004a09e36f17565f286f5b4bd20d929.pdf

