

`

ANDROID OFFLOADING USING CLOUD

A major project report submitted in partial fulfilment of the requirement

for the degree of

Bachelor of Technology in

Computer Science and Engineering

Submitted By

Shivansh Goyal (201250)

Ishan Mehta (201245)

Under the guidance and supervision of

Dr. Hari Singh Rawat

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology, Waknaghat

173234, Himachal Pradesh, INDIA

`

i

CERTIFICATE

This is to certify that the work which is being presented in the project report titled “ANDROID

OFFLOADING USING CLOUD” in partial fulfilment of the requirements for the award of the

degree of B.Tech in Computer Science And Engineering and submitted to the Department of

Computer Science And Engineering, Jaypee University of Information Technology,

Waknaghat is an authentic record of work carried out by “Shivansh Goyal(201250)’’ , “Ishan

Mehta(201245).” during the period from August 2023 to May 2024 under the supervision of

Dr. Hari Singh Rawat, Assistant Profeassor(SG) Department of Computer Science and

Engineering, Jaypee University of Information Technology, Waknaghat.

Submitted by:

Mr. Shivansh Goyal Mr. Ishan Mehta

(201250) (201245)

The above statement made is correct to the best of my knowledge.

Dr. Hari Singh Rawat

Assistant Professor(SG)

Department of Computer Science & Engineering and Information Technology Jaypee

University of Information Technology, Waknaghat,

`

ii

DECLARATION

We hereby declare that the work presented in this report entitled ‘ANDROID OFFLOADING

USING CLOUD’ in partial fulfilment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science & Engineering / Information Technology

submitted in the Department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology, Wakanaghat is an authentic record of our own

work carried out over a period from August 2023 to May 2024 under the supervision of Dr.

Hari Singh Rawat (Assistant Professor (SG), Department of Computer Science & Engineering

and Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

Shivansh Goyal Ishan Mehta

(201250) (201245)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Hari Singh Rawat

Assistant Professor (SG)

Department of Computer Science & Engineering and Information Technology Jaypee

University of Information Technology

`

iii

ACKNOWLEDGEMENT

Firstly, we express our heartiest thanks and gratefulness to almighty God for His divine

blessing makes it possible for us to complete the project work successfully.

We are really grateful and wish our profound indebtedness to Supervisor Dr. Hari Singh

Rawat , (Assistant professor (SG), Department of CSE Jaypee University of Information

Technology, Waknaghat). Deep Knowledge & keen interest of our supervisor in the field of

“Cloud” to carry out this project. His endless patience, scholarly guidance, continual

encouragement, constant and energetic supervision, constructive criticism, valuable advice,

reading many inferior drafts and correcting them at all stage have made it possible to complete

this project.

We would like to express our heartiest gratitude to Dr. Hari Singh Rawat (Assistant Professor

(SG), Department of CSE) for their kind help to finish my project.

We would also generously welcome each one of those individuals who have helped us straight

forwardly or in a roundabout way in making this project a win. In this unique situation, We

might want to thank the various staff individuals, both educating and non-instructing, which

have developed their convenient help and facilitated our undertaking.

Finally, We must acknowledge with due respect the constant support and patience of our

parents.

Shivansh Goyal Ishan Mehta

(201250) (201245)

`

iv

Table of contents

CERTIFICATE I

DECLARATION II

ACKOWLEDGMET III

LIST OF ABBREVIATIONS VI

LIST OF FIGURES VII

ABSTRACT VIII

1 INTRODUCTION …………………………………………………………………1

1.1 Introduction ……………………………………………………………………….1

1.2 Problem Statement ………………………………………………………………...2

1.3 Objectives …………………………………………………………………………3

1.4 Significance and motivation of the project report ………………………………...4

2 LITERATURE SURVEY ………………………………………………..6

2.1 Overview of relevant literature ……………………………………………………6

2.1.1 A summary of the relevant papers ………………………………………….6

2.2 Key gaps in the literature ………………………………………………………...17

3 System Development …………………………………………………...18

3.1 Requirements and Analysis ……………………………………………………...18

3.1.1 Functional Requirements ………………………………………………….18

3.1.2 Non-Functional Requirements …………………………………………….18

3.1.3 Hardware Requirements …………………………………………………..20

3.1.4 Software Requirements …………………………………………………...21

3.2 Project Design and Architecture …………………………………………………23

3.2.1 Methodology ………………………………………………………………24

3.3 Implementation …………………………………………………………………..31

3.4 Key Challenges …………………………………………………………………..38

`

v

4 Testing …………………………………………………………………...39

4.1 Testing Strategy ………………………………………………………………….39

5 Results and Evaluation ………………………………………………...40

5.1 Results …………………………………………………………………………...40

6 Conclusions and Future Scope ………………………………………...43

6.1 Conclusion ……………………………………………………………………….43

6.2 Future Scope ……………………………………………………………………..44

REFERENCES …………………………………………………………….45

`

vi

List of Abbreviations

Abbreviation Name

MCC
Mobile cloud computing

OCR Optical character recognition

API Application programming interface

SDK
Software Development Kit

RAM Random Access memory

UI User Interface

CPU Central processing unit

JDK Java Development Kit

JRE Java Runtime Enviroment

VS Visual Studio

`

vii

List of Figures

Fig. No. Figure Page No.

1 Project Design 23

`

viii

ABSTRACT

In the contemporary landscape dominated by smartphones, the performance demands imposed

by resource-intensive applications pose a significant challenge. This project addresses this

challenge through the strategic synergy of Android and concept of cloud computing, aiming to

optimize the operational efficiency of applications through offloading computational tasks.

The envisioned system orchestrates a seamless dialogue between Android devices ,orchestrating

a discerning approach to task allocation. By intelligently discerning between tasks suitable for

local processing and those meriting cloud-based computation, the project seeks to enhance the

overall responsiveness and computational capacity of Android applications.

Integral to this endeavor are robust communication protocols, sophisticated task partitioning

algorithms, and a steadfast commitment to data security and privacy. Additionally, the project

undertakes a meticulous analysis of network latency and bandwidth considerations, seeking to

strike an optimal equilibrium between computational offloading and communication overhead.

This research not only contributes to the evolving domain of mobile computing but also offers

practical insights for developers, researchers, and industry stakeholders vested in harnessing the

potential of cloud-based offloading within the Android ecosystem. By furnishing a

comprehensive examination of the benefits and challenges inherent in Android offloading, this

project establishes a foundation for future advancements in mobile computing paradigms.

`

1

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

In a digital age dominated by smartphones, the search for optimal performance within resource-

intensive applications is more pertinent than ever. This project introduces a dynamic

collaboration between Android devices and concept of cloud computing, offering a strategic

solution to enhance computational efficiency.

As our reliance on smartphones grows, so does the need for innovative approaches to improve

device performance. This project positions itself at the forefront of mobile computing and cloud

technology, aiming to improve the execution of resource-demanding applications through the

distribution of computational tasks.

The central idea revolves around the relationship between Android devices and cloud

infrastructure, wherein computational offloading becomes a strategic method to alleviate local

hardware constraints. By offloading computational tasks we can run high resource demanding

application.

The core idea of this project is that the computational tasks will be offloaded to some other device

, virtual device or cloud . That task will be done there and result will get back to original device.

This project addresses the immediate challenges presented by resource-intensive applications in

today's world.

`

2

1.2 PROBLEM STATEMENT

Within the dynamic landscape of mobile computing, smartphones have seamlessly integrated

into our daily lives. Despite their extensive use and continually improving features, Android

devices face intrinsic limitations in terms of computational power, memory, and battery life.

Applications that require significant resources, such as real-time data processing, machine

learning, or intricate graphics rendering, often encounter performance issues when executed

solely on mobile hardware. This not only results in slower response times and increased latency,

negatively impacting user experience, but also hastens battery drain, reducing the device's

operational duration.

A viable solution to these challenges is computational offloading, where intensive tasks are

shifted from the mobile device to more powerful remote servers.

The successful implementation of computational offloading in Android applications has the

potential to revolutionize mobile computing by overcoming the inherent limitations of mobile

devices. This project seeks to address the critical challenges of latency, security, energy

consumption, and integration, paving the way for more powerful and efficient mobile

applications.

`

3

1.3 OBJECTIVES

Strategic Framework Development:

Create an efficient framework for offloading computational tasks from Android, emphasizing

seamless integration and strategic distribution.

Intelligent Task Management:

Develop sophisticated task partitioning algorithms to intelligently distribute workloads between

local and cloud processing, optimizing overall system performance.

Network Latency Mitigation:

Investigate and apply strategies to mitigate the impact of network latency, striking an optimal

balance between computational distribution and communication overhead.

Scalable System Architecture:

Design a scalable system architecture for seamless integration with diverse Android devices,

accommodating varying computational demands and evolving workload requirements.

User-Centric Experience Enhancement:

Focus on improving the end-user experience by minimizing response times, extending battery

life, and optimizing resource utilization through user-centric offloading strategies.

Developing a Modular Framework:

 Building a modular and scalable framework that can be easily integrated into various Android

applications without significant modifications to existing codebases.

`

4

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT

Performance Boost:

Swift response times and optimized system performance through intelligent offloading of

computational tasks .

Battery Efficiency:

Potential extension of device battery life by smartly shifting computational burdens to the cloud

or nearby device.

Scalability and Adaptability:

A flexible system architecture accommodating diverse Android devices and evolving

computational demands.

Security and Privacy Focus:

Robust measures to fortify data security and privacy during offloading, enhancing overall system

trustworthiness.

Network Optimization:

Efficient network resource utilization through strategic management of latency and

communication overhead.

User-Centric Excellence:

Enhanced user experience with reduced response times, prolonged battery life, and personalized

offloading strategies.

Research Contribution:

Valuable insights contributing to the evolution of Android offloading technologies and

methodologies.

Technological Innovation:

Pioneering solutions addressing challenges in mobile computational offloading.

`

5

Real-World Adaptation:

Rigorous testing under diverse scenarios ensures reliability in varied network conditions.

`

6

CHAPTER 02: LITERATURE SURVEY

2.1 Overview of relevant Literature

A Survey of Computation Offloading for Mobile Systems[1]

The paper discusses computation offloading in mobile systems, detailing the historical research

evolution, the dual aims of improving performance and saving energy, and key factors

influencing these goals. It emphasizes conditions favoring each purpose, such as heavy

computation, fast servers, and minimal data exchange for performance, and low mobile system

power, efficient data transmission, and idle power consideration for energy savings.

 The role of enabling technologies like wireless networks, mobile agents, and cloud computing

is highlighted, with a conclusion emphasizing offloading's crucial role in balancing demanding

applications with mobile resource limitations.

Proposed Method:

1. Introduces a condition for performance improvement based on task characteristics, mobile

system speed, server speed, data exchange, and bandwidth.

2. Emphasizes energy constraints in mobile systems and the potential of offloading to extend battery

life.

3. Discusses the advantages and challenges of static and dynamic offloading decisions during

program development or execution.

4. Investigate decision-making in computation offloading for improved performance and energy

savings.

Algorithm Used:-

𝒘

𝒔
>

𝒅

𝑩
+

𝒘

𝒔

Here-

W - is the amount of computation

d - input data

B – Bandwidth

S – server speed

`

7

Offloading Android Applications to the Cloud without Customizing

Android[2]

The research paper introduces a novel framework designed for Android smartphones to address

resource constraints by transferring compute-intensive tasks to a cloud-based Android virtual

machine. This innovative framework segregates front-end and back-end tasks, leveraging

Android's architecture and AIDL for redirection. It builds upon earlier research on Virtual

Smartphone over IP and incorporates a deployment strategy comprising a developer's assistant

tool, a user's service offloader, and cloud-based Virtual Smartphones.

Evaluation metrics encompass total response time, energy consumption, and remaining battery

life. Noteworthy limitations involve static offloading decisions and the absence of support for

NDK and system services. The proposed framework enhances the authors' previous work by

improving GUI responsiveness and enabling offline execution.

Proposed Method

1. Design a robust framework architecture that effectively separates front-end and back-end tasks.

Utilize Android's architecture and Android Interface Definition Language (AIDL) for efficient

redirection of tasks between the local device and the cloud-based virtual machine.

2. Develop a sophisticated task offloading mechanism that determines which tasks should be

offloaded to the cloud-based virtual machine. Consider factors such as task complexity, resource

availability on the local device, and network conditions for optimal decision-making.

3. Improve upon the authors' previous work by specifically focusing on enhancing GUI

responsiveness and introducing support for offline execution. Implement mechanisms to ensure

a seamless user experience even when the device is not connected to the cloud.

4. Define and incorporate performance metrics to evaluate the effectiveness of the framework. Key

metrics include total response time, energy consumption, and remaining battery life. Develop

algorithms to dynamically adjust task offloading decisions based on real-time performance

feedback.

`

8

An Android-based Application for Computation Offloading in

Mobile Cloud Computing[3]

The research paper centers on addressing the challenge of computation offloading within the

context of mobile cloud computing (MCC). Computation offloading pertains to the delegation of

tasks from devices with limited resources to more robust mobile devices. The authors introduce

an Android-centric application named ClientFramework, designed to facilitate the offloading of

tasks from client devices. Additionally, they create an OffloadingServer application, serving as

an intermediary between service providers and receivers. This application manages the

processing of offloaded requests and the transmission of results back to the originating devices.

Proposed Method:-

Android-Based Applications:-

• ClientFramework: Developed for mobile devices, it allows users to offload

computation-intensive tasks. Users can act as either Service Providers or Service

Receivers but not both simultaneously.

• OffloadingServer: Developed in Java, it acts as an interface between Service Providers

and Service Receivers. It processes offloaded requests, manages service offers, and

allocates tasks to available Service Providers.

System Components:-

• Service Providers: Devices with high computing capacity that can be used to perform

computationally intensive tasks for Service Receivers.

• Service Receivers: Devices with limited computing power that offload tasks to Service

Providers for more efficient execution.

• Offloading Server: Facilitates communication between Service Providers and Service

Receivers, manages offloading requests, and allocates tasks using the proposed auction-

based mechanism.

Task Computation time:

𝑇 =
𝑐

𝑤
+

(din + 𝑑𝑜𝑢𝑡)

𝑣

Here:

`

9

din – Input data size

dout – Output data size

The greedy offloading mechanism

Input:

• Task offloading requests (ri) and service offers (si) with processing power, bid (bi), and

available time.

Auction Mechanism:

• Greedy auction at discrete time intervals.

Sorting:

• Sort ri in descending order of ci/di (computation/deadline).

• Sort si in ascending order of bi/wi (bid/processing speed).

Resource Allocation:

• Process requests in the order of arrival.

• Allocate based on conditions:

1. ri completes on sj before ri’s deadline.

2. ri completes on sj before sj’s available time ends.

3. Offloading ri to sj is faster than local completion.

Bid's Role:

• Bid (bi) influences sorting and helps prioritize cost-effective service offers.

Output:

• Return the final allocation of service offers to task offloading requests.

`

10

A transparent code offloading technique for Android devices[4]

The research paper introduces a method for seamlessly integrating code offloading functionalities

into Android devices within the domain of Mobile Cloud Computing (MCC). The objective is to

improve the performance of compute-intensive applications and mitigate the energy consumption

of mobile devices. Here is an overview of the main highlights outlined in the paper:

Introduction:

• Mobile devices, despite being resource-poor, are expected to offer performance and functionality

comparable to desktops.

• Compute-intensive applications, requiring powerful processors and abundant resources, face

limitations on mobile devices.

• Mobile Cloud Computing (MCC) addresses these constraints by offloading local computation to

more resource-rich computers, such as cloud infrastructure or remote servers.

Proposed Technique:

• The paper introduces a transparent code offloading technique for Android devices. Unlike some

existing techniques, this proposal does not require modifications to the Android system firmware

or application source code.

• The Xposed Framework is utilized to transparently modify Android Framework methods,

allowing tasks to be executed remotely without altering the applications.

`

11

Towards Computational Offloading in Mobile Device Clouds[5]

The research paper focuses on the concept of Mobile Device Clouds (MDCs) and explores the

benefits of computational offloading among a set of mobile devices within this environment.

Here is a breakdown of the key components and contributions of the paper:

Emulation Testbed:

• Implements a testbed to quantify potential gains in execution time and energy consumption

through offloading to an MDC.

• Evaluates five communication technologies (Bluetooth 3.0, Bluetooth 4.0, WiFi Direct, WiFi,

and 3G).

• Shows up to 80% and 90% savings in time and energy, respectively, compared to offloading

to the cloud.

MDC Experimental Platform:

• Develops an experimental platform for evaluating MDC-based solutions.

• Measures energy consumption on mobile devices while performing tasks using different

communication technologies.

• Creates an Android-based mobile application for customizable and generic offloading.

Social-Based Offloadee Selection Algorithms:

• Addresses the challenge of selecting offloadee devices in MDCs.

• Proposes social-based algorithms utilizing contact history, friendship relationships, and

common interests.

• Evaluates algorithms using real data sets from a conference setting.

Offloadee Selection Algorithm:

Algorithm 1 forward(u, Tt, subtasks, Type)

Require: subtasks > 0

Require: Neighbours =/ 0

1: function SELECTBESTCANDIDATE(Type,Neighbours) ->

 select the best Type-based neighbour candidate

2: end function

`

12

3: for subtasks ≥ 0 do

4: v ← SELECTBESTCANDIDATE(Type,Neighbours)

5: Send(v, Tt/subtasks)

6: Neighbours ← Neighbours − {vk}

7: subtasks = subtasks − 1

8: end for

`

13

Adaptive Computation Offloading from Mobile Devices into the

Cloud[6]

The paper presents Mobile Augmentation Cloud Services (MACS), a middleware crafted to

tackle the constraints posed by limited processing power and battery life in mobile phones,

which often hinder the execution of computationally intensive applications. MACS facilitates

the adaptive extension of Android application execution from a mobile client into the cloud,

providing a remedy for resource limitations. This middleware manages adaptive application

partitioning, resource monitoring, and computation offloading, enabling elastic mobile

applications to effortlessly leverage remote computing resources. The evaluation results

showcase noteworthy energy savings and performance enhancements, particularly for

applications involving intricate algorithms and substantial computations.

Proposed method:-

• MACS middleware enables the execution of elastic mobile applications, dynamically adjusting

the partitioning between the device and the cloud during runtime.

• MACS integrates with the established Android application model.

• Applications are structured using Android services pattern: core application (GUI, sensors) and

offloadable services.

• Metadata for each service includes type, memory cost, code size, and dependency information.

The cost function is represented :

Min (Ctransfer * wtr + Cmemory * wmem + Ccpu * wcpu)

Where

Ctransfer- Transfer cost

Cmemory – Memory cost of mobile device

Ccpu – CPU cost on mobile device

W – cost of each weight

`

14

Process Offloading from Android Device to Cloud Using JADE[7]

The research paper explores issues related to power consumption, restricted processing

capabilities, and storage limitations in mobile devices. Emphasis is placed on the offloading of

data, applications, processes, and services to the cloud to leverage its processing power.

However, the dependence on cloud providers for security introduces apprehensions. The

suggested solution involves a mobile agent-based framework utilizing JADE (Java Agent

DEvelopment Framework) to facilitate the secure transmission of data between remote nodes.

Mobile agents autonomously migrate bundled state and code to a cloud environment without

user intervention, bolstering security through intelligent behaviors designed to detect

tampering.

Proposed method:-

• Utilize JADE (Java Agent Development Framework) for a mobile agent-based solution.

• Leverage mobile agents to facilitate the autonomous migration of bundled code and state

between mobile devices and the cloud.

• Enable agents to autonomously detect tampering by malicious hosts during data transmission

and execution.

• Bundle data, including code, instructions, and protocols, into mobile agents.

• Utilize JADE technology to encapsulate and transmit the bundled data between remote nodes.

• Allow mobile agents to migrate between cloud hosts autonomously.

• Implement a mechanism to save the current state of data, re-bundle, and migrate to alternate

remote containers upon detection of security threats.

`

15

Literature Review Table

S.

No

.

Paper Title

[Cite]

Journal/

Conference

(Year)

Tools/

Techniques/

Dataset

Results

Limitations

1 A Survey of

Computation

Offloading

for Mobile

Systems

10 April 2012

© Springer

Science+Busines

s Media, LLC

2012

Java and XML,

Virtualization

Different

types of

algorithms

used to

partition

and offload

programs.

Less recent

data

2 Offloading

Android

Applications

to the Cloud

without

Customizing

Android

Eighth IEEE

PerCom

Workshop on

Pervasive

Wireless

Networking

2012, Lugano (23

March 2012)

Android's AIDL

(Android

Interface

Definition

Language)

Reduction in

time and

energy to

compute data

Dynamic

Offloading

Decision

should be

preffered.

3 An Android-

based

Application

for

Computation

Offloading in

Mobile

Cloud

Computing

Proceedings of

ACM/CSI/IEEE

CS Research &

Industry

Symposium on

IoT Cloud For

Societal

Applications

(IoTCloud'21)

Android-based

application

ClientFramewor

k,

OffloadingServe

r , computational

algorithm

Proposed

offloading

mechanism

will improve

task execution

time by a

considerable

amount.

More focus

on android

than

offloading

`

16

4 A transparent

code

offloading

technique for

Android

devices

2017 13th

International

Wireless

Communications

and Mobile

Computing

Conference

(IWCMC)

Xposed

Framework,

virtual machine,

Android 6.0.1

Gains up to

70% in terms

of

performance

Lack of

decision

algorithm

5 Towards

Computation

al Offloading

in Mobile

Device

Clouds

2013 IEEE

International

Conference on

Cloud Computing

Technology and

Science

Android

application ,

Java Sockets ,

traffic shaper

50% gain in

time and 26%

gain in energy

Lot of

physical

infrastructure

is used

6 Adaptive

Computation

Offloading

from Mobile

Devices into

the Cloud

2012 10th IEEE

International

Symposium on

Parallel and

Distributed

Processing with

Applications

Android

application ,

MACS

middleware

95% energy

savings and

significant

performance

gains

Overdepende

nt on cloud

sever , static

decision

making

7 Process

Offloading

from Android

Device to

Cloud Using

JADE.

2015

International

Conference on

Circuit, Power

and Computing

Technologies

[ICCPCT]

JADE , Mobile

Agent-Based

Offloading:

Successful

implementatio

n of mobile

agent-based

offloading

using JADE

Security

Enhancement

, optimization

`

17

2.2 KEY GAPS IN THE LITERATURE

While summarizing the research papers, several key gaps and potential areas for improvement

were identified across the studies:

Security Concerns:

• Most papers acknowledged security challenges in mobile offloading.

• There's a dependency on cloud providers for security, and potential threats from malicious hosts

or code tampering were highlighted.

• Proposed solutions involve intelligent agent behaviours, but the effectiveness of these measures

might need further validation.

Hardware Dependency:

• Some frameworks, like MAUI, were noted for being dependent on specific hardware

architectures.

• Issues related to different CPU instruction architectures between mobile devices and servers

were recognized.

Limited Real-World Application Scenarios:

Many studies offer comprehensive theoretical frameworks or simulations but lack extensive

validation through real-world application deployments. This gap makes it difficult to gauge the

practical effectiveness and challenges of these solutions in diverse, real-world environments.

Support for Diverse Technologies and Platforms:

Many studies focus on specific technologies or platforms (e.g., Android, JADE), potentially

limiting their applicability. The integration of offloading techniques with a broader range of

technologies, such as Bluetooth , Wi-Fi direct and emerging communication technologies like

5G, needs more attention.

`

18

CHAPTER 3: SYSTEM DEVELOPMENT

3.1 REQUIREMENTS AND ANALYSIS

3.1.1 Functional requirements

Task Offloading:

• Service Receivers should be able to submit computation-intensive tasks for offloading.

• Service Providers should be able to offer their resources for task execution.

Communication Interface:

• Establish a reliable communication interface between the offloadingMaster and

OffloadingSlave.

• Ensure secure data transmission and reception.

Task Allocation:

• The system will allocate offloading tasks to available slave devices.

• Factors like battery percentage , CPU frequency, and time spent during task allocation will be

taken care of.

Results Transmission:

• Successful completion of tasks by slave device should trigger the transmission of results back

to the master device.

• Results will be efficiently communicated back.

`

19

3.1.2 Non - Functional requirements

Performance:

• The system should exhibit low latency and high responsiveness in processing offloading

requests and task allocations.

• Offloading tasks should show improved performance compared to the local execution of tasks.

Scalability:

• The system must be scalable to handle concurrent and multiple offloading requests.

• Ensure that the system's performance does not significantly go decreasing with an increase in

user base.

Security:

• Ensure secure communication channels between the offloadingMaster and OffloadingSlave.

Reliability:

• The system should be reliable, properly handling downtime.

• Properly implement error-handling mechanisms to address potential issues during task

offloading.

Usability:

• The user interfaces UI of offloadingMaster and OffloadingSlave should be intuitive and user-

friendly.

• Ensure easy navigation of the user .

• Should be easy to understand interface.

`

20

3.1.3 HARDWARE REQUIREMENTS

The hardware requirements are as follows:

• Laptop: A laptop with enough battery power and RAM is needed to run android studio.

• Android Phones : Mobile devices which act as offloadingMaster and OffloadingSlave

having enough processing power to handle computation-intensive tasks efficiently.

• Connectivity : Reliable Wi-Fi connectivity , Bluetooth other suitable wireless

communication technology.

• GPS Module: The device should have a GPS module to provide location data (latitude and

longitude).

• Battery Sensor: The device should have a battery sensor capable of reporting battery level

and other battery status information.

• Android Version: The device should be running at least Android 6.0 (Marshmallow) or

higher to ensure compatibility with the APIs used in the application

• Mobile devices should have developer options and USB debugging to be able to run as

offloadingMaster or offloadingServer.

• Compatible with Java runtime environments and networking protocols to support the proposed

computation offloading mechanism.

`

21

3.1.4 SOFTWARE REQUIREMENTS

The software requirements needed for the completion of the project are as follows:

• Java Runtime Environment (JRE): JRE installed for executing the Java-based android

application.

• Operating System: Android OS for running the android application.

• Android Studio: Android Studio serves as the official integrated development environment

for Google's Android operating system. We can also use Netbeans or eclipse instead of Android

studio.

• JDK(Java Development Kit): The Java Development Kit (JDK) represents a distribution

of Java Technology provided by Oracle Corporation. It implements both the Java Language

Specification (JLS) and the Java Virtual Machine Specification.

Libraries and imports:

• android.bluetooth.BluetoothDevice

• android.bluetooth.BluetoothSocket

• android.content.BroadcastReceiver

• android.location.Location

• android.location.LocationListener

• android.os.BatteryManager

• android.provider.Settings

• android.widget.Button;

• android.widget.ListView;

• android.widget.TextView;

• android.widget.Toast

`

22

Required Permissions:

• ACCESS FINE LOCATION

• ACCESS COARSE LOCATION

• INTERNET

• BLUETOOTH

• BLUETOOTH ADMIN

`

23

3.2 PROJECT DESIGN AND ARCHITECTURE

Project design

Fig1

`

24

3.2.1 METHODOLOGY

Implementation of Offloading Master

The offloading master application acts as the central hub for user interaction and distributed

computation in this project. It provides an interface for users to enter matrices and displays the

final results .

Here's a breakdown of its basic functionalities:

User Interface (UI) Management: This section handles user interactions like receiving matrix

inputs, triggering Bluetooth operations, and displaying results.

Bluetooth Management: This component takes care of Bluetooth functionalities like enabling,

connecting to paired devices, and data transfer. It establishes and maintains the connection with

the slave device, potentially fetching battery level and location information upon user request.

Matrix Transfer: When offloading computation, the master prepares the matrices for

transmission by converting them into a format suitable for Bluetooth communication (e.g.,

JSON). It then sends this formatted data to the slave device for processing.

Local Matrix Multiplication: The master device can also perform the matrix multiplication

itself, providing an alternative to offloading the task. This might be useful if offloading proves

inefficient or undesirable due to specific circumstances.

Power Consumption Analysis: The code likely monitors and measures power usage during

both local computation and Bluetooth communication. This allows for comparing the

efficiency of offloading calculations to the slave device versus performing them locally on the

master device.

`

25

User Result Display: Finally, the master receives the computed results (C) either from the

slave device or from the local computation module and presents them to the user through the

UI.

Methods in offloading master:-

initializeByAttributes():

This function connects UI elements (buttons, text views, etc.) in the layout file to their

corresponding member variables in the MainActivity class. This creates a link between the

visual elements and the code that controls them.

onCreate():

This is a standard function called when the activity is first created. It performs various

initializations like:

• Registering a broadcast receiver to listen for battery level changes.

• Requesting location permissions.

• Setting up Bluetooth functionalities:

o Enabling Bluetooth (if not already enabled).

o Displaying a list of paired devices for the user to select.

• Defining methods within this function for handling button clicks related to:

o Bluetooth activation

o Displaying paired devices

o Selecting a device from the list

o Transferring matrices for offloading computation

o Performing computation on the master device (local computation)

o Requesting information from the slave device (battery level, location)

calcPower():

This function retrieves the current battery charge counter and returns the value. This value can

be used to calculate power consumption during different operations.

`

26

Bluetooth Functions:

These functions handle various Bluetooth functionalities:

• enableBluetooth(): Turns on Bluetooth on the master device.

• displayPairedDevices(): Retrieves a list of paired Bluetooth devices and displays them

for user selection.

• connectToSlaveDevice(): Establishes a Bluetooth connection with the selected slave

device.

matTransfer():

This function handles transferring matrices to the slave device for offloading computation. It

involves:

• Retrieving matrix values from user input fields.

• Converting the matrices to a format suitable for transmission (e.g., JSON).

• Sending the formatted data over Bluetooth to the slave device.

• Updating the power consumption data for distributed computation using calcPower().

masterComp():

This function performs matrix multiplication on the master device (local computation). It

involve:

• Retrieving matrix values from user input fields.

• Performing the multiplication algorithm using the retrieved matrices.

• Updating the power consumption data for local computation using calcPower().

reqInfo():

This function sends a request to the slave device to get its battery level and location

information. It involve:

• Creating a JSON message containing a request type (e.g., "getBatteryLevel").

• Sending the request message over Bluetooth to the slave device.

`

27

convertToString() :

This function convert an integer array (representing a matrix) to a string for better display in

the UI. It's helpful for presenting the matrices in a user-friendly format.

handler:

This function processes messages received from the Bluetooth connection. It handle different

message types based on predefined formats:

• Messages indicating successful/failed pairing with a slave device.

• Messages containing battery level and location information received from the slave

device.

• Messages with computation results sent back by the slave device.

• The handler would then update the UI or perform actions based on the received message

type.

Methods in slave:-

initializeByAttributes()

This Initializes UI elements by finding and assigning them to variables. It finds and assigns UI

elements like buttons (bluetoothActivate, searchBtn), list view (listDevices), and text views

(batteryDisp, compExecTime, conStat, msgRec).

onCreate():

This standard function performs initializations on the slave device when the application starts.

It involve:

• Sets the layout for the activity using setContentView.

• Initializes UI elements and registers a battery information receiver.

• Requests location updates and handles location changes.

• Requests Bluetooth activation and sets up listeners for Bluetooth-related buttons.

• Starts a Bluetooth server (ServerClass) when the "Listen" button is clicked.

• Calls listDevMethod to handle item clicks in the device list.

onReceive():

`

28

This function handles incoming messages received over the Bluetooth connection from the

master device. It involve:

• Identifying the message type based on predefined formats.

• Processing different message types:

o Messages containing matrices sent for offloading computation.

o Messages requesting battery level or location information from the master

device.

• Extracting the data from the received message (e.g., matrix values from JSON format).

MatrixMultiplication:

This function performs the matrix multiplication on the slave device. It involve:

• Parses input strings (numOne, numTwo) representing matrices and performs matrix

multiplication.

• Calculates power consumption based on the initial and final power values.

• Displays the power consumption in the UI .

• Returns the result of matrix multiplication as a 2D array.

Handler:

• Handles messages received from Bluetooth communication.

• Processes different message types (SEARCHING, PAIRING, PAIRING_SUCCESS,

PAIRING_FAIL, MESSAGE_DETECTED) using a switch-case statement.

• Parses JSON messages received and takes appropriate actions based on the message

content.

• Initiates matrix multiplication, updates UI elements, and sends responses over

Bluetooth.

ServerClass extends Thread

• Represents a Bluetooth server thread.

• Creates a Bluetooth server socket (servSock) and listens for incoming connections.

• Handles incoming connections and sets up communication threads (SendReceive) for

data exchange

`

29

calcPower()

• Calculates power consumption based on battery charge counter.

• Retrieves the battery charge counter using BatteryManager.

• Returns the calculated power consumption value.

listDevMethod()

• Handles item clicks in the Bluetooth device list.

• Sets an item click listener for the device list (listDevices).

• Initiates a Bluetooth client connection (ClientClass) when an item is clicked and

updates UI status accordingly.

Interaction between offloading master and Offloading slave

The interaction between the offloading slave and master applications in this project follows a

client-server model using Bluetooth communication:

Master (Client):

1. Initiates connection: Establishes a Bluetooth connection with the selected slave

device.

2. Sends matrices :

a. Prepares matrices for transmission by converting them to a suitable format (e.g.,

JSON).

b. Sends the formatted data over Bluetooth to the slave device.

3. Requests information:

a. Sends a request message over Bluetooth asking for the slave's battery level or

location information (if desired).

4. Receives results:

a. Waits for a response from the slave device.

b. Receives the computed result sent back by the slave device in a transferable

format (e.g., JSON).

5. Receives information:

`

30

a. Receives a response message containing the requested battery level and location

information from the slave device .

6. Displays results:

a. Converts the received result back to a human-readable format .

b. Displays the results and the received information (battery level, location) to the

user.

Slave (Server):

1. Waits for connection: Listens for incoming Bluetooth connections from the master

device.

2. Receives matrices:

a. Upon receiving a connection and data from the master, extracts the matrices

from the formatted message (e.g., JSON).

3. Performs computation:

a. Executes the matrix multiplication algorithm using the received matrices.

4. Responds to information request:

a. If the master requests information (battery level, location), retrieves the data and

sends it back in a formatted message.

5. Sends results:

a. Converts the calculated result to a transferable format (e.g., JSON).

b. Sends the formatted result back to the master device over Bluetooth.

Communication Protocol:

1. It uses Bluetooth for efficient communication.

2. Data transfer between devices relies on a predefined message format (e.g., JSON) for

clarity and ease of parsing.

`

31

3.3 IMPLEMENTATION

The following are steps to implement the project:

3.3.1 Downloading essential software

The initial step to develop the project was downloading essential tools that would be further

required in the making of the project. So we installed the Android studio and netbeans software

which are necessary for building and run android application .

3.3.2 Downloading JRE

The next important step was to download JRE(Java Runtime Enviroment). JRE has many tools

and libraries and also JVM (Java Virtual machine).

`

32

3.3.3 Master Application Development:

Now start working on offloading master application. Download all the required dependencies.

➢ User Interface: Create a user interface with elements like buttons, text fields, and a

results display area using the android studio.

➢ Bluetooth Management: Implement functionalities to enable/disable Bluetooth, scan

for paired devices, connect to the selected slave device, and manage data transfer over

Bluetooth.

➢ Matrix Handling: Develop classes or data structures to represent matrices, including

functions for input handling, conversion to transferable formats (JSON), and

conversion back after receiving from the slave.

➢ Local Computation: Implement the matrix multiplication algorithm within the master

application if local computation is desired.

➢ Power Consumption Analysis : Include functions to monitor power usage during local

computation and Bluetooth communication for comparison purposes.

➢ Communication Logic: Implement functions to send matrices (A, B) to the slave for

offloading, receive results (C), handle potential errors, and manage communication

flow.

`

33

➢ Information Request : Develop functions for sending requests to the slave device to

retrieve battery level and location information and process the received data.

`

34

`

35

3.3.4 Slave Application Development:

This follows similar principles as the master application, but with a focus on receiving data,

performing computations, and sending results back:

➢ Implement functionalities to listen for incoming Bluetooth connections.

➢ Process received data (matrices A, B) and extract them from the chosen format (e.g.,

JSON).

➢ Implement the matrix multiplication algorithm using the received matrices.

➢ Respond to information requests from the master by retrieving battery level and

location data (if permissions granted) and sending it back.

➢ Send the computed result (C) back to the master device in a transferable format.

➢ Handle errors related to receiving data, performing calculations, or communication

issues.

`

36

`

37

`

38

3.4.5 KEY CHALLENGES

Some key challenges that we faced while developing this project are:

• Communication Protocols: Implementing efficient and secure communication protocols

between the mobile devices can be challenging.

• Concurrency and Scalability: Managing concurrent offloading requests and ensuring

scalability to handle a large number of devices simultaneously can be complex.

• Optimizing Offloading Decisions: Developing algorithms to decide when and what tasks to

offload to maximize the benefits without causing unnecessary delays or resource consumption.

• Error Handling and Fault Tolerance: Ensuring robust error handling and fault tolerance

mechanisms to handle unexpected scenarios and ensure system stability.

• Making of Application : Making of entire application is itself a very difficult task . It was a

big challenge to create this application.

`

39

CHAPTER 4: TESTING

4.1 TESTING STRATEGY

This testing strategy emphasizes a multi-layered approach to ensure the offloading project

functions as intended. It involves testing individual components, communication protocols, and

overall user experience.

Unit Testing:

➢ Focus on testing individual functionalities within each application (master and slave).

➢ Utilize unit testing frameworks (e.g., JUnit for Java) to create isolated test cases for:

o Bluetooth functionalities (e.g., enabling, connecting, sending/receiving data)

o Matrix operations (e.g., matrix creation, conversion to/from JSON)

o Local computation logic.

o Information retrieval .

o

Communication Testing:

➢ Test the communication protocols between the master and slave applications.

➢ Set up controlled environments to simulate various scenarios:

o Successful Bluetooth connection and data transfer

o Connection failures

o Invalid data formats (e.g., incorrect JSON messages)

o Unexpected messages or disconnections

Performance Testing:

➢ Evaluate the performance of offloading computations compared to local execution.

➢ Measure factors like:

o Time taken for computation on the slave device

o Time taken for data transfer over Bluetooth

o Battery consumption during local and offloaded computation.

➢ Analyze the results to understand the efficiency gains or trade-offs associated with

offloading calculations.

`

40

CHAPTER 5: RESULTS AND EVALUATION

5.1 RESULTS

1. Performance Improvement:

• The experiments conducted demonstrated significant improvements in task execution time.

• Testing showed significant reduction of load on the master devixe..

2. Device Utilization:

• The utilization of offloading slave effectively demonstrated the concept of computational

offloading, proving that devices with higher processing capacities can efficiently handle

computationally intensive tasks.

3. Variable Workloads:

• The system's performance was tested with varying types of matrix, providing insights into how

the offloading mechanism behaves under different workloads.

Power consumption in master device : 7.718mah

Power consumption in slave device : 1.415mah

There is a significant difference in the power consumption by master and slave device.

`

41

`

42

`

43

CHAPTER 6: CONCLUSIONS AND FUTURE

SCOPE

6.1 CONCLUSION

This project has successfully explored the concept of offloading computation in a distributed

application. The offloading master application acts as a user interface hub, facilitating matrix

input, displaying results, and managing communication with the offloading slave device. By

leveraging Bluetooth for efficient communication and JSON for data exchange, the project

demonstrates the feasibility of offloading computationally intensive tasks.

Key Achievements:

Functional Offloading: The master application successfully sends matrices to the slave device

for calculation. The slave device performs the matrix multiplication and sends the results back,

showcasing the core functionality of offloading computation.

Local Computation: The master application can also perform the computation locally ,

providing a valuable alternative for scenarios where offloading might be less efficient.

Power Consumption Analysis : By monitoring power usage during local and offloaded

computations, the project offers insights into the potential benefits of offloading in terms of

power conservation, especially for resource-constrained devices.

Information Retrieval : The project demonstrates the possibility of requesting and displaying

information like battery level or location from the slave device, potentially enriching the user

experience.

`

44

6.2 FUTURE SCOPE

The future scope of the Mobile Cloud Computing (MCC) offloading mechanism project is

promising, offering several avenues for further research, development, and application. Some

key areas of future exploration and enhancement include:

Optimization and Algorithm Refinement:

Further optimization of the algorithm and exploration of alternative algorithms for resource

allocation could enhance the efficiency of task offloading. Algorithmic improvements may lead

to better decision-making processes regarding resource allocation in dynamic environments.

Dynamic Adaptability:

Investigate methods to make the offloading mechanism more adaptive to dynamic changes in

network conditions, device capabilities, and user preferences. This adaptability could involve

real-time adjustments to the offloading strategy based on varying parameters.

Energy-Efficiency Considerations:

Future research can delve deeper into the energy implications of the offloading mechanism.

Developing strategies to minimize energy consumption during offloading processes, especially

on resource-constrained devices, could contribute to more sustainable and eco-friendly mobile

computing.

`

45

REFERENCES

1. A Survey of Computation Offloading for Mobile Systems 10 April 2012

© Springer Science+Business Media, LLC 2012.

2. Offloading Android Applications to the Cloud without Customizing Android Eighth IEEE

PerCom Workshop on Pervasive Wireless Networking 2012, Lugano (23 March 2012)

3. An Android-based Application for Computation Offloading in Mobile Cloud Computing

Proceedings of ACM/CSI/IEEECS Research & Industry Symposium on IoT Cloud For

Societal Applications (IoTCloud'21)

4. A transparent code offloading technique for Android devices 2017 13th International Wireless

Communications and Mobile Computing Conference (IWCMC)

5. Towards Computational Offloading in Mobile Device Clouds 2013 IEEE International

Conference on Cloud Computing Technology and Science

6. Adaptive Computation Offloading from Mobile Devices into the Cloud 2012 10th IEEE

International Symposium on Parallel and Distributed Processing with Applications

7. R. Kemp, N. Palmer, and H. Bal, “Cuckoo: a Computation Offloading Framework for

Smartphones,” in Proceedings of the 2nd International ICST Conference on Mobile Computing

(MobiCASE 2010), Santa Clara, CA, USA, October 2010.

8. H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, R. Buyya, Mobile code offloading: From

concept to practice and beyond, IEEE Commun. Mag. (2015).

9. B. Zhou, A.V. Dastjerdi, R.N. Calheiros, S.N. Srirama, R. Buyya, MCloud: A Context-Aware

Offloading Framework for Heterogeneous Mobile Cloud, IEEE Trans. Serv. Comput. 10 (2017)

797–810.

10. A. Kumar, R. Yadav, G. Baranwal, NearBy-Offload: An Android based Application for

Computation Offloading, in: 2021: pp. 357–362.

`

46

11. G. Orsini, D. Bade, W. Lamersdorf, Computing at the Mobile Edge: Designing Elastic Android

Applications for Computation Offloading, in: Proc. - 2015 8th IFIP Wirel. Mob. Netw. Conf.

WMNC 2015, 2016: pp. 112–119.

12. B. Zhou, S.N. Srirama, R. Buyya, An auction-based incentive mechanism for heterogeneous

mobile clouds, J. Syst. Softw. 152 (2019) 151–164.

13. E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl.

Maui: Making smartphones last longer with code offload. In Proceedings of the 8th

International Conference on Mobile Systems, Applications, and Services, MobiSys ’10, pages

49–62, New York, NY, USA, 2010. ACM.

14. H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile cloud computing: architecture,

applications, and approaches. Wireless communications and mobile computing, 13(18):1587–

1611, 2013.

15. N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud computing: A survey. Future

generation computer systems, 29(1):84–106, 2013.

16. J. Flinn. Cyber foraging: Bridging mobile and cloud computing. Synthesis Lectures on Mobile

and Pervasive Computing, 7(2):1–103, 2012.

17. H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya. Mobile code offloading: from

concept to practice and beyond. IEEE Communications Magazine, 53(3):80–88, March 2015.

18. M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen. Comet: Code offload by

migrating execution transparently. In Proceedings of the 10th USENIX Conference on

Operating Systems Design and Implementation, OSDI’12, pages 93–106, Berkeley, CA, USA,

2012. USENIX Association

`

47

`

48

