

Cloud Based Cab Booking Service

A major project report submitted in partial fulfillment of the requirement

for the award of degree of

Bachelor of Technology

in

Computer Science & Engineering / Information Technology

Submitted by

Khushi (201238)

 Nikita Sehgal (201277)

Under the guidance & supervision of

Dr. Anita

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology, Waknaghat,

Solan - 173234 (India)

i

Certificate

This is to certify that the work reported in the B-Tech. project entitled “Cloud Based Cab

Booking Service” submitted by Khushi and Nikita Sehgal at Jaypee University of

Information Technology, Waknaghat, India, is a bonafide record of their original work

carried out under my supervision. This work has not been submitted elsewhere for any other

degree or diploma.

 Dr.Anita

 Computer Science Engineering

 Jaypee University of Information Technology

 Dated:

ii

 Candidate’s Declaration

We hereby declare that the work presented in this report entitled ‘Cloud Based Cab Booking

Service’ in partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science & Engineering / Information Technology submitted in the

Department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology, Waknaghat is an authentic record of our own work

carried out over a period from August 2023 to May 2024 under the supervision of Dr.

Anita(Assistant Professor(SG), Department of Computer Science & Engineering and

Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

Student Name: Nikita Sehgal Student Name: Khushi

Roll No.: 201277 Roll No.: 201238

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Supervisor Name: Dr. Anita

Designation: Assistant Professor(SG)

Department: CS and IT

Dated:

iii

Acknowledgement

 We would like to express my deepest appreciation to Dr Anita for helping us throughout the

project and without whom this project would have been a very difficult task. We are highly

indebted to ma’am for her guidance and constant supervision as well as for providing necessary

information regarding the project & also for their support in doing project. She consistently

motivated and guided us towards the completion of the project. We would like to express our

gratitude towards my parents & members of JUIT for their kind co-operation and encouragement

which helped me in doing this project. Our thanks and appreciations also go to our colleagues

who have helped us out with their abilities in developing the project.

iv

Table Of Contents

 Topic Page Number

Certificate i

Declaration ii

Acknowledgements iii

Table of Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations, Symbols or Nomenclature ix

Abstract x

Chapter 1: Introduction 1

 1.1 Introduction 1

 1.2 Problem Statement 2

 1.3 Objectives 2

 1.4 Significance and Motivation of the Project Work 3

 1.5 Organization of Project Report 5

Chapter 2: Literature Survey 6

 2.1 Overview of Relevant Literature 6

 2.2 Key Gaps in the Literature 8

 Chapter 3: System Development 12

 3.1 Requirements and Analysis 12

 3.1.1 Functional Requirements 12

 3.1.2 Non- Functional Requirements 13

 3.1.3 System Constraints 14

 3.2 Project Design and Architecture 18

 3.2.1 Activity Diagram 22

 3.2.2 Block Diagram 22

 3.3 Data Preparation 23

 3.4 Implementation 29

v

 3.4.1 Backend Implementation 29

 3.4.2 Algorithm For Booking Process 37

 3.4.3 Frontend Implementation 39

 3.4.4 Deployment on AWS EC2 40

 3.5 Key Challenges 45

Chapter 4: Testing 47

 4.1 Testing Strategy 47

 4.2 Test Cases and Outcomes 48

Chapter 5: Results and Evaluation 52

 5.1 Results 52

 5.2 Comparison With Existing Solutions 56

Chapter 6: Conclusions and Future Scope 59

 6.1 Conclusion 59

 6.2 Future Scope 60

REFERENCES 63

PLAGIARISM REPORT

vi

List of Tables

S.No. Table Name Page No.

Table 1 Tabular form of Literature

Review

9

Table 2 `account` 25

Table 3 `route` 26

Table 4 `order` 26

Table 5 `car_details` 27

Table 6 `car` 27

Table 7 `order_has_car` 27

Table 8 `language` 28

Table 9 `account_has_order` 28

Table 10 `car_has_language` 28

vii

List of Figures

S.No. Name Of Figure Page No.

Figure 1 Growth Of Cab Booking

Industry

7

Figure 2 Project Design 18

Figure 3 MVC Architecture 20

Figure 4 Activity diagram 22

Figure 5 Block Diagram 23

Figure 6 Database Model 25

Figure 7 Database Connection

Initialization

30

Figure 8 MySQL Database

Configuration for Taxi

30

Figure 9 Database In Apache

Netbeans

30

Figure 10 Implementation Of Md5 31

Figure 11 Data Validation Code 32

Figure 12 Pagination Code 33

Figure 13 CommandContainer.java

Code

34

Figure 14 Tomcat Server Configuration 38

Figure 15 Multiple Language

Supporting File

39

Figure 16 Creating An Instance 40

Figure 17 Allocating Elastic IP Address 40

Figure 18 Connecting Local Machine

With Ubuntu On Cloud

41

viii

Figure 19 Connecting To FileZilla 42

Figure 20 Creating A War File 42

Figure 21 Connecting To Mysql 43

Figure 22 Databases On Cloud 44

Figure 23 Setting Inbound Rules 44

Figure 24 Testing Files 50

Figure 25 Testing Results 51

Figure 26 Homepage 53

Figure 27 Homepage With Different

Language

53

Figure 28 Signup page 54

Figure 29 Login Page 54

Figure 30 Booking Page 55

Figure 31 Order Detail Page 55

Figure 32 Account History With Filters 56

Figure 33 Booked Car Details 56

Figure 34 Cab 58

ix

List of Abbreviations, Symbols or Nomenclature

ABBREVIATION DEFINITION

MD5 Message Digest Algorithm 5

MVC Model-view controller

AWS Amazon Web Services

EC2 Elastic Compute Cloud

Java EE Java Platform, Enterprise Edition

CRM Customer relationship management

GPS Global Positioning System

JDBC Java Database Connectivity

x

Abstract

The Cloud-Based Cab Booking Service is a shining example of dependability and innovation in

the taxi rental industry. Through the use of state-of-the-art technology, we offer a seamless and

efficient platform for taxi and car rental services across India. We have a large fleet of cars,

ranging in price from luxury to budget taxis, and we are experts at providing corporate entities

with online taxi booking services. Our taxis are fully licensed and insured, and we prioritize

hassle-free experiences by offering competitive and personalized rates for both intra- and inter-

city travel. Our experienced, polite, and reliable taxi drivers receive intensive training in

handling malfunctions and prioritize the safety of their passengers. For unanticipated events, we

have a backup plan in place . Overall, our Cloud-Based Cab Booking Service revolutionizes the

market by skillfully fusing state-of-the-art technology, a diverse and immaculate fleet, and an

unwavering dedication to providing the highest caliber of customer service. The Cloud-Based

Cab Booking Service project seeks to transform the conventional taxi booking experience

through the use of HTML, CSS, Java EE Servlets, and AWS infrastructure. The system uses the

MVC[14] pattern to put the needs of the user first, providing secure platform with user

authentication, efficient order and car management, and multilingual support. Scalability is

guaranteed by the AWS deployment, and project dependability is increased by thorough testing

procedures and problem documentation.

1

Chapter -1

Introduction

1.1 Introduction

The taxi business is not an exception to the rule that having an online presence is crucial in the

current digital era. Thanks to user-friendly websites and app-based systems, it's commonplace

to book a taxi conveniently whenever and wherever you want these days. These platforms offer

enhanced safety and transparency during our travels, along with accessibility. Even the biggest

automakers have had to review their approaches due to the disruption caused by the increase in

online taxi reservations. These systems have completely redesigned urban transportation,

making it safer and more efficient, with features like real-time tracking, wait time estimation,

and a customer experience focus. Welcome to the modern era, where transportation and

technology live in harmony and have completely transformed how we get around. Our platform

is methodically structured using the MVC[14] pattern, emphasizing efficiency and best

practices. This is especially true in the quickly changing field of web development. Our main

goal is to provide a flawless taxi booking experience that is characterized by ease of use and

simplicity in each and every user interaction. Thorough on-site testing guarantees a dependable

platform prior to implementation on the scalable and dependable AWS infrastructure, providing

a revolutionary approach to modernize and enhance the taxi reservation procedure. The Model-

View-Controller (MVC[14]) pattern is followed in this project, which provides a scalable and

well-organized taxi service management solution. The comprehensive testing suite has been

created during the incubation period so that our product is fully ready before launching it on

AWS which accelerate the process of scaling and helps to use reliable services at every stage.

Taxi booking problem is now solved with the novel technology of AWS. Therefore, more

convenient and steady way of reaching taxi from booking to until the arrival of the customers

has been provided. Moving to the Model-View-Controller (MVC) approach could be a small

but significant step to be taken to improve the quality of service nowadays when both

2

technologies and transportation markets are forever expanding and taking on new demands

every day.

1.2 Problem Statement

Entering the ride sharing market can be quite challenging, with established giants like Ola and

Uber already dominating the industry. One of the issues with taxi services both in urban and

rural areas is their limited availability of cars and outdated reservation systems. Another hurdle

is establishing a platform that fosters a connection between drivers and riders. Today’s

consumers expect rides to be safe personalized and environmentally friendly which poses a

challenge for newcomers trying to meet these expectations. Safety is a concern, for users making

it crucial for any transportation service to prioritize creating a sense of security.

The objectives, features, technology stack, constraints, timetable, important stakeholders, and

success criteria for developing a Java-based taxi booking system are succinctly summarized in

this problem statement. The project team refers to it as a roadmap throughout the entire

development lifecycle.

1.3 Objectives

The Cloud Based Cab Booking Service Web Application aims to achieve the following

objectives:

1. Efficient Order Management: Provide customers with the ability to choose the type of vehicle,

the number of passengers, and the beginning and ending points of their trip to make placing taxi

orders easier.

2. Scalability using AWS EC2 and MVC[14]: Use the Model-View-Controller (MVC[14])

architecture to organize code effectively. To meet increasing user demand and maintain system

efficiency, leverage AWS EC2 to provide scalable and flexible infrastructure.

3

3. Fleet Coordination: Assign as many available vehicles as soon as possible, taking into account

variables such as distance, capacity, and category, to ensure dependable and timely service.

4. Loyalty Program: Establish a plan where customers obtain savings based on their previous

purchases.

5.Multilingual Support: You can better serve a diverse user base and enhance the application's

usability and accessibility by providing support for multiple languages.

In order to guarantee transaction security and improve user experience, the system expedites

the booking procedure and incorporates safe payment gateways. Furthermore, the system

continuously gathers user feedback to enhance service quality while optimizing driver

management and routing for effective service delivery. It is imperative to take into account

scalability, performance, and administrative management to guarantee that the system can

accommodate high user and booking volumes while adhering to regulatory requirements.

1.4 Significance And Motivation Of The Project Work

The Taxi Service Web Application holds significant value in the following aspects:

▪ Enhanced User Experience: Users benefit from a user-friendly interface for order

placement and transparent pricing. The platform is a combination of magnificent views and

useful architecture. It will be easy to book a flight or search the information because every

feature on our platform is simple and functioning. The application minimalizes the number

of efforts that the user has to do to make his opinion through the tons of options. Whether

the needed transport type is one or if they should do it for all the other passengers and

which points they will pick them up from and drop them off to has been defined. We

proceed by establishing firstly the simplicity and ease of use, which makes the whole

process attractive and looking forward to even the most demanding client.

4

▪ The transparency principle is considered to be cornerstones of the platform, therefore, the

end users deserve to have the prices that are not deceitful and consistent. The transparency

gives the consumer a deeper understanding of the product before making the purchase by

the corner if the right cushion he or she is looking for. The capacity to declare zero hidden

charges as well as to assure consistency and freedom will be used by us to ensure our

customers agree and agree with us. Also, on the quality and price of our products,

consumers are able to follow their desires with an open hesitation which gives them the

responsibility for their purchasing decisions from the very beginning.

▪ Business Optimization: Taxi service providers can efficiently manage their fleet, analyze

order statistics, and improve overall service quality. It will assist customers to work more

systematically and ultimately, the clients will get superior services. On top of that, transport

service agent can combine use of optimized allocation of assets and time management tools

to turn down idling time. There is huge cost saving and this also results in increased

efficiency. Smart analytic tools can analyze reams of statistical data, detecting patterns and

assisting organizations to use data for business use. Consumption feedback of customers,

who use aggregated and evaluative ratings on their website, may help providers to improve

service quality and to maintain their client’s loyalty. This tool is a very helpful in ensuring

that producers are fully equipped in the areas of business automation as well as in the skills

and information service quality, and service delivery.

▪ Technological Innovation: By incorporating Java EE Servlets and JSP, this project

embraces modern web development practices, showcasing the capabilities of these

technologies. The Java EE Servlet provides the backbone in the backend brought about by

our light-weight implementation, mostly focusing on receiving and processing data, as well

as managing application logic. They take a holistic approach to developing web

applications that are capable of scaling and performing efficiently in complex

environments, which is achieved through the use of MVC design pattern that enables us to

implement modular and structured solutions. Besides, JSP empowers technically to

accomplish dynamic webpage and presentation of our web app by directly incorporating

the Java program into HTML. This can facilitate the architecture of the web pages that

5

reacts to user information, and program logic. As a result, it is more satisfying and

engaging to the user as it gives them an interactive way of interacting with the application.

By integrating Servlets and JSP carefully, we prove a stronghold of technological

innovation and ensure a modern web app, which offers many features .

1.5 Organization Of Project Report

This report is divided into 6 chapters:

i. Chapter 1 covered the introduction and central idea of the project design. The goals and

techniques of the project are included in this chapter.

ii. Chapter 2 provides a review of the literature, which includes several scholarly articles on taxi

reservations that we used to compare our results with those of other researchers.

iii Chapter 3 covered the system development, code snippets and algorithms, hardware and

software configuration, front-end and back-end system capabilities.

iv. Chapter 4 offers an explanation of testing resources and techniques along with illustrations

of testing.

v. Chapter 5 covers the presentation and interpretation of the data in addition to the results and

evaluations.

vi. The project's outcome and future scope are outlined in Chapter 6.

6

Chapter -2

Literature Survey

2.1 Overview Of Relevant Literature

The literature review encompasses a broad spectrum of taxi booking systems, delving into

various technologies and methodologies and offering valuable perspectives from numerous

investigations. There are multiple themes that represent different operational or

technological aspects of this investigation.

In the world of technology, the cab booking system that makes use of the Google Maps

API, Dart, and Flutter is particularly notable because it uses real-time data and modern

application development. Nevertheless, excluding dynamic elements like surge pricing and

relying solely on static fare estimates has drawbacks [1]. Furthermore, several papers

discuss the integration of GPS and mapping services, which is very beneficial for route

optimization, effective dispatching, and location tracking. One study makes use of

Dijkstra's algorithm to emphasize the necessity of improving scheduling effectiveness

[2].[3][10][5]. Southeast Asian ride-hailing applications use Geographic Information

Systems , indicating favorable user feedback [4]. Additional technological approaches that

are employed in various systems include Java, Firebase, VB.net, GPRS Modem, Android-

compatible devices, and [5][6][10]. In the context of dynamic taxi ridesharing, machine

learning and IoT are investigated, with potential advantages like lower fares and higher

driver earnings [10]. A/B testing and CRM techniques investigate the two primary factors

that customers consider when choosing a taxi service: price and reliability [8]. Price is

found to be a crucial factor in an Analytical Hierarchy Process analysis of car rentals [11].

Ultimately, an Integrated Development Environment (IDE), PHP, CSS, and HTML are

used to create an ambulance booking application [12].

7

When creating a car booking system, operational factors emphasize user adoption and

market viability [2]. A case study examining customer loyalty to ride-hailing taxi services

emphasizes the significance of technology and financial gain. [7]. Research is being done

to learn more about the elements that consumers value most when choosing a call taxi

service provider, with an emphasis on the importance of socioeconomic and service

attribute variables [8].

Limitations and challenges that are acknowledged include privacy concerns about GPS

data and accessibility issues for users running specific operating systems. The planned

automated taxi booking system depends on the availability of parking spaces set aside for

that purpose, so infrastructure development is required. [3][5][6].

 Figure 1: Growth Of Cab Booking Industry[13]

8

2.2 Key Gaps In Literature

A review of the literature reveals a number of noteworthy gaps that present worthwhile

directions for further study and advancement in the field of cloud-based taxi booking

services. First of all, most previous research employs static fare estimates, omitting the

dynamic character of variables like surge pricing. To improve the accuracy of fare

estimates, research on efficient surge management systems and dynamic pricing models is

therefore desperately needed [1].

Secondly, there is a clear need for improvement as the accessibility is restricted to particular

operating systems. Subsequent investigations ought to concentrate on remedies that

guarantee all-encompassing user accessibility and accommodate a wider range of hardware

and operating systems [6].

The necessity for privacy-preserving technology research is highlighted by the persistent

privacy concerns surrounding GPS data. Strong solutions will ensure that user information

is secure when utilizing location-based services. [3][10].

Infrastructure dependencies pose a significant challenge to the proposed automated taxi

booking system, even in the case where assigned parking spaces are available. Future

research projects should focus on solutions that don't rely on particular parking

infrastructure to reduce reliance and ensure flexibility in use [5].

Closing the known research gap on drivers' labor rights for ride-hailing services is

imperative. To support the rights and protections of drivers employed in the gig economy,

extensive research is needed [4].

To increase the application of dynamic ridesharing systems, more research should focus on

validation in different urban settings. Considering variables such as traffic patterns and

cultural differences can help optimize these systems for a variety of scenarios [10].

9

Subsequent studies ought to specifically tackle privacy issues and perform a

comprehensive examination of constraints and possible prejudices in survey approaches.

This will ensure the transparency and integrity of the research process [1][3][8][9].

Integrating cutting-edge technologies like artificial intelligence (AI) and machine learning

into dynamic taxi ridesharing systems is a challenging task. Further investigation into

scalable and efficient integration strategies is required in order to fully realize the potential

benefits of these technologies [10].

Particularly in the area of ride-hailing service customer loyalty, the proposal for

comparative studies between developed and developing nations offers a promising

direction for future research. These studies can offer nuanced perspectives on the factors

influencing consumer behavior across various cultural and economic contexts [7].

Lastly, methodological transparency in research papers needs to be improved, especially

when it comes to studies that focus on customer priorities. By ensuring the validity and

repeatability of results, this will promote credibility in the field [8][11].

 Table 1 : Tabular form of Literature Review

S.

no

Paper

Title

Journ

al/con

ferenc

e

Tools/Techniques Results Limitations

1. Customer-

Friendly

Cab

Booking

System[1]

2023 ASO) techniques. API

Integration

This paper explores the dynamic

landscape of cab and taxi

services in response to the

surging demand for convenient

and safe transportation options

Concerns about data privacy

and security. Regulatory

and safety challenges .

Potential price instability

and conflicts. - Complex

implementation

2. Factors

influencing

customer's

loyalty

towards

2023 Discusses a system for taxi

service analytics and

visualization, using RNN

and java

Conducts a study in Vietnam

using PLS-SEM to analyze ride-

hailing loyalty

Limited generalizability due

to a focus on a developing

country.

10

ride-hailing

taxi

services[2]

3. The

Planning

Process for

USIM

Students’

Car

Booking(20

23)[3]

2023 Global Positioning System

(GPS)

adopts a Waterfall approach and

incorporates authentication and

authorization mechanisms for

security

Market Competition ,Market

Viability, User Adoption

,Data Privacy

4. Taxi

Intelligent

Dispatch

System

Based On

GPS[4]

2023 Integrated Development

Environment (IDE), MQTT

The improved algorithm

reduces scheduling complexity

and enhances efficiency while

considering real-time traffic

data, optimizing taxi

dispatching.

The paper lacks specific

details on limitations but

suggests potential

challenges, including

widespread GPS phone

adoption and privacy

concerns.

5. Ride-

hailing

applications

in

Southeast

Asia.[5]

2022 GIS[15] (Geographic

Information Systems)

Indicates that RHA users hold

favorable views of RHA

compared to public

transportation , reflecting

negative attitudes of the general

SEA population

Notes the need for more

research on labor protections

for RHA drivers. Calls for

exploration of regulatory

frameworks

6. An

Automated

Taxi

Booking

and

Scheduling

System.[6]

2022 AspectJ (AOP framework) The simulation demonstrates

significant time and fuel

savings, along with reduced

congestion, when compared to

the random taxi roaming model.

The proposed system

assumes the availability of

designated parkings, which

may require substantial

infrastructure development

7. Factors

Influencing

Customer's

Loyalty

towards

Ride-

hailing Taxi

Services –

A case

Study of

Vietnam.[7

]

2021 Partial Least Squares -

Structural Equation

Modeling (PLS-SEM

This study explores factors

influencing customer loyalty

towards ride-hailing taxi

services in Vietnam, focusing

on technology and economic

value

Suggests the need for further

research to explore

differences between

developing and developed

countries

8. Intelligent

Cab Service

System.[8]

2021 Java Agent DEvelopment

Framework (JADE)

The study addresses the

limitations of the current car

booking system via Telegram,

Market Viability

User Adoption

Market Competition

11

which is not optimized for

transportation services.

Data Privacy

9. Understand

ing

Customer

Priorities

for

Selection of

Call Taxi

Service

Provider.[9

]

2021 A/B Testing,CRM The study found that

socioeconomic and service

attribute factors influenced

people's choice of taxi service in

Bhubaneswar, with an emphasis

on reliability and cost.

The paper lacks details on

the survey methodology and

potential biases, focuses on a

specific city and taxi

services, and does not

address potential privacy

concerns

10 Car Rentals

Knowledge

and

Customer

Choice.[10]

2020 Analytical Hierarchy

Process (AHP)

This paper attempts to identify

factors chosen by a customer

while choosing car rental

services using the AHP

methodology

Suggests the study could be

extended to capture

linguistic judgment using

fuzzy multi-criteria

decision-making methods.

11 Ambuitec:

Ambulance

Booking

Application

for

Emergency

Health

Response,

Blood

Inventory[1

1]

2020 DOI (Digital Object

Identifier) , Integrated

Development Environment

(IDE)

This paper presents an

ambulance booking application

allowing users to request

assistance, track ambulances,

and select the best option based

on cost and distance.

Doesn't address traffic and

road conditions, potentially

affecting response times.

Efficiency depends on

ambulance availability

12 Smart

Vehicle

Manageme

nt using

Cost-

effective

Approach[1

2]

 MQTT, Continuous

Integration/Continuous

Deployment (CI/CD)

This paper discusses a

carpooling system facilitating

ride-sharing between car

owners and passengers

Challenges include limited

vehicle diversity.

Scalability concerns and

safety issues.

12

Chapter -3

System Deployment

3.1 Requirements And Analysis

 3.1.1 Functional Requirements

▪ User Roles and Responsibilities: The system defines the Administrator and

Customer roles in detail by giving each group particular rights and responsibilities.

Determining the range of actions appropriate for each application position is part

of this.

▪ Authentication and Authorization: The project uses a strong user login procedure

to guarantee a secure environment. This includes authentication and authorization.

Detailed explanations of permissions and access restrictions help protect the system

by outlining the functionalities that are available to various user roles.

▪ Booking Management: This section's functional requirements deal with how

passengers make taxi reservations. Administrators have access to every tool

required for effective management and processing of reservation requests. When

there are updates to trips, booking confirmations, payment receipts, or other

pertinent information, the system ought to promptly notify users and drivers. Push

notifications, SMS, and email can all be used to send notifications.

▪ Taxi Fleet Management: Administrators can monitor the fleet by using the system's

features for viewing, adding, and removing taxis. Moreover, logic is set up to adjust

the taxi fleet's availability dynamically based on the volume of reservations

received.

13

▪ User Dashboard: The user dashboard is a crucial component that offers

administrators and customers a range of features and a comprehensive data

display. This ensures a user-friendly and efficient interface. To accommodate a

large user base, the system must support multiple currencies and languages.

Localizing user interfaces, date/time formats, and currency symbols are all

included in this.

 3.1.2 Non-Functional Requirements

▪ Performance: Acceptable response times for critical operations and the system's

ability to handle several user interactions at once are outlined in the non-functional

requirements of the system. With minimal performance degradation, the system

ought to be able to accommodate a sizable number of concurrent users and

reservations.

▪ Security: Two of the techniques covered are user authentication and data

protection. Encryption standards and access controls are designed to safeguard the

confidentiality and integrity of sensitive data. Mechanisms for gracefully handling

errors and informing users of them should be built into the system.

▪ Reliability: Clearly defined availability and uptime are expected for the system.

Furthermore, procedures for backup and recovery are offered to ensure data

availability and integrity in the event of unanticipated circumstances. Adequate

backup and recovery procedures should be in place in order to ensure data integrity

at all times.

▪ Usability: To guarantee a seamless and simple user experience, the requirements

for the user interface are specified in detail. Accessibility considerations, which

take into account a variety of user requirements, ensure an inclusive and user-

friendly design.

14

3.1.3 System Constraints

The project operates within the parameters of a well-defined technology stack that

consists of HTML, CSS, AWS (EC2),Linux, Gitbash, SSH, Java, Tomcat, MySQL,

JDBC, and Java EE Servlets. These technologies were chosen for the development of

web applications because they are reliable, widely used, and compatible.

▪ Java and Java EE Servlets: When Java and Java EE Servlets are used, applications

can gain from a dependable and expandable server-side environment as well as

effective management of user requests and responses. With Servlets, developers

can effectively manage session data, engage with databases, and implement the

system's backend logic. Additionally, integrated support for features like session

management, security, and scalability—all of which Java EE Servlets offer—is

necessary for a robust taxi booking platform. All things considered, programmers

can create a scalable, secure, and high-performance taxi booking system that meets

the needs of administrators and users by utilizing Java and Java EE Servlets.

▪ HTML and CSS: The user interface is organized and styled using HTML and CSS

throughout the project, producing a responsive and aesthetically beautiful design

that enhances the user experience.CSS is needed for styled HTML elements in order

to improve the booking system's usability and appearance. To create a unified and

visually appealing user interface, developers can alter the appearance of text, colors,

fonts, buttons, and layout elements using CSS.

▪ Tomcat: The Apache Tomcat web server is used to deploy and manage Java

Servlets. It is an excellent choice for hosting the application because it conforms

with Java EE specifications. Customers and the taxi booking platform can both rely

on a reliable connection thanks to Apache Tomcat's integrated HTTP server. By

listening for incoming HTTP requests, forwarding them to the appropriate servlets

or JSP pages, and responding with the necessary data, it makes sure that user

interaction with the application is seamless. The taxi booking system's overall

15

scalability, dependability, and performance are enhanced by integrating Apache

Tomcat, enabling speedy processing of booking requests and an ideal client

experience.

▪ Network Bandwidth: The amount of network bandwidth that is available for

FileZilla file transfers between your local computer and the EC2 instance affects

deployment speed.When connecting to external services, like payment gateways

or mapping APIs for route computation, the system needs enough network

bandwidth to ensure consistent communication. For the system to efficiently

handle several requests at once and ensure low latency and uninterrupted service

for users—even during periods of peak demand—it needs a robust network

architecture and enough bandwidth.

▪ MySQL: MySQL is the name of the relational database management system.

MySQL facilitates efficient data management, retrieval, and storage. It provides a

dependable and efficient way to handle the application's database requirements.

Developers can easily establish connections between the Java application server

and the MySQL database server thanks to MySQL's compatibility with Java

through JDBC (Java Database Connectivity). This makes it possible to efficiently

access and manipulate data from Java code, which makes it easier to integrate

application functionality and business logic into the taxi booking system.

▪ JDBC: This technology facilitates data exchange by connecting the Java program

to the MySQL database. Data consistency and integrity are guaranteed throughout

intricate operations involving numerous database interactions thanks to JDBC's

transaction support. For example, JDBC allows developers to run a sequence of

database operations within a transaction context when a user submits a booking

request. This guarantees that all changes are either committed simultaneously or

rolled back in the event of an error, protecting the integrity of the system's data.

16

▪ FileZilla: The widely used FileZilla FTP (File Transfer Protocol) client can be used

to move files between the local computer and the EC2 instance. It offers a graphical

user interface to make file management more efficient. When FileZilla is integrated

with a Java-based taxi booking system, the file management features of the system

are improved, making tasks like deployment, backup, and maintenance more

efficient. Developers may guarantee the dependability, security, and scalability of

the taxi booking system while reducing administrative overhead and operational

complexity by utilizing FileZilla's features for safe file transfer and user-

friendliness.

▪ Git Bash: On Windows operating systems, Git Bash is a command-line interface

(CLI) tool that offers a Unix-like environment. It enables developers to work with

Git repositories and execute native Unix/Linux commands on Windows PCs. It

comes with the Bash shell and the Git command-line tools in addition to other Unix

utilities.

▪ Ubuntu: The operating system selected for the EC2 instance is Ubuntu. Popular

Linux distribution Ubuntu is well-known for its dependability, security, and user-

friendliness.The taxi booking system is shielded from outside attacks and

weaknesses by Ubuntu's security enhancements. To guarantee that the system is

always safe from the newest security threats, Ubuntu receives security updates and

patches on a regular basis. It is also simpler for developers to apply best practices

for safeguarding the system and minimizing potential security risks thanks to

Ubuntu's robust community support and thorough documentation.

▪ SSH (Secure Shell): To establish a remote connection with Linux servers, including

EC2 instances, one must utilize the Secure Shell protocol. Through a secure SSH

connection, developers can update applications, manage server configurations, and

troubleshoot problems.Remote server management is a major application of SSH

in taxi reservation systems. Without requiring physical access to the server, system

17

administrators can safely connect via SSH to the server hosting the Java application

and carry out standard maintenance operations, track system performance, and

troubleshoot issues. Sensitive data, including administrative commands and login

credentials, are shielded from prying eyes and illegal access thanks to SSH's

encrypted communication.

▪ AWS (EC2): As the application expands, this cloud deployment option provides

scalability, dependability, and efficient resource management.Elastic Compute

Cloud, or Amazon EC2, is a crucial AWS service that can be used since it provides

resizable compute capacity in the cloud. The Java application server, which powers

the taxi booking system, can be hosted on EC2 instances, giving you the flexibility

to scale server resources up or down in response to demand. By doing this, it is

guaranteed that the system can manage traffic variations and continue to operate at

peak efficiency without overloading its resources.

The Java application server constitutes the dynamic and swift feature in terms of

handling traffic variations in the important tasks for building the reservation system

on Amazon EC2. EC2 scaling makes possible a quick change of server resources,

which are used on the go and do not create extra resource consumption. Its

reliability, which is supported by Amazon's resilient infrastructure, means that you

can count on the service to be available all the time. Furthermore, EC2's resource

management units, together with its option for inferring the utilization of computing

power, is structured so to add efficiency. Similarly, its flexible units for

configurations make it possible to customize computing needs. Through this mode

of operation, the system is not only practicing the highest standard of performance

but, also, savings in cost and disk space addressing the incessant demand make it

the core cornerstone of a resilient and responsive system architecture.

18

3.2 Project Design And Architecture

 Figure 2: Project Design

The following modules make up the cloud-based taxi booking service as shown in Figure

2. Each module is linked to a specific system feature or capability. An overview of each

module's contents is provided below:

▪ System Architecture: The project's design and architecture adhere to the Model-

View-Controller (MVC[14]) pattern as shown in Figure 3, a well-liked architectural

paradigm for web applications. This is a deliberate choice made with the goal of

building a structured and modular architecture to enhance code reuse,

maintainability, and scalability.

19

▪ Model: The Model component houses the data and business logic. Entities

like Account, Car, Order, and Route represent various facets of the taxi

service. The Model ensures a clear division of responsibilities and

establishes a seamless communication channel with the MySQL database

via the use of the JDBC (Java Database Connectivity) API. The efficacy and

integrity of data management are enhanced by this design principle.

▪ View: The View component is in charge of rendering the user interface. A

dynamic and adaptable presentation layer is offered by JavaServer Pages

(JSP) and the JavaServer Pages Standard Tag Library (JSTL). The

multilingual support built into the View allows users to interact with the

application in their own language

▪ Controller: The data flow between the model and view is controlled by Java

EE Servlets, a stand-in for controllers. They are necessary to initiate

pertinent business logic in the Model, respond to user requests, and update

the View. Java EE Servlets also manage important functions like session

management, user authentication, and authorization. This dual function

ensures data integrity and a safe, personalized user experience.

The View seamlessly incorporates multilingual support while maintaining user inclusivity

and accessibility. The technology stack consists of Java, Java EE Servlets, Tomcat,

MySQL, JDBC, HTML, and CSS in addition to AWS (EC2). Reliability, compatibility,

and industry best practices were taken into consideration when making these decisions.

20

 Figure 3: MVC[14] Architecture

▪ Database Design: The Database Design module's goal is to efficiently set up the

database so that data can be stored and retrieved. Entity-Relationship Modeling

(ERD) is used to find entities and relationships.

▪ User Authentication and Authorization: The module provides for user

authentication and authorization protocol and guarantees safe accessibility of the

application. Hashing algorithms for securing password, Admin and customer access

controls, as well as authentication and login processes.

▪ Booking Process: This module guarantees that authorized users log in using a user

authentication process. Password security, user registration and login, as well as

Admin and Customer roles employ hashing functions.

▪ Cab Management: The fleet management of taxis monitors current information and

statuses. This platform has two features: an interface to manage and list taxis among

other functions, as well as dynamic taxi availability update system that keeps track

of the number of bookings received.

21

▪ Error Handling: The purpose of this module is to identify, document, and correct

any errors as they occur during the running of the program. It ensures a robust

system reaction where there are cases of incorrect input and system failures.

▪ UI Design: The purpose of the UI Design module is to design an attractive and

easily understandable interface. It is a set of practices that aim at enhancing

accessibility through how the components are made, assembled, and offered.

▪ Controller and Servlet Information: The data flow controller in this module is Java

EE Servlets. As a result of user requests, it dials for appropriate business logic in

the model and the view is then updated. Moreover, user authentication,

authorization, and session management are handled by servlets.

▪ Testing: The Testing module includes unit testing for individual components,

integration testing for the system as a whole, and user acceptability testing for the

client and admin interfaces. It ensures that the software functions as intended and

locates and resolves any bugs.

22

3.2.1 Activity diagram:

 Figure 4: Activity diagram

3.2.2 Block Diagram

An extensive architecture for a cloud-based taxi booking service is displayed in the block

diagram as shown in Figure 5. The Client Application is at the core of the User Interface,

which offers an easy-to-use interface for taxi reservations. Improved multilingual support

for a worldwide user base and Google Maps integration allow for seamless location

23

services and route planning within the application. Security mechanisms are integrated to

protect user data and transactions. The Cloud Server, at the center of the system, is in

charge of handling user requests and carrying out crucial application logic. These consist

of Cab Fleet Management, which is in charge of managing the taxi fleet, Booking

Management, which handles all booking-related matters, and User Authentication and

Authorization, which maintains user roles and guarantees safe login.The Cloud Server is

linked to a MySQL database that holds user data, booking history, and taxi specifics. The

incorporation of External APIs enhances the application's functionality. Two examples of

security measures that fortify the system's communication channels are SSL and

encryption. All things considered, with a focus on scalability, security, and user

experience, this architecture builds a robust and networked structure that enables efficient

taxi booking services.

Figure 5: Block Diagram

3.3 Data Preparation

The data preparation process for the Taxi Service project involved setting up the database

schema, populating tables with meaningful data, and establishing relationships between

entities. The MySQL script provided in the project description outlines the creation of

tables such as `account`, `route`, `order`, `car_details`, `car`, `order_has_car`, and more.

24

▪ User Accounts: User accounts were created for both administrators and clients

using the `account` table, specifying details such as login, email, password, phone

number, discount, and role.

▪ Language Support: Language entries were added to the ̀ language` table, supporting

multiple languages.

▪ Car Details: Different car categories were defined in the `car_details` table,

specifying the category and the number of seats.

▪ Cars: Fleet details were populated in the `car` table, including the status of each car

(to_order, in_run, inactive) and the corresponding `car_details_id` for

categorization.

▪ Car Descriptions in Multiple Languages: Descriptions for each car were provided

and stored in the `car_has_language` table.

▪ Routes: Various routes were defined in the `route` table, specifying departure and

arrival locations along with the corresponding distances.

▪ Orders: Test orders were generated and stored in the `order` table, capturing details

such as the route (`route_id`), price, number of passengers, and creation date.

▪ Establishing Relationships:To establish relationships between entities, entries were

made in junction tables:

 - Entries in `account_has_order` linked user accounts with specific orders.

 - Entries in `order_has_car` established associations between orders and cars.

This detailed data preparation ensures that the database is populated with diverse and

realistic data representative of various scenarios. It lays a solid foundation for testing the

Taxi Service application's functionality, user interactions, and system responses across

different use cases. The relationships between entities are crucial for testing the seamless

flow of data and interactions within the application. Regular reviews and updates to the

dataset will be essential to adapt to evolving project requirements.

25

 Figure 6: Database Model

 Table 2: `account`

Column Data Type Description

`id` INT Unique identifier for the

user account

`login` VARCHAR(45) User login username

`email` VARCHAR(45) User email address

`password` VARCHAR(32) User password (hashed)

`phone_number` BIGINT(10) User phone number

`discount` TINYINT Discount percentage for

the

`role` TINYINT User role (e.g., admin,

regular user)

26

 Table 3: `route`

Column Data Type Description

`id` INT Unique identifier for the

route

`departure` VARCHAR(300) Departure location

`arrival` VARCHAR(300) Arrival location

`distance` DOUBLE Distance of the route in

kilometers

 Table 4: `order`

Column Data Type Description

`id` INT Unique identifier for the

order

`route_id` INT Foreign key referencing

`route` table

`price` DOUBLE Total price of the order

number_of_passengers` INT Number of passengers for

the order

`create_date` DATETIME Order creation date

27

 Table 5: `car_details`

Column Data Type Description

`id` INT Unique identifier for the

car details

`category` VARCHAR(10) Car category (e.g.,

economic, comfort)

`number_of_seats` INT Number of seats in the car

 Table 6: `car`

Column Data Type Description

`id` INT Unique identifier for the

car

`status` ENUM Car status (to_order,

in_run, inactive)

`car_details_id` INT Foreign key referencing

`car_details` table

 Table 7: ` order_has_car`

Column Data Type Description

`order_id` INT Foreign key referencing

`order` table

`car_id` INT Foreign key referencing

`car` table

28

 Table 8: ` language`

Column Data Type Description

` id` INT Unique identifier for the

language

`short_name` VARCHAR(2) Short name code for the

language

`full_name` VARCHAR(20) Full name of the language

 Table 9: ` account_has_order `

Column Data Type Description

`account_id` INT Foreign key referencing

`account` table

`order_id` INT Foreign key referencing

`order` table

▪ `car_has_language` Table

 Table 10: ` car_has_language `

Column Data Type Description

`car_id` INT Foreign key referencing

`car` table

`language_id` INT Foreign key referencing

`language` table

29

3.4 Implementation

3.4.1 Backend Implementation:

-Language and Framework:

Utilized Java and Java EE Servlets for the backend implementation. Model-View-Controller

(MVC[14]) architecture is used to create a structured and modular design.The implementation

of the Model-View-Controller (MVC[14]) architectural pattern makes use of a structured file

structure. The Model is represented by Java classes such as `Order.java`, `Car.java`, and

`User.java`, encapsulating data and business logic. Serving as controllers, Java EE Servlets like

`OrderServlet.java` and `UserServlet.java` manage data flow and communication between the

Model and View. JSP pages, such as `order.jsp` and `userProfile.jsp`, function as the View,

dynamically rendering content based on processed data. The `web.xml` file acts as the

deployment descriptor, configuring the web application, while additional files like `style.css`

and `script.js` enhance the user interface. The culmination of these components is packaged into

the `taxi-service.war` file, creating a deployable web archive for seamless execution on Apache

Tomcat. This structured file organization ensures a modular and organized implementation of

the MVC[14] pattern, facilitating the development and maintenance of the Java web application.

 - Database Interaction:

Use Java Database Connectivity (JDBC) to establish connections to the MySQL database as

shown in Figure 7 , Figure 8 and Figure 9 .

30

 Figure 7: Database Connection Initialization

 Figure 8: MySQL Database Configuration for Taxi Service

Figure 9: Database in Apache Netbeans

31

 - User Authentication and Authorization:

Firstly, develop secure user registration and login functionalities. Then implement

authentication and authorization mechanisms using Java EE Servlets. Lastly, ensure password

security through MD5 hashing algorithm as shown in Figure 10.

Figure 10: Implementation Of Md5

- Data Validation:

In the taxi booking system, the `DataValidator` class ensures the accuracy and security of

user inputs by validating login details, phone numbers, emails, and passwords against

predefined patterns as shown in Figure 9. This proactive validation not only prevents

erroneous or malicious inputs but also enhances the overall user experience. By

maintaining strict adherence to input requirements, the system fortifies itself against

vulnerabilities, ensuring a secure and reliable platform for taxi bookings.

32

 Figure 11: Data validation code

-Pagination

The `Pagination` class in the `com.epam.taxi.utils` package offers a flexible and

dependable solution for adding pagination functionality to web applications. It uses a

configurable constant to set the number of records per page and dynamically calculates the

total number of pages based on the size of the entity list. Its ̀ createPagination` method adds

pertinent pagination attributes to the provided `HttpServletRequest`, thereby preventing

`ArrayIndexOutOfBoundsException` scenarios. Its `getPageList` function also returns a

subset of entities that are unique to the specified page. Developers can quickly implement

pagination with this class, which will improve user experience by simplifying the

navigation of large datasets.

33

Figure 12: Pagination Code

-CommandContainer.java:

The `CommandContainer` class houses all commands in the taxi reservation system

centrally, making it simpler to manage and allow scheduled access to command instances.

It does this by using a static initialization block to fill a {Map` structure with examples of

different commands, divided into common, client-specific, and admin-specific commands.

Every one of these commands has a specific purpose in the application. Using Apache

Log4j, the class generates debug logs that show successful container initialization as well

as trace logs that show the number of commands that were initialised. These logs provide

useful information about the initialization process. The `getCommand` method allows for

the retrieval of specific commands solely by name, preserving modularity and flexibility in

command handling.

34

 Figure 13: CommandContainer.java

-CommandFilter.java

1. doFilter Method:

 Then, the ICMP method, instead of continuing with its journey, intercepts it and hides it

from the final intended receiver, before it reaches them.Through this utilization, a general

servlet request will firstly be converted into a HttpServletRequest, which, in turn, would

enable you to get all the HTTP specific functions at your disposal. Afterward, it goes on to

send a message of 'user authorized' result to the backend by using the 'isAuthorized'

method.The method will let the request's task execution and processing through the filter

chain, either if permitted or not, and users can then use the existing filterChain.

doFilter(request, servletResponse). If the user does not have the necessary credentials for

the method, it will not operate and the user will be redirected back to the initial app page.

35

2. isAuthorized Method:

 This is an example of how check is utilized to make sure an user's role is toxic whether

they want to execute the command to deter if they are allowed to do so. It accepts

HttpServletRequest web-request object as its input, provides several methods to handle

session data, and enables connectivity with other layers of middleware such as application

components, business logic, and database. The method proceeds to the command parameter

of request and returns the account of the user through session.

 It then proceeds with several checks:- Nextly ,the algorithm rumbles the following:When

the command that was intended to be used is a null, so the agent returns of overwhelmingly

true meaning unauthorized access instances (page refusal). If the user is not authenticated

and the command belongs to the entranceCommand array, then it gives back a positive

message and entrance in the commands such as login, register etc. While the user is not

recognized if not equal to the elements in entranceCommand array and there is no

command in the entranceCommand array, that returns false and the linkage to main page

is realized. Next, if the authentication of the user is successful and the command matches

with these commands array then, it will return true and consequently the user will perform

the normal operation.If the user(admin) is the true flag of the establishCommand array and

it is included with the admin-specific commands then it is exhibited and provides the admin

to access the specific commands. Instead of using non client commands the user if named

a client and commands are in clientCommand array, information is returned which will

give access to client commands.The validation function is supposed to be in the form of a

conditions statement. The condition is to be met for the function to return as true, signifying

the authorized access. However, if none of these conditions is met, the function returns as

false, implying the unauthorized access.

-FrontController.java:

FrontController,java is the backbone or the core who is investigating the flow of the request

by the dispatcher. It is used as the root for all requests which are forwarded through the

"/controller/regex" URL stemplen. After the receipt of an order, process() method that

captures the name of the command and then Command object from CommandContainer

utilizing this command name, which gets hold of it. A decoupled structure like this helps

36

modularization and makes it easy to change the logic controller by making him the centre

of the execution. Completing the command execution, the servlet apprises the Path object

and uses redirect flag to determine how to move the user either to the next views or some

of the available resources in the system as deemed fit. The logging extension specifically

aids via the Apache Log4j log messages on what commands were run and the URL

addresses references, which can be utilized for debugging and performance analysis. Not

only does the FrontController servlet implement these common patterns that belongs to the

design of MVC but it also ensures a security for app navigation and access to data. It has

a very high scalability and extendability level of the app.

-SessionListener.java:

Usually, the first thing people mention about the tag is the other executive power side,

which is the ability to set the timeline for the events that are responsible for starting and

stopping sessions. If I submit “an init parameter” to servlet container, you may start saying

that ba servlet Container is the one which makes it possible to the session to set information,

which is, for example, the session identifier in session identification. As such, this

synchronization approach enables the threads to stop any sync session no matter how

interconnected it is. In this technique, classes of the listening session involve the interval

between the first class plays. This other stored information is allowed to be used in these

session. Allocating a log facility for automation sessions is in principle possible with Log4j

implementation, which allows to acquire the desired segment of the session data (drawn

from the general information on automation process) for further employment. Finally

HttpSessionLifecycleListener will accomplish initializing by defining the entities with

HttpSessionListener interface. It then treats the event in a proper way but only connected

to the servlet. This implies, therefore, the action of that system that is completely flexible

and the respondent almost immediately to all the applications immediately. The other parts

of application management are quite unexceptional and it is not so important for a

sessionListreener to take a closer look such that the site being implemented is entirely up

and running which is often a top thing that any web site owner wants to see run.

37

 - Booking Process:

 logic for customers to submit taxi booking requests.

3.4.2 Algorithm For Booking Process:

 Step 1.User registration and login functionality.

 Step 2.Clients initiate the booking process, providing details like departure, destination,

passengers, and car category.

 Step 3.System queries available cars based on location, category, and availability status.

Assign an available taxi to the order, considering factors like proximity and category.

 Step 4.If no suitable cars, provide alternative options for client confirmation.

 Step 5.Calculate the trip cost using Manhattan distance and consider additional factors.

The Manhattan distance formula, also known as the L1 norm or taxicab distance, calculates

the distance between two points in a grid-based system (like city blocks). For two points

(x1, y1)) and(x2, y2), the Manhattan distance (D) is given by:

𝐷 = |𝑋2 − 𝑋1| + |𝑌2 − 𝑌1|

Step 6.Check if the client is eligible for the loyalty program discount (every second ride

gets a 20% discount).

 Step 7.Notify the client about the assigned taxi, estimated arrival time, and calculated trip

cost.

 Step 8.Confirm user acceptance of the details.

 Step 9.Notify the assigned driver about the booking, providing user and location details.

 Step 10.Initiate the ride as the driver confirms availability.

 Step 11.Process the payment based on the calculated trip cost using secure payment

gateways.

 Step 12.Mark the ride as completed after reaching the destination.

 Step 13. Allow users to provide feedback and ratings for the driver.

 - Testing:

JUnit is a widely adopted framework for unit testing in Java, playing a crucial role in

ensuring the reliability and correctness of software applications. In the context of our taxi

38

booking service project, JUnit facilitates the creation of dedicated test classes containing

methods annotated with `@Test`, each representing a specific test case. These methods

utilize JUnit's assertion methods to validate that the actual output of a particular unit or

method aligns with the expected output. Annotations such as `@Before` and `@After` are

employed for setup and teardown operations, ensuring a consistent testing environment.

Test runners provided by JUnit execute these tests, and the framework gen

erates detailed reports highlighting successes and failures.

By incorporating JUnit into our development process, we systematically verify the

functionality of individual components, promoting code robustness and facilitating early

detection of potential issues. This approach significantly contributes to the overall quality

and stability of the taxi booking service application.

 - Tomcat Server:

 Configure Apache Tomcat as the web server for deploying and running Java Servlets

 as shown in Figure 14.

Figure 14: Tomcat Sever Configuration

39

3.4.3 Frontend Implementation:

- UI Design:

 Use HTML and CSS for structuring and styling the user interface. Implement JavaServer Pages

(JSP) and JavaServer Pages Standard Tag Library (JSTL) for dynamic and responsive

presentation.

 - Multilingual Support:

Provide multilingual support by localizing the web app so that users can interact with it in the

language of their choice. Multilingual support in is achieved by creating separate

`message.properties` files for each supported language, such as `message_en.properties` for

English and `message_es.properties` for Spanish as shown in Figure 15 and many more. These

files, containing key-value pairs representing message identifiers and their corresponding

translations, are placed in the ̀ WEB-INF/classes` directory. In Java code, messages are retrieved

using `ResourceBundle`, dynamically setting the `Locale` based on user preferences. In JSP

pages, the `<fmt:setLocale>` tag is used to set the locale, and `<fmt:message>` displays the

messages. The configuration in the `web.xml` file allows setting the default locale.

Figure 15: Multiple Languages Supporting Files

40

3.4.4 Deployment on AWS EC2

Setting Up the Environment:

1. Amazon EC2 Instance Configuration:

2. Launch a new EC2 instance with the following specifications: as shown in figure

16.

3. Instance Type: t3.micro

4. Availability Zone: eu-north-1a

5. Security Group: launch-wizard-3 (configured to allow inbound traffic on ports 22

and 8080)

6. Key Pair: Use "learn.pem" for SSH access

Figure 16: Creating An Instance

7. Allocate an Elastic IP address and associate it with the EC2 instance for a static

public IP.(51.20.233.7). As shown in Figure 17.

Figure 17: Allocating Elastic IP Address

Deployment Process:

1. Open an SSH client.

41

2. Locate your private key file. The key used to launch this instance is learn.pem

3. Run this command, if necessary, to ensure your key is not publicly viewable using

gitbash terminal.

chmod 400 "learn.pem"

4. Connect to your instance using its Public DNS:

ec2-51-20-233-7.eu-north-1.compute.amazonaws.

5. Transferring Files to EC2:

 - Connect to the EC2 instance via SSH using the provided key pair in gitbash:

 ssh -i "learn.pem" ubuntu@ec2-51-20-233-7.eu-north1.compute.amazonaws.com(

as shown in figure 18)

Figure 18: Connect of local machine with ubuntu on cloud

6. Use Filezilla to transfer your Java web application files (WAR file) from local

machine to the EC2 instance .As shown in figure 19 and 20.

mailto:ubuntu@ec2-51-20-233-7.eu-north1.compute.amazonaws.com

42

Figure 19: Connecting To Filezilla

Figure 20: Creating A War File

43

7. Installing and Configuring Software:

 Once connected to the EC2 instance, install Java and Tomcat:

 sudo apt update

 sudo apt install default-jdk tomcat9

8. Deploy your Java web application by copying the WAR file to the Tomcat webapps

directory:

 sudo cp Taxi-1.0-SNAPSHOT.war /var/lib/tomcat9/webapps/

 Database Setup:

1. Database Configuration:

2. Install and configure MySQL on the EC2 instance:

3. sudo apt install mysql-server

4. Set up database users, permissions, and schemas as required by your application.

 Figure 21: Connecting To Mysql

44

 Figure 22: Databases

Ensuring Security and Scalability:

 1. Security Measures:

 Ensured that SSH access is restricted to known IP addresses by updating the security

group rules. As shown in figure 23.

Figure 23: Setting Inbound rules

45

3.5 Key Challenges

Despite the systematic approach to development, certain challenges emerged during the

implementation phase. Integration issues between frontend and backend components need

to be carefully taken into account to ensure seamless communication. The adaptation of

multilingual support for language-specific user interactions and content management was

a major contributing factor to the challenges encountered.

To ensure data security and privacy compliant with regulatory standards, cautious

encryption and access control implementation were also necessary. The collaborative

issue-solving and iterative improvement required to get past these challenges strengthened

the final implementation's resilience. Designing the order system on the Amazon Web

Services (AWS) Elastic Comput Law (EC2) is a multi level job characterized by

painstaking attentiveness going beyond what the brain sees in a practical way to deliver the

overall concept of what is to be built. For instance, I had never before worked with EC2

instances and related services on AWS. To learn from the variety of options and choose

the best option out of them. Compliance procedures are vital for the purpose of the

respective issues : security, performance and the cost. Also, the lift-off itself is not without

its problems; namely, setting up the VPC, subnets, and the routing tables, thus, the service

inside AWS cannot converse with themselves without knowledge of network principles at

a higher level.

One of the most important things toward building this network is a horizontal growth of a

network with an associated flexibility. The mentioned technique should provide the high

level of control through adjustments for automated scaling and load balancing to maintain

the optimal usage of the available resources. This has triggered deep planned exploration

that were no less dedicated to detailing potential problems that could cause degradation

during application load while keeping the system stable and fitted with the objective.

Nonetheless, these two issues were needed not for the sake of vulnerabilities but for

security practices of the instances that had their data stored safely. We stayed in an RGE

and not regulating the risks rather than counteracting it all the security risks.

46

Conveying a positive image has always been crucial for individuals and brands alike. In

today's digital age, where consumer choices abound and competition is heightened, crafting

a resonating brand personality and conveying a desirable story has become more important

than ever. Therefore, the strategic use of language, visual elements.

In addition to the control and monitoring aspects, we have also employed the emergency

solution- AWS CloudWatch, for the objectives of tracking the key performance parameters,

taking alerts when conditions become suitable for the trigger, and automation of responses

to incidents. EC2 cost optimization factors were the last part of the project which was very

complicated, since you should be acquainted with the pricing features of AWS to gain a

possibility to use features such as Reserved Instances and Spot Instances without a rise in

service failures and degradation of performance.

First, we wanted to achieve an efficient co-existence model which required an expertise

approach. It was the head of cross functional teams, working together to ensure prompt

responses to risk, bugs, and errors with the software. Moreover, setup was easier for the

next one. The second argument is that the technology used has to be defined as either

continuous or accurate alongside vertical structure and the attributes of the system such as

scalability, adaptability and dependability that are set apart to design a platform that will

suitable for all scenarios.

47

Chapter -4

Testing

4.1 Testing Strategy

We rigorously test our online taxi booking system, with JUnit playing a crucial role, as part

of our commitment to providing a very dependable and robust system. JUnit makes it easier

to execute unit tests methodically, which enables us to evaluate the functionality of various

classes and components in detail. We use several well-defined test cases to

comprehensively analyze key elements such as user authentication, booking procedures,

and taxi administration. With a systematic testing approach that finds and fixes possible

problems early in the development cycle, it is possible to ensure that every module

performs in accordance with the specifications.

Furthermore, the effectiveness of the continuous integration (CI) process is increased when

JUnit is included in our testing regimen. Developers can validate code changes more

quickly and consistently with JUnit-based automated testing, which results in faster

feedback. This speeds up the development lifecycle and contributes to the creation of a

dependable and stable application. Our testing approach, which makes use of JUnit's

capabilities and adheres to industry best practices, demonstrates our commitment to

providing a dependable and superior cloud-based taxi booking service that meets user and

industry standards.

The tentacles of our testing plan are intertwined with JUnit. This is an advanced-level tool

that supports us in the consistent and comprehensive testing of our system’s functions.

JUnit helps execute tests in a comfortable flow and lets us carefully test each class and

component in a subdivision to ensure the class provides necessary quality. Fine points of

each test case is masterfully created to thoroughly test booking procedure, banking

interaction and taxi administration to the end of the market.

48

 Also, JUnit gets integration into our CI process, in which code changes are checked out

by JUnit to make sure the validation is consistent and at a fast speed. By using the

automated unit tests to execute the code development, a developer receives on the fly

conditioned reports of errors in the developed code, making it possible to iterate and refine

the system quickly. The smooth integration of testing into our development process

increments cycle time which facilitate faster bug fixing and improvements while ensuring

that quality and reliability parameters are properly checked. The foundation of our testing

strategy relies on the best industry practices, that is why we always work according to this

standard. Such rock-solid approach is devised to ensure that we provide the high quality

and reliable cloud-based taxi booking service. We implemented approach which is based

on the top methodologies like we used JUnit abilities to verify our system with

steadfastness and correctness. We demonstrate our greatness through the meticulously

conducted trials and full-scale application of the best practices, thus we prove to be

professionals who provide better User experience than other teams. Constant

improvements, which are the main aspects of our testing philosophy, are the key to success.

We empower ourselves here by always checking and revising our strategies, introducing

experience and observed gaps from the feedback received in each testing cycle. Through

such an iterative style we are able to modify according to the requirements of time and

specific challenges that we face from our target market, so that the system keeps on top of

technology and performance as our services adapt to the changing trends and innovation in

the online taxi booking services market.

4.2 Test Cases And Outcomes

The testing process involved an extensive suite of test cases, ensuring the robustness and

reliability of critical components in the taxi booking system. The

ChangeLanguageCommandTest and CommandContainerTest classes, focused on

command functionalities, rigorously verified language change commands, logout

commands, and default commands. The AccountTest, CarTest, and OrderTest classes,

targeting entities, rigorously tested the integrity and functionality of user accounts, cars,

and orders, respectively as shown in Figure 24. The DataValidatorTest and

49

PasswordEncoderTest classes, part of the utility testing, validated the accuracy of data

validation and password encoding mechanisms. Lastly, the PriceCalculatorTest class

ensured the precise calculation of trip costs using the Manhattan distance formula. The

outcomes of these tests affirm the robustness and reliability of the taxi booking system,

ensuring its seamless operation across diverse scenarios as shown in Figure 25.

The testing phase for our taxi booking system was represented by a multifaceted test case

set made especially for the best check of the critical components determining the

functionality, reliability and confidence of the system. These tests were aimed to cover the

functionality of different system modules, the modules with high criticality in regards of

application and the modules with relatively lower criticality. Detailed breakdown of the

testing process is following:

1. Command Functionality Testing:

 The target classes were ChangeLanguageCommandTest and CommandContainerTest,

which checked the different command features of the program. These set of tests

extensively verified the live commands of language change, log out and default to check if

everything occurred according to plan. We accomplished this by component testing and

validation including both user interface interactions and overall system operations.

2. Entity Testing:

 Due to their role, the AccountTest, CarTest, and OrderTest classes were allocated to ensure

the necessary entities' integrity and correctness, specifically account, cars, and orders,

respectively. Through this, these tests went to the deep examining of these objects behavior

when they are in different situations with one goal to achieve consistency and reliability in

the system.

3. Utility Testing:

Classes DataValidatorTest and PasswordEncoderTest highlight a testing approach known

as utility testing, in order to provide the accuracy of data validation and password encoding

mechanisms. Those tests were presented with validated user inputs according to the pattern

provided and passwords were encrypted using the hash algorithm described. The policy of

50

ensuring this utility function correctness gave us confidence to improve the system security

and reliability, so we executed it.

4. Trip Cost Calculation Testing:

The per of the PriceCalculatorTest class was to check the accuracy of summing up a trip

costs by applying the Manhattan formula. The result of this tests was to make sure that the

distance between the pickup and drop-off locations was the correct value calculated and

extra options were considered as indicated by the system requirements. Through the

tripping cost check one could be guaranteed of the correct information as it was to be fair

and front line pricing to users. The outcomes of these tests affirm the robustness and

reliability of the taxi booking system, ensuring its seamless operation across diverse

scenarios .

 Figure 24: Testing Files

51

 Figure 25: Testing results

52

Chapter-5

Results And Evaluation

5.1 Results

The Home Page, the detailed Booked Car Details, and the remaining figures demonstrate

the Taxi Booking System's User Interface and functionality. The Home Page (Figure 26)

provides a warm and welcoming entry point for users, enabling a smooth beginning to their

interactions. One of the noteworthy features is the inclusion of multilingual support (Figure

27), which improves accessibility for a range of users. Moving on to the Sign-up Page

(Figure 28), the assessment focuses on how easy and clear the registration procedure was.

To guarantee a reliable authentication process, the security and effectiveness of the Login

Page (Figure 29) are evaluated. Now let's discuss the essential elements of booking: The

Booking Page (Figure 30) is assessed for its usability and option clarity, while the Order

Details Page (Figure 31) provides a thorough summary of all services that have been

reserved with an emphasis on real-time updates. Reviewing previous reservations is

possible via the Account History Page (Figure 32), which emphasizes efficient filtering and

data visualization. The "Booked Car Details" section (Figure 33) offers a detailed analysis

that takes into account the interactive features as well as the extent of the information.

53

 Figure 26: Home Page

 Figure 27: Home Page With Different Language

54

 Figure 28: Sign up Page

 Figure 29: Login Page

55

 Figure 30:Booking Page

 Figure 31: Order Details Page

56

 Figure 32: Account History with Filters

 Figure 33: Booked Car Details

5.2 Comparison With Existing Solutions

The literature review offers a comprehensive understanding of the solutions currently in

use in the field of taxi booking systems. Notable tactics include real-time data, effective

dispatching, route optimization, and the use of tools like the Google Maps API, Dart,

Flutter, and GIS[15]. The gaps that have been identified, however, suggest future lines of

57

inquiry and development in the fields of user accessibility, privacy-preserving

technologies, dynamic pricing models, and labor rights for drivers of ride-hailing services.

These results show that the implementation has features like robust data validation,

dynamic pricing based on Manhattan distance, and user-friendly interfaces when compared

to the project's suggested solution. Per industry standards, we use MySQL, JSTL, JSP,

Java, and JSP.

In summary, by providing a novel and user-centered approach to taxi reservation systems,

the project's implementation fills significant gaps in the literature. The comparison

highlights the advantages of the project and its contributions to the current environment, as

well as the advancements in dynamic pricing, accessibility, and privacy measures.

The establishment of the project in AWS EC2 results in highly improved process of

scalability, reliability, accessibility and security. Providing with this elastic compute

capacity with EC2 will be considered to scale up or down to satisfy the different kinds of

workload requirements. As this will be the most successful solution, so it can ensure the

perfect performance at peak times. Moreover, EC2's strong and lasting infrastructure is the

one that guarantees high availability and fault tolerance, which leads to minimum

downtime and therefore to the provision of continuous service availability. This is achieved

through sending instances into more than one availability zones and regions, thereby it

decreases latency and brings about a speedy response for users all over the world. EC2 also

provides extensive security features like network access control and encryption, which can

ensure the infrastructural safety and the data and in turn, establish trust and confidence

among the users. In the end, the AWS EC2 is the perfect platform for hosting the project,

it is scalable, reliable, accessible and secure, thus making the operation and delivery of the

service smooth and efficient. EC2 offers a wide range of instance types optimized for

different types of loads and one had better find the viable configuration related to his project

to eliminate the excess resources used. For example, it is not important whether you have

CPU or memory-intensive tasks or a lot of storage, you can choose a configuration that that

best suits your needs. The flexibility of this approach permits it to capitalize on the current

58

resources employing a way of optimization that is based on the project’s performance as

well as the nature of the tasks. EC2 is compatible with all other AWS services, the

developers can take benefit of the awesome services such as RDS(Relational Databases

Service), S3(Simple Storage Service), Kinesis, SNS, and SQS etc. In a nutshell, they can

use all the technology tools of the AWS ecosystem. With Amazon RDS, it becomes easy

to undertake relational database deployments and management in a simple manner, thus

reducing the complexity and difficulty of data operations. As similar to on Amazon

CloudWatch logs and metrics are visible in an easy to comprehend graphical representation

in real-time and more distinct resource utilization information is derived.The pay-as-you-

go hiring option allows linking the cost of use to the amount which is being used and scaling

the resources up or down accordingly, without any initial capital investments from the

project as well. This low-cost method enables the project to manage the optimization of

resource utilization while minimizing the costs and thus becoming cost effective in terms

of return on investment. Also, similarly with regulatory compliance norms, EC2 provides

a detailed certification and complies with data protection effectiveness criteria. In so doing,

it guarantees the project is not only at a place where it meets the industry's best practices

but also all the applicable data protection and regulatory requirements. This compliance-

ready infrastructure and immediate focus on compliance management do not oblige the

project to dedicate its resources to managing compliance matters as well as it can deliver a

great value proposition to the users without having to compromise the safety considerations

or the regulatory compliance.

Figure 34: cab[18]

59

Chapter -6

Conclusions And Future Scope

6.1 Conclusion

To sum up, the creation of the taxi reservation system has been successful in offering a

dependable and understandable framework for contemporary transportation requirements. An

effective foundation for system interaction has been created by the adoption of the Model-View-

Controller (MVC[14]) architecture and related technologies like Java EE Servlets, JSP, and

JSTL. The Java web application is publicly accessible at the following URL:

http://51.20.233.7:8080/Taxi-1.0-SNAPSHOT/. The reservation system’s is actually the most

civilized transport situation in these times in realizing a well-built faction that is customer-

friendly. The most valuable feature of the success is an employment of the MVC[14]

architecture, a standard design pattern that has a crazy reputation as it allows to keep the design

components to be separated, the source code to remain intact and, therefore, this design pattern

is scalable. The design mentioned in the example syntactic system is based on encapsulation of

concerns with a distinct module of the Model for data management, the module of the View for

the UI and a Controller module for business logic.

Firstly, the system mainly utilizes Java EE Servlets, JavaServer Pages (JSP), and a web

development toolkit which is a combination of Java EE Servlets, JavaServer Pages (JSTL) and

JavaServer Pages Standard Tag Library (JSTL). The role of Servlets is to act as the brain of all

the applications that perform the react to HTTP request, execute the logic, and produce dynamic

stuff. A convenient side to JSP is its close communication with two other components like

Servlets. As a result, both of them work together allowing the creation of dynamic web pages

and offering a framework for the presentation layer of the application. In addition to that, JSTL

also extends the available tags that include tasks like loop repetitions of the same kind and

condition testing. These annotations aim at enhancing development and allowing code to be well

formatted in a way that can be easily read. This home page then turns into a path for users to

navigate and process their form for the registration page being the main entry point into the flow

of the application. Starts with the registration process, users that are here should provide some

60

info. It is, therefore, the basement for their interrelation with the municipal services system. The

most important is to develop a whole set of strategies to make the website the cybercrime-free

zone as it is from these attacks that users suffer. Such attacks may include a cyber-attack or

malicious data that would disrupt the operations of the website and inconvenience its users.

Through long term attainment of the quality and commitment devotion of the system provides

to make the users of the system well- equipped, available and user friendly platform for the

people which benefits their ways of life as well as mobility solutions that improves their lives.

6.2 Future Scope

▪ Optimized User Interface (UI) Design: Invest in UI optimization to improve the overall

appearance, feel, and functionality of the user interface. Modern design principles,

simple navigation, and responsive layouts are important considerations when developing

an engaging platform. Shape a pleasant user experience which matches the user

interfaces that are tuned for beauty, convenience and affordability. Adoption of modern

web design elements such as minimalism, smart interface, and impressive visualization

help you build and maintain your user engagement. Include also adaptability with

differing devices and screen sizes to suit user requirements, and they'll access your

website via a smartphone, tablet, or computer.

▪ Improvement of data Expand the quantity of ride history, driver performance data, and

user preferences stored in the database. This could enable the system to provide more

intelligent and personalized recommendations. - Process more data by enhancing the data

type which can include telematics data, driver performance index, user profile and

addresses among others. A large data set can be used to create a database that will help

in shaping new personalized of the things such as artificial and smart suggestions. Apply

the algorithms of machine learning, which are able to process accumulated data and

absorb the patterns of the most likely situation in the nearest time. The new system can

be implemented individually as well as architected using deep learning techniques and

further optimize user experience through comprehending the patterns and trends in the

data analytics processes.

61

▪ Google Maps Integration: To enhance location-based services and mapping, make use

of the Google Maps API. The overall effectiveness of the taxi service can be greatly

increased with accurate fare estimates, the best possible route recommendations, and

real-time tracking. To keep the customers’ trust, provide them with exactly what is

written in the quotes, a quickest route suggestion that takes into account the traffic, and

real-time tracking of the carriers all that responsible for the reliance and efficiency

improvement of the transportation method. As well, Google Maps platform consists of

Places API and Places Autocomplete functions which can be used to search for places

and for address input to be streamlined. Study them and then provide them with the

clients enough reasons why it will be beneficial to them and it will definitely be

convenient.

▪ Techniques for Observation and Analysis: To make sure the application is resilient, use

thorough testing techniques like integration testing. Install monitoring software to

monitor system performance, identify anomalies, and take proactive steps to avoid future

problems. - The app is subjected to those elaborate and effective testing processes viz

integration testing and regression testing to ensure it has high performing and dependable

features. It should be ensured to make complete tests that would check the connection

between systems and indicate issues of integration taking into account the possibility.

Constant monitoring by the supervisory software will help to highlight abnormalities as

well as provide necessary actions to counteract the deviations from acceptable

parameters. For the purpose of a proper log analysis and monitoring the performance and

the tracking of errors, it is crucial to use the available diagnostic tools. In this way, I will

achieve the best performance level of my system and the efficient use of organizational

resources. Implant systems for data summarizing, on-going monitoring of system

interface and analytics compiling at the early stages of the application to improve app

performance. Addressing to this complexity – the taxi reservation platform can blossom

into a user-friendly, sleek and simple product which integrates easy operation,

personalized functionality, and flows perfectly for users – leading to happy and satisfied

customers. - Integration of Payment Gateways: In order to enlarge the market as much

as possible, try to include other electronic money acceptance solutions to diversify

62

payment methods of the users. In order to meet the diverse user requirements, the

Popularity of different payment methods such as digital wallets, prepaid cards, and

cryptocurrency should be promoted, because they make the payment process more

convenient and enjoyable.

▪ Enhanced Security Measures: It should be the aim to enhance the security by applying

the new technology method of authentication such as two-factor authentication, and

encryption techniques, etc. in order to raise the security level even more for both clients

and the business transactions. The way the new level of security ensures the protection

of a user`s information against any intrusion is that the user data becomes virtually

protected.

▪ Integration with Ride-Sharing and Carpooling Services: In addition to these services, the

users can also use the ridesharing and carpooling to get to where they need to go and

thus, the use of sustainable travel practices can be promoted. Supporting the ridesharing

platform and encouraging carpooling users in the process is the critical requirement

before the number of the traffic jams could be minimized and the development of air

pollution could be approached in the meantime as the approach for affordable

transportation provision.

▪ Implementation of AI-Powered Chatbots: Unlike humans, AI agents can be programmed

to respond to any kind of customer with great efficiency and accuracy while providing

them prompt answers to queries related to bookings, customer service, and general

inquiries. Chatbots are programmed to provide personalized recommendations, automate

routine tasks, and enhance user engagement and satisfaction by using the natural

language processing (NLP) and machine learning algorithms.

▪ Integration with Smart Transportation Infrastructure: Make integration a part of smart

transport infrastructure at their best by intelligent traffic lights, sensors, IoT devices etc.

Thus, the system will be able to route effectively, de-cluttered the roads and improved

transportation generally. The gloveman can enable customers to use real-time data .

63

References

[1] N. Kamble, J. Karlupia, S. Ambhore, P. Gondane, and R. A. Patil, "Customer Friendly

Cab Booking System," in International Journal for Research in Applied Science &

Engineering Technology (IJRASET), vol. 11, no. 6, pp. 412, Jun. 2023. doi:

10.22214/ijraset.2023.53667.

[2] Zaki, Muhammad Nazran Mohd, and Nurdiana Azizan. "The Planning Process for

USIM Students’ Car Booking." Malaysian Journal of Science Health & Technology 9, no.

1 (2023): 38-45.

[3] Yao, Zhong Min, Zhao Peng Long, and Qiang Li. "Taxi intelligent dispatch system

based on GPS." Advanced Materials Research 742 (2013): 463-468.

[4] Chalermpong, Saksith, Hironori Kato, Phathinan Thaithatkul, Apiwat Ratanawaraha,

Alexis Fillone, Nguyen Hoang-Tung, and Peraphan Jittrapirom. "Ride-hailing applications

in Southeast Asia: A literature review." International Journal of Sustainable Transportation

17, no. 3 (2023): 298-318.

[5] Awajan, Albara. "An automated taxi booking and scheduling system." In 2013 8th

EUROSIM Congress on Modelling and Simulation, pp. 502-505. IEEE, 2013.

[6] Reddy, Chaganti Sandeep, and Dr Preeti Savant. "Car Service Slot Booking System."

International Journal for Research in Applied Science & Engineering 10 (2022): 1836-

1839.

[7] Nguyen-Phuoc, Duy Quy, Diep Ngoc Su, Phuong Thi Kim Tran, Diem-Trinh Thi Le,

and Lester W. Johnson. "Factors influencing customer's loyalty towards ride-hailing taxi

services–A case study of Vietnam." Transportation Research Part A: Policy and Practice

134 (2020): 96-112.

[8] Ramasamy, Adimuthu, Kamalakanta Muduli, Aezeden Mohamed, Jitendra Narayan

Biswal, and John Pumwa. "Understanding Customer Priorities for Selection of Call Taxi

Service Provider." Journal of Operations and Strategic Planning 4, no. 1 (2021): 52-72.

[9] Saha, Prerona, Soham Guhathakurata, Sayak Saha, Arpita Chakraborty, and Jyoti

Sekhar Banerjee. "Application of machine learning in app-based cab booking system: a

survey on Indian scenario." In Applications of Artificial Intelligence in Engineering:

64

Proceedings of First Global Conference on Artificial Intelligence and Applications

(GCAIA 2020), pp. 483-497. Springer Singapore, 2021.

[10] Liu, Zhidan, Zengyang Gong, Jiangzhou Li, and Kaishun Wu. "mT-Share: A mobility-

aware dynamic taxi ridesharing system." IEEE Internet of Things Journal 9, no. 1 (2021):

182-198.

[11] Koul, Saroj, CSN Venkata Datta, and Rakesh Verma. "Car rentals’ knowledge and

customer choice." In 2020 International Conference on Emerging Trends in Information

Technology and Engineering (ic-ETITE), pp. 1-5. IEEE, 2020.

[12] Magar, Shyamsundar, Vinayak Jadhav, and Omkar Raut. "Ambuitec: ambulance

booking application for emergency health response, blood inventory." Test Engineering

and Management 83 (2020): 12068-12075.

[13] https://www.dikonia.com/wp-content/uploads/2023/09/img-65140df24948e.webp

[14] https://www.edureka.co/blog/MVC[14]-architecture-in-java/

[15]https://www.cdc.gov/gis/what-is-gis.htm#:~:text=Print-

,What%20is%20gis%3F,the%20geographic%20location%20of%20features.

[16] JDBC Documentation:

https://download.oracle.com/otn_hosted_doc/jdeveloper/904preview/jdk14doc/docs/guid

e/jdbc/index.html

[17] Java connect to MySQL database with JDBC

https://www.codejava.net/java-se/jdbc/connect-to-mysql-database-via-jdbc

[18] https://jugnoo.io/wp-content/uploads/2022/03/cab-booking-software-2-1024x698.jpg

[19] https://www.searchenginejournal.com/multilingual-localization-podcast/493485/

[20] https://developer.mozilla.org/en-US/docs/Glossary/MVC

[21] https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/Validator.html

[22] https://dev.to/vishal8236/how-to-connect-apache-tomcat-to-apache-netbeans-ide-

65g#:~:text=Open%20the%20Netbeans%20IDE&text=Now%20config%20username%2

0and%20password,created%20server%20and%20start%20server.

[23] https://dev.mysql.com/doc/workbench/en/

[24] https://medium.com/@alexthedev/hashing-in-java-f0436cd4284b

[25] https://www.digitalocean.com/community/tutorials/servlet-jsp-tutorial

https://www.dikonia.com/wp-content/uploads/2023/09/img-65140df24948e.webp
https://www.digitalocean.com/community/tutorials/servlet-jsp-tutorial

65

66

67

