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ABSTRACT 
 

Online phishing is one of the most common attacks on the modern internet. 

The goal of phishing website uniform resource locators is to steal personal 

data including login credentials and credit card numbers. As technology 

keeps growing, phishing strategies began to develop rapidly. The aim of 

phishing site URLs is to collect the private information like the user's 

identity, passwords and online money related exchanges. Phishers use the 

sites which are visibly and semantically like those of authentic websites. 

Since the majority of the clients go online to get to the administrations given 

by the government and money related organizations, there has been a vital 

increment in phishing threats and attacks since some years. There has been a 

vital increment in phishing threats and attacks since some years. 

As technology is growing, phishing methods have started to progress rapidly. 

It can be avoided by making use of anti-phishing techniques such as Deep 

CDR, Endpoint Compliance to detect phishing. Machine learning and deep 

learning is an authoritative tool that can be used to aim against phishing 

assaults. The machine learning approaches to detect phishing websites have 

been proposed earlier and have been implemented. The central aim of this 

project is to implement the system with high efficiency, accuracy and cost 

effectively. 
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Chapter 01: INTRODUCTION 

 
In the current digital era, security experts are increasingly concerned about phishing. This 

is due to the fact that it is comparatively simple for attackers to produce phony websites 

that closely mimic authentic ones. Although experts are able to recognize these fraudulent 

websites, many users are not, leaving them open to phishing scams. The main objective of 

cybercriminals frequently involves pilfering confidential data, like login credentials for 

bank accounts. The following is a condensed description of how hackers execute phishing 

attacks: Usually, they send spam emails stating that your password for the university 

network is about to expire. The email provides a link to update your password, but 

clicking on it redirects you to a hacker-controlled server where they can steal your online 

data. In our project, we aim to predict whether a website is a phishing site or a legitimate 

one. We've collected the dataset from Kaggle [1]. URLs with no malicious detection are 

labeled as '-1' (benign), while those with detections are labeled as '1' (malicious). 

We're exploring various machine learning algorithms to analyze the characteristics of 

these URLs. By understanding the features that indicate phishing, we hope to improve 

detection strategies. Phishing attacks often succeed due to a lack of consumer awareness, 

exploiting weaknesses in users.  

 

One common technique is updating blacklisted URLs and IPs in antivirus databases, 

known as the "blacklist" method. However, attackers constantly find ways to bypass 

blacklists through tactics like URL obfuscation, fast- flux (rapidly changing proxies), and 

algorithmically generating new URLs. To lure people in, phishers send mass emails, 

prompting users to visit a spoofed website. These sites often trick users into running 

software or downloading files. Malicious URLs can be detected using machine learning 

techniques, providing a more efficient solution compared to traditional methods. For 

better protection against phishing, it's essential for individuals to understand how these 

websites appear in their browsers. High-end companies can employ machine learning and 

deep neural network algorithms to proactively blacklist or detect phishing websites 

early.Machine learning helps catch phishing websites by learning from examples of both 

real and fake sites. It looks for signs like strange web addresses or tricky content that are 

common in phishing. Once it learns what to look for, it can quickly decide if a new 
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website seems like a phishing threat or not. This smart system works faster than older 

ways of finding phishing sites, making it better at keeping users safe from online scams. 

Essentially, machine learning acts like a smart detective that's always learning and staying 

one step ahead of the tricks that hackers use to create fake websites 

 

Machine Learning in addition has proven to be the best approach to deal with such 

important aspects of Machine learning serves as a transformative paradigm in 

constructing real-life models by enabling computational systems to autonomously learn 

and derive insights from data, subsequently facilitating informed decision-making. This 

methodology obviates the need for explicit programming, allowing models to discern 

intricate patterns and extrapolate predictions. 

 

1.1 Problem Statement 

Online phishing is one of the most common attacks on the modern internet. Phishers 

use the sites which are visibly and semantically like those of authentic websites. 

The problem is derived after making a thorough observation and study about the 

method of classification of phishing websites that makes use of machine learning 

techniques. We must design a system that should allow us to: 

• Accurately and efficiently classify the websites into legitimate or phishing. 

• Time consumed for detection should be less and should be cost effective. 

 

1.2 Objective 

- Phishing websites' most popular social engineering approach imitates reliable 

URLs and web pages. 

- The study aims to train machine learning models and deep neural nets on a 

dataset designed to detect phishing websites. 

- The website's benign and phishing URLs are gathered to create a dataset, from 

which necessary URLs and content-based features are retrieved 

- Every model's efficiency is measured and contrasted. 

- A phishing internet site most common social engineering approach that 

mimics trustful URLs and web pages. 
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1.3 Methodology 

In this project, our primary focus has been on leveraging machine learning techniques and 

deep learning techniques to assess and classify links as either "good" or "bad." The core of 

our approach lies in the utilization of various algorithms for training and prediction 

purposes. To implement this, we have employed the Flask framework, a powerful Python 

web framework, and seamlessly integrated multiple libraries catering to diverse 

functionalities. Our choice of algorithms encompasses a comprehensive set, including 

Random Forest, Decision Tree, Support Vector Machine (SVM), K-Nearest Neigbhor, 

Naive Bayes, Gradient Boost and Multi-layer Perceptron. These algorithms serve as the 

backbone of our predictive model each contributing unique strengths to the overall 

accuracy of link classification. 

 

The implementation involves a two-step process: training the algorithms on a labeled 

dataset to learn the patterns associated with good and bad links, and subsequently, utilizing 

trained models for real-time prediction of new links. By employing this combination of 

machine learning algorithms and performance evaluation metrics, we aim to provide a 

robust and accurate solution for link classification, ensuring the reliability and efficiency of 

our system in distinguishing between good and bad links. 

 

 

 

 

 

Figure 1.1 Flow of Methodology 
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1.4 Organization 

CHAPTER 1 - INTRODUCTION: This chapter serves as a project and launching pad to 

provide a comprehensive background for secure cloud backup and recovery. It includes an 

introduction to the project, defines the problem, outlines the objectives, reflects the 

purpose and motivation of the project and decides the organization of the project preview 

report. 

 

CHAPTER 2 - LITERATURE SURVEY: This chapter focuses on extensive research and 

integrates information from a variety of reputable sources, including standard books, 

journals, websites, and technical publications. The pertinent literature is printed, prior 

research on the subject is highlighted, and vital traits in cloud storage, backup, healing, 

and encryption are mentioned. 

 

CHAPTER 3 - SYSTEM DEVELOPMENT: This chapter discusses the technical 

additives in the order of requirements and evaluation, venture planning, and architecture. 

It covers the statistics education and implementation system and introduces the most vital 

parts which include code samples, algorithms, equipment and strategies. The fundamental 

difficulties of the development procedure and the way to remedy them are also examined. 

 

CHAPTER 4 – PERFORMANCE ANALYSIS: This chapter discusses the trying out 

technique, emphasizing the devices and strategies used to evaluate the platform and its 

performance, emphasizing the platform and ensuring reliability. It presents a thorough 

evaluation of the system with the aid of supplying a summary of take a look at instances 

and their outcomes.  

 

CHAPTER5 - CONCLUSIONS: This insightful chapter provides an overview of the 

project and key findings, limitations and industry contributions. It follows with 

recommendations for future research pathways, paving the way for more investigation and 

innovation by providing guidelines for fine-tuning testing procedures, investigating 

additional performance indicators, and addressing outstanding problems. 
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    Chapter 02: LITERATURE SURVEY 

 

 
 Chunlin Liu, Bo Lang: Finding effective type for malicious URL detection [3] 

 Chunlin et al. presented a technique in 2018 that primarily concentrates on particular 

frequency aspects. Their method yields more accurate results in the classification of 

dangerous URLs by combining machine learning techniques with statistical analysis of 

URLs. By contrasting their suggested algorithm with six other machine learning 

algorithms, they were able to determine how effective it was. The precision of 99.7% 

was demonstrated in the results, and the false positive rate was kept far below 0.4%. This 

suggests that their approach to correctly detecting and categorizing dangerous URLs is 

quite dependable. 

 

 Machine Learning to Combat Phishing Scams, FadiThabtah : 

Fadi Thabtah and colleagues used real phishing datasets and a range of variables to 

compare multiple machine learning approaches in their trials. The goal was to illustrate the 

benefits and drawbacks of machine learning predictive models as well as show how well 

they actually work to combat phishing scams. The findings showed that covering technique 

models work better as anti-phishing defenses. Muhemmet Baykara and colleagues also 

presented an Anti-Phishing Simulator application. This program advises on how to spot 

phishing emails and sheds light on the difficulties associated with phishing detection. The 

database is updated with spam emails through the use of a Bayesian algorithm. According 

to the study, the best approach is to use the email text as a keyword for effective word 

processing solely. 

 

 Client-side detection of phishing websites, Ankit Kumar Jain, B. B. Gupta [4]: 

Regarding the client-side detection of phishing websites by the application of machine 

learning: Gupta et al. and colleagues presented a novel anti-phishing strategy in Springer 

Science+Business Media, LLC, a division of Springer Nature 2017 that focuses 

exclusively on extracting features from the client side. The study's overall accuracy in 



6  

identifying phishing websites was an amazing 99.09%. The method's limitation—that it 

can only identify websites written in HTML—is acknowledged by the authors. This 

method is ineffective for identifying websites that use non-HTML code. 

 

 A Prior-based transfer learning techniques for the Phishing Detection, Yang Xin , 

Dan Li, Yangxi Ou [5]: 

Specifically, they utilize a logistic regression as the basis of a concern-based transferable 

learning method in our statistical machine learning classification for phishing website 

identification based on specific URL attributes. We have presented many models, each 

suited to a different phishing domain, due to the variable distribution of features in these 

domains. When collecting sufficient data for a new area is not feasible to repair the 

detection model and use transfer learning, our suggested workaround is to use a URL-based 

method for phishing detection. We support the use of a transfer learning technique to solve 

potential flaws in trait detection and build a more reliable and powerful model. 

 

 Feature Extraction Method, Ahmad Abunadi, Oluwatobi Akanb [6]: 

Feature Extraction Method: An Approach to Phishing Detection To make the solution 

accessible, they developed a user-friendly Flask web application in 2013. The program 

allows users to enter URLs and have the trained XGBoost model classify them in real time. 

This user-friendly tool allows individuals and groups to assess URL properties and identify 

potential security threats. 

 

 Effective detection of phishing  URLs based on machine learning, Sahingoz, O.K., 

Buber, E., Demir, O. and Diri, B., 2019 [7]. 

Effective detection of phishing URLs based on machine learning. 345–357 in Expert Systems 

with Applications, 117. It's critical to identify phishing websites in order to shield users from 

fraud. Individuals frequently fall victim to these frauds because they are ignorant of internet 

addresses, are unable to determine which websites are reliable, are too busy to double-check, or 

may not be able to view the entire address owing to deceptive tactics. To increase the accuracy 

of this identification process, they used a variety of techniques, including random forests and 

decision trees. 
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Chapter 03: SYSTEM DEVELOPMENT 

 
3.1 Analysis of the Algorithms: 

As supervised machine learning is the foundation of our entire project. A subset of 

artificial intelligence and machine learning is supervised learning. The way it operates 

is that we feed a model data and a label, and after the model is trained, it finds patterns 

in the data, links the labels to those patterns, and generates new predictions. Supervised 

learning has an enormous range of possible applications. A few of them may be used 

for spam detection or spam detection. This is how we determine whether an email is 

spam or not: if it's spam, it will be automatically deposited in a spam folder; otherwise, 

it will be deposited in your inbox. Classifying objects is another, among many others. 

Two types of supervised machine learning exist: 

 

 Classification:

Not only does it assist in finding items that we can look up using keywords, but it 

also finds our inventions that are extremely similar to ours. A section that is divided 

into topic areas known as classes and subclasses. Predictive modeling is a sort of 

problem that involves estimating the mapping characteristic from input variables to 

discrete output variables. Take an email spam detector, for example. The main 

objective of a classification algorithm, which is specially designed to forecast the 

result for a given collection of data, is to choose the category for the dataset. An 

algorithm that implements the type using a dataset is called a classifier. [8] 

 

• Regression: 

It is a supervised learning technique that makes it possible to determine the correlation 

between variables and predict the continuous output variable based only on the most 

basic or significant predictor variables. Prediction, forecasting, time collection 

modeling, and determining the causal-impact relationship between variables are among 

its specific uses. Regression involves creating a graph with the variables that best fits 

the provided data points; by using this plot, the machine learning version of the data 

can be predicted. [9] 
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Figure 3.1 Regression 

 
Figure 3.2 Classification 

 

We used the Python framework Flask in our project and imported numerous libraries 

for various uses. Eight algorithms have been selected: Random Forest, Decision Tree, 

SVM, Gradient Boost, Naive Bayes, K-Nearest Neighbor, Logistic Regression and 

Multi-layer Perceptron. Thus, this contains a variety of URL types, including phishing, 

benign, and spam URLs. We have taken dataset from Kaggle [1] which consists of 

11,054 rows and 32 columns. 
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We examine various machine learning algorithms for analyzing the characteristic in order 

to gain a thorough understanding of how the URLs that propagate phishing are 

constructed. For this project, the supervised machine learning techniques and deep 

learning techniques that we have selected are: 

 

3.1.1 Random Forest: 

Many random decision trees make up a random forest. The trees contain two different 

kinds of randomness. Every tree is initially constructed using a random sample of the 

initial data. Secondly, to produce the best split, a subset of features is randomly chosen 

at each node in the tree. More trees will prevent the model's trees from being overly 

fitted. 

The majority of the data will remain accurate while the missing values are handled by 

the random forest classifier.[10] 

 

 

                                          Figure 3.3 Random Forest 
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3.1.2 Decision Tree: 

A random forest is made up of several random decision trees. There are two distinct types 

of randomness in the trees. Each tree is first built with a random subset of the original data. 

Second, at each node in the tree, a subset of features is randomly selected in order to 

generate the best split. The model's trees won't be unduly fitted with more trees. While 

the random forest classifier fills in the missing values, the majority of the data will 

continue to be accurate.[10] 

 

 

 

 
 

                                  Figure 3.4 Decision Tree 

 

3.1.3 SVM (Support Vector Machine): 

Support vector machines (SVMs) are supervised machine learning algorithms that are 

versatile and strong, and they are utilized for both regression and classification. 

However, they are typically applied to classification issues. In essence, a hyper-plane 

in multidimensional space, the Support Vector Machine (SVM) model represents 
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different classes. To reduce the error, the SVM will create the hyper-plane repeatedly. 

SVM seeks to determine a maximum marginal hyper-plane (MMH) by classifying the 

datasets. [12] 

 

 

 

 

                                                           Fig 3.5 Support Vector Machine 

 

3.1.4 Gradient Boost: 

Under the Gradient Boosting framework, XGBoost is an open-source software library 

that implements optimized distributed gradient boosting machine learning algorithms. 

Gaining a thorough understanding of the machine learning principles and techniques 

that supervised machine learning, decision trees, ensemble learning, and gradient 

boosting are based on is essential to comprehending XGBoost. XGBoost is the ideal 

fusion of hardware and software capabilities created to optimize current boosting 

methods with maximum speed and accuracy. It is, in general, this algorithm's 

feasibility, accuracy, and efficiency. It contains algorithms for both tree learning and 

linear model solving. Therefore, its ability to perform parallel computation on a single 

machine is what gives it its speed.[13] 
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3.1.5 Flask 

A lightweight Python web framework called Flask was created to make creating web 

apps and APIs easier. The WSGI (Web Server Gateway Interface) standard is 

adhered to, and it offers a simple and uncomplicated method for developing websites. 

Fundamentally, Flask helps developers create web applications by providing 

necessary tools and conventions, freeing them up to concentrate on writing 

application logic instead of managing the intricate details of handling HTTP requests 

and responses. The framework is a well-liked option for projects ranging from small 

prototypes to larger-scale applications because of its simplicity, adaptability, and ease 

of use. Because Flask has a modular architecture, developers can easily add more 

features by integrating different extensions for things like form handling, database 

interaction, and authentication.[14]. 

 

3.1.6 Naive Bayes   

"Naive Bayes classifiers" refers to the class of classification algorithms that use Bayes' 

Theorem as its foundation. Rather than being a single algorithm, it is actually a family of 

algorithms built on the same principle: every pair of characteristics that is being classed 

stands alone. It is based on the Bayes theorem. Based on the probability of a previous 

occurrence, the Bayes Theorem determines the likelihood of a current event. Naive Bayes 

classifiers are straightforward probabilistic frameworks in statistics that apply the Bayes 

theorem. The likelihood of a hypothesis given the available information and some prior 

knowledge forms the basis of this theorem. Given that each feature in the input data is 

assumed to be independent of every other feature, the naïve Bayes classifier often 

assumes that false in real-world situations. Despite this oversimplifying assumption of an 

extra incident that has already happened, the naive Bayes classifier is still widely utilized 

due to its effectiveness and high performance in several real-world applications. [16] 

 

3.1.7  Multilayer Perceptron  

An MLP comprises an input layer, one or more hidden layers, and a layer for output. It is a 

specific type of feed forward artificial neural network. All of the layers are completely 

interconnected. An essential idea in deep learning and neural networks will be covered in 
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this article: the Multiple-layer Perceptron Neural Network. The only direction in which the 

Multilayer Perceptron (MLP) Neural Network may operate is forward. Every node is 

completely linked to the network. Every node only transmits its value in a forward way to 

the subsequent node. Backward propagation is an algorithm used by the MLP neural 

network to improve training model accuracy. [17] 

 

 
     Figure 3.6 Multilayer Perceptron 

 

3.1.8 Logistic Regression  

 

Logistic regression (LR) is a supervised machine learning technique used to assess the 

likelihood of an event, a result, or an observation to resolve binary classification problems. 

The model's output is usually binary, meaning it can be either true or false. 

Logistic regression is a technique used to sort data according to the degree of correlation 

between one or more independent variables. It is frequently used in predictive modeling, in 

which an event's mathematical likelihood of falling into a particular category or not is 

determined by the model. In binary classification problems, where the outcome variable 

indicates one of the two categories (0 or 1), logistic regression is frequently utilized. The 

sigmoid function, a logistic function, is used to map predictions in logistic regression.In 

addition, if the estimated probability generated by the sigmoid function over a predefined 

threshold on the graph, the model predicts that the instance belongs to that class. The 
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model states that if the computed probability is less than the preset threshold, the instance 

does not belong in the class.  [18] 

 

3.1.9 K-nearest neighbor  

 

A supervised, non-parametric learning technique is the k-nearest neighbors algorithm 

(KNN). A data point's classification or grouping is predicted according to how close it is to 

nearby points. KNN is a flexible technique that is frequently used in machine learning for a 

range of regression and classification applications. KNN is an acronym for K-Nearest 

Neighbor. It's an algorithm for supervised machine learning. Problem assertions involving 

regression and classification can both be resolved by the algorithm. The sign "K" indicates 

the number of closest neighbors to a new unknown variable that has to be classed or 

forecasted. KNN determines the separation between every point in the vicinity of the 

unknown data and eliminates those that have the shortest distances to it. [19] 

 

 

 
Figure 3.7 K-Nearest Neighbor  

 

3.1.10  Docker  

 

The freely accessible Docker platform makes it possible to use containerization to automate 

application deployment, scaling, and management. A lightweight substitute for classic 
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virtualization is termed containerization, in which programs are packed with their 

dependencies and operate in separate contexts known as containers. 

 

Regardless of the physical host system, containers offer apps a consistent and repeatable 

environment to function in. The libraries, binaries, and configuration files needed for the 

program to function properly are all contained in each container. Applications may operate 

reliably in a variety of settings, from development to production, thanks to this separation. 

This suggests that the program can function reliably in a variety of settings.  Docker's speed 

is a result of its utilization of containerization technologies. By isolating the program and 

its dependencies from the host operating system, containerization enables effective 

resource management. This indicates that the program can function reliably in a variety of 

settings. Docker borrows all the resources from the base operating system. [20] 

 

3.2 Design: 

 

In our project, we focused on using machine learning techniques for link classification 

(good or bad). We implemented this using Flask, a Python framework, and 

incorporated algorithms like Random Forest, Decision Tree, KNN, Naive Bayes, 

Logistic Regression, Multilayer Perceptron and Gradient Boost. The classification 

report, featuring metrics such as recall and precision, evaluates the models' 

performance. Our approach ensures accurate and reliable link classification by 

leveraging diverse algorithms and thorough performance analysis. Alternatively, the 

collection of phishing URLs is simple because of the open source supplier known as 

Phish Tank. This supplier offers a set of phishing URLs that are updated hourly and 

come in a few different formats, including CSV and JSON. The dataset is immediately 

loaded into a Data Frame upon download. 

 

We have used a comprehensive feature extraction process was undertaken to analyze the 

dataset. The features were categorized into distinct groups: Address Bar Based Features, 

Domain Based Features, and HTML and  JavaScript Based Features. Our dataset includes 

multiple features designed to evaluate the features of URLs for possible phishing activity. 

These features include the use of an IP address, the length of the URL, the presence of 
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shortened URLs, symbols like '@' in the URL, double slashes in redirection, prefixes or 

suffixes in the URL, the number of subdomains, the use of HTTPS, the duration since 

domain registration, the presence of a favicon, the use of non-standard ports, the presence 

of HTTPS in the domain part of the URL, request and anchor URLs, links in script tags, 

type of server form handler, the presence of email addresses, indication of abnormal URLs, 

website forwarding, customization of the status bar, right-click disable feature, usage of 

popup windows and iframe redirection, and the age of the domain The information includes 

the domain name system recording state, the anticipated traffic to the website, the page 

rank, the Google indexing status, the number of links referring to the page, the availability 

of a statistics report, and the label designating whether or not the URL is considered 

phishing. This dataset offers an extensive range of features for phishing threat analysis and 

URL classification. The combination of these three feature sets resulted in a comprehensive 

dataset comprising 32 features, providing a multifaceted perspective for our machine learning models 

to discern and classify URLs effectively based on their diverse attributes and characteristics. 

 

The goal of this methodical feature combination and selection process was to improve 

our model's robustness and accuracy in identifying phishing and genuine URLs. We used 

machine learning algorithms to classify URLs after finishing feature extraction and 

merging datasets, and in the end, we discovered that Gradient Boost produced the best 

accuracy out of all the algorithms we looked at. The trained Gradient Boost model was 

then stored for later use. We developed a Flask application with two HTML pages, 

index.html and result.html, to create an easy-to-use user interface. 

 

Users can enter URLs for classification using the index.html page, which also acts as an 

input interface. The results of the classification are shown on the result.html page. The 

Flask application, defined in the app.py file, was executed on our local system, providing a 

practical platform for users to interact with the trained Gradient Boost model in real-world 

scenarios. This cohesive solution, integrating the robust Gradient Boost model with the 

Flask web application, offers a user-friendly tool for users to assess and categorize URLs 

based on the machine learning model's predictions. [14] 
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Eight different algorithms were thoroughly compared, with an emphasis on how 

accurately they could classify URLs. Random Forest, Decision Tree, Multi-layer 

Perceptron, KNN, Logistic Regression, Support Vector Machine (SVM) and Gradient 

Boost, were the algorithms that were being examined. Following the training and 

assessment of every model, we discovered that Gradient Boost performed better than the 

others, obtaining an astounding accuracy score of 97.4%. The comparison process 

involved training each algorithm on labeled datasets, assessing their performance, and 

selecting the model with the highest accuracy for further deployment. Gradient Boost, 

with its ensemble learning approach and gradient boosting techniques, demonstrated 

superior predictive power in distinguishing between different types of URLs, showcasing 

its effectiveness in our specific use case. 

 

The choice of Gradient Boost as the optimal model underscores its ability to handle 

complex relationships within the data, providing a robust solution for URL classification 

in our project. This high accuracy score serves as a testament to the efficacy of Gradient 

Boost in addressing the challenges posed by diverse URL characteristics and categories. 

The Dockerfile describes the processes required to containerize our application within the 

Ubuntu EC2 environment. Beginning with a base Ubuntu image, we describe the 

installation of critical dependencies, such as Python packages and any libraries needed for 

our detection techniques. Next, we put our application code into the container and set up 

the environment to guarantee a smooth execution. In addition, we may expose appropriate 

communication ports and declare any runtime instructions required to begin our 

program within the container. This Dockerfile encapsulates our phishing 

detection system into a portable, self-contained entity, making deployment 

easier and assuring consistent performance across several settings. Overall, by 

using Docker and creating an efficient Dockerfile specific to our project's 

needs, we improve the agility, scalability, and robustness of our phishing 

detection system in the Ubuntu EC2 environment. 
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3.3 Flow Chart 

 

 

 

 

 

                                  Figure 3.3.1 Flow Chart 

 

We have predicted whether phishing websites are good or bad URLs in this project. We 

searched online and discovered some datasets before running any code. We developed a 

small piece of code to extract the feature after gathering the phishing and estimated 

websites from open source platforms. Due to the fact that there are various kinds of URLs, 

including malicious, phishing, spam, and benign URLs. We decided to take the dataset 

from Kaggle. The datasets have been reviewed, pre-processed, and separated into training 

and test sets.  We employed machine learning algorithms and deep learning algorithm to 

categorize URLs, ultimately finding that Gradient Boost yielded the highest accuracy 

among the algorithms considered. Subsequently, we saved the trained Gradient Boost 

model for future use. To create an intuitive user interface, we developed a Flask 

application with two HTML pages: index.html and result.html. Flask application, defined 

in the app.py file, was executed on our local system, providing a practical platform for 

users to interact with the trained model. Further we have created a Dockerfile which offers 

us several benefits such as consistency, portability, isolation and scalability. Docker helps 

in ensuring that application behaves consistently across different environments and can be 
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easily deployed in productions. 

 

We have carried out a number of training implementations for this project, and we 

have predicted the legitimacy of phishing websites, some of the supervised algorithms 

with deep learning algorithms have been used. 

 

 Firstly, we imported some libraries such as pandas, numpy , matplotlib,  Decision 

Tree Classifier and many more.

 

 

 

Figure 3.3.2 Libraries 

 

 

 

 We have taken the dataset from Kaggle which consists of 32 features.

 

 

Figure 3.3.3 Dataset Features 

 



20  

 Firstly we have performed feature extraction.

 

 Using IP 

 

 

 

        Figure 3.3.4 IP Address 

 Long URL 

 

 

                                      Figure 3.3.5 Long URL Extraction 

 

 Short URL 

 

 

   Figure 3.3.6 Short URL Extraction 

 

 



21  

 Symbol@ 

 

 

Figure 3.3.7 @Symbol Extraction 

 

 Redirection “//” in URL 

 

Figure 3.3.8 Redirection of (//) Symbol 

 

 Prefix Suffix 

 

 

Figure 3.3.9 Prefix and Suffix Extraction 
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 Sub Domains 

 

 

Figure 3.3.10 Sub Domains 

 https  

 

 

Figure 3.3.11 Extraction of https 

 

 Domain Length 

 

 

Figure 3.3.12 Domain Length  
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 Favicon 

 

 

Figure 3.3.13 Favicon 

 

 NontdPort 

 

 
Figure 3.3.14 Std Port Extraction 

 

 HTTPS Domain URL 

 

 

Figure 3.3.15 Https Domain URL Extraction 

 

 



24  

 Request URL 

 

 

Figure 3.3.16 Request URL 

 

 Anchor URL 

 

 

                     Figure 3.3.17 Anchor URL Extraction 
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 Script Tags 

 

 

                                           Figure 3.3.18 Script Link Tags 

 

 Server Handler 

 

 

                                             Figure 3.3.19 Server Handler Captioning 
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 Email Info 

 

 

                                        Figure 3.3.20 Email Information 

 

 Abnormal URL 

 

 
Figure 3.3.21 Abnormal URL Extraction 

 

 Website Forwarding 

 

 
Figure 3.3.22 Website Forwarding Response 
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 Status 

 

 
Figure 3.3.23 Status bar finder 

 

 Disable Right Click 

 

 
Figure 3.3.24 Disable Right Click 

 

 Using Popup Window 

 

 
Figure 3.3.25 Popping Window 
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 Iframe Redirection 

 

 
Figure 3.3.26 Redirection of iframe 

 

 Age of Domain 

 

 
Figure 3.3.27 Age Domain Handler 

 

 DNS Recording 

 

 
Figure 3.3.28 DNS Recording Handler 
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 Page Rank 

 

 
Figure 3.3.29 Page Rank Response Checker 

 

 Google Index        

  

 
Figure 3.3.30 Google Index Handler 

 

 Links Pointing To Page 

                    

 
Figure 3.3.31 Number of Links Pointing 
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 Stats Report 

                    

 
Figure 3.3.32 Matching Stats Report 

 
 

3.4 Development of the Phishing Model 

 

In the development of our URL classification model, we conducted a thorough 

exploration of machine learning algorithms and deep learning algorithms, with a focus on 

Random Forest, Decision Tree, Support Vector Machine (SVM), Gradient Boost, Logistic 

Regression, Naive Bayes, K-nearest Neighbor and multilayer Perceptron. Through 

rigorous evaluation, Gradient Boost Classifier emerged as the most effective, achieving a 

notable accuracy score of 97.4%. The feature extraction phase involved deriving 30 

relevant features from address bar, domain-based, and HTML/JavaScript-based attributes. 

This diverse dataset, encompassing both legitimate and phishing URLs, facilitated robust 

model training. Moving forward, the model's future development can include refining its 

capabilities with advanced machine learning techniques and continuous dataset updates 

to adapt to emerging online threats. The Flask web application (app.py) can be enhanced 

by incorporating features such as a more interactive user interface, detailed result 

insights, and real-time threat updates. Additionally, deploying the application on cloud 

services like AWS and using Docker can broaden its accessibility, allowing for global 

user interaction. Docker helps in ensuring that application behaves consistently across 

different environments and can be easily deployed in productions. Further improvements 

may include user authentication, features for managing and tracking URL classifications, 

and heightened security measures.  
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 Chapter 04: PERFORMANCE ANALYSIS 

 

We have carried out a number of training implementations for this project, and we 

have predicted the legitimacy of phishing websites. We have used some of the supervised 

algorithms. 

 

 To start, we imported a number of libraries, including matplotlib, pandas, 

numpy, random forest classifier, decision tree classifier, and many more.

 We have examined and pre-process the dataset and have plot the data distribution.

 

 

 
Figure 4.1.1 Importing Libraries 
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Figure 4.1.2 Data Distribution 

 

 After that we have split the dataset into test and train. 

 

 

 
Figure 4.1.3 Splitting Dataset 

 

 Now we have use Decision Tree Classifier, checking the feature importance in the 

model. 

 

 

 



33  

 
Figure 4.1.4 Decision Tree Accuracy 

 

 

 Figure 4.1.5 Accuracy vs Depth 

 

 Now we have use the random forest classifier, check the feature importance of the 

model. 
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Figure 4.1.6 Random Forest 

 

 

 
Figure 4.1.7 Training Accuracy vs Test Accuracy 
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 Now we have used Gradient Boost Classifier.  

 

 
Figure 4.1.8 Gradient Boost Accuracy 
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Figure 4.1.9 Training Accuracy vs Test Accuracy 

 
 Now we have used Multilayer Perceptron 

 

 
Figure 4.1.10 Multi-Layer Accuracy 
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 Now we have used Naive Bayes Classifier. 

 

 

 

 
Figure 4.1.11 Naive Bayes Accuracy 
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 Now we have used Support Vector Classifier. 

 

 

 

 

 
Figure 4.1.12 Support Vector Machine Accuracy 
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 Now we have used KNN Classifier Model. 

 

 

 

 

 
Figure 4.1.13 K-Nearest Neighbor Accuracy 
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Figure 4.1.14 Training Accuracy vs Test Accuracy 

 

 Now we have used Logistic Regression Model. 

 

 



41  

 
Figure 4.1.15 Logistic Regression Accuracy 

 
 
 
When comparing the accuracy of different machine learning models, it's crucial to consider 

several key points to ensure a meaningful and reliable evaluation. First, it's important to 

choose appropriate evaluation metrics beyond just accuracy, such as precision, recall, F1-

score, or AUC-ROC, depending on the nature of the data and problem. Second, utilize 

techniques like k-fold cross-validation to assess each model's performance robustness by 

training and evaluating on multiple data subsets. Third, balance model complexity with 

performance gains and interpretability, especially for real-world deployment. Some models 

may be more complex but achieve higher accuracy, so it's essential to evaluate their 

practical implications. 
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 At last we have made the comparisons of the model on the basis of accuracy. 

 

 ML Model  Accuracy  F1_score  Recall  Precision  

0  Gradient Boosting 

Classifier  

0.974  0.977  0.994  0.986  

1  Multi-layer Perceptron  0.971  0.974  0.994  0.982  

2  Random Forest  0.966  0.969  0.994  0.987  

3  SVM  0.964  0.968  0.980  0.965  

4  KNN  0.956  0.961  0.991  0.993  

5  Logistic Regression  0.934  0.941  0.943  0.927  

6  Decision Tree  0.959  0.964  0.980  0.965  

7  Naive Bayes Classifier  0.605  0.454  0.292  0.997  

 

Table 4.1 Comparison of Accuracy
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 Now we have saved our model 

 

 

Figure 4.1.16 Saving the Model 

 

4.2   Result 

 

 

Figure 4.2.1 UI 
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Figure 4.2.2 Dataset Features 
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Figure 4.2.3 Features Heat Map 

 

 
Figure 4.2.4 Feature Importance 



46  

 
Figure 4.2.5 Pair Plot of Features 

 
 

 
Figure 4.2.6 Pie Chart Phishing Count 
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                                 Figure 4.2.7 Final Accuracy 

 

 
Figure 4.2.8 AWS Console 

 
Figure 4.2.9 EC2 Instance 



48  

 

 
Figure 4.2.10 Docker File 

 

 

 
Figure 4.2.11 Docker Container
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Chapter 05: CONCLUSIONS 

 
In conclusion, our project focused on the classification of URLs into different 

categories, differentiating between legitimate and potentially malicious links. We 

employed a comprehensive approach, utilizing machine learning techniques and 

comparing four algorithms: Random Forest, Decision Tree, Support Vector Machine 

(SVM), Gradient Boost, Logistic Regression, Naive-Bayes, KNN and Multilayer 

Perceptron. After thorough evaluation, Gradient Boost emerged as the most effective 

algorithm, achieving an impressive accuracy score of 97.4%. The success of Gradient 

Boost underscores its suitability for the complexities of URL classification, 

demonstrating robust performance in distinguishing between benign and harmful links. 

The project encompassed key steps such as feature extraction, where 32 relevant 

features were derived from address bar, domain-based, and HTML/JavaScript-based 

attributes. Additionally, the incorporation of a diverse dataset, encompassing both 

legitimate and phishing URLs, contributed to the model's comprehensive training and 

performance evaluation. To make the solution accessible, we implemented a Flask web 

application with an intuitive user interface. The application allows users to input URLs 

for real-time classification using the trained Gradient Boost model. This user- friendly 

tool serves as a practical means for individuals and organizations to assess the nature of 

URLs and identify potential security threats. 

 

We created a user-friendly Flask web application in order to make the solution 

accessible. Users can input URLs into the application to have the trained Gradient 

Boost model classify them in real time. With the help of this easy-to-use tool, people 

and organizations can evaluate URLs' characteristics and spot possible security risks. In 

essence, the project successfully addressed the challenge of URL classification, 

providing a reliable and accurate solution for distinguishing between safe and 

malicious links. The utilization of Gradient Boost, coupled with the Flask web 

application, results in a versatile tool with practical applications for enhancing online 

security and threat detection. At last we have created the Dockerfile which offers us 

several benefits such as consistency, portability, isolation and scalability 

 



50  

5.2 Future Scope 

 

The future scope of this project entails enriching the Flask web application (app.py) by 

adding features like an enhanced user interface, detailed result insights, and real-time 

threat updates. There's room for advancing the machine learning and deep learning 

models, incorporating more sophisticated techniques, and maintaining an up-to-date 

dataset to adapt to evolving online threats. Potential improvements include user 

authentication, features for managing and tracking URL classifications, and enhanced 

security measures. These developments will solidify the project's position as a valuable 

tool for users seeking effective and reliable means of assessing the security of online 

links. 
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APPENDICES 

Raw Code- 

 

#importing required libraries 

 

from flask import Flask, request, render_template 

import numpy as np 

import pandas as pd 

from sklearn import metrics  

import warnings,import pickle 

warnings.filterwarnings('ignore') 

from feature import FeatureExtraction 

file = open("pickle/model.pkl","rb") 

gbc = pickle.load(file) 

file.close() 

app = Flask(__name__) 

@app.route("/", methods=["GET", "POST"]) 

def index(): 

    if request.method == "POST": 

        url = request.form["url"] 

        obj = FeatureExtraction(url) 

        x = np.array(obj.getFeaturesList()).reshape(1,30)  

        y_pred =gbc.predict(x)[0] 

  

        y_pro_phishing = gbc.predict_proba(x)[0,0] 

        y_pro_non_phishing = gbc.predict_proba(x)[0,1] 

        if(y_pred ==1 ): 

        pred = "It is {0:.2f} % safe to go ".format(y_pro_phishing*100) 

        return render_template('index.html',xx =round(y_pro_non_phishing,2),url=url ) 

    return render_template("index.html", xx =-1) 

if __name__ == "__main__": 

    app.run(debug=True) 
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