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ABSTRACT 

 

It can be hard and tedious to keep up with important social media details from websites like 

LinkedIn in present times as there is a lot of information overload and profiles flooding all over 

the platform some of which seem to be irrelevant. Thus, the development of an effective social 

summarizer web application based on AI that integrates LinkedIn data compresses it into concise 

and meaningful abstracts, and communicates the data is needed to address this issue. This would 

provide customers with a handy means of getting updates on all essential information about 

some users globally in the internet world. The rise of generative AIs such as Generative Pre-

Training 3 (GPT3) can be attributed to the development of Large Language Model (LLM) based 

applications. These models have been quite efficient in natural language processing and 

production applications though several applications of these LLMs have not yet been discovered 

or even thought of, be simple LLMs have a wider scope in varying domains which when applied 

can be of great use.  

LLMs have been used for text summarizing and content extraction. Previous studies on social 

summarization have concentrated on the processing of data from LinkedIn networks 

respectively. Agents and scraping approaches have been used to collect data from several 

sources which was preprocessed later. Nevertheless, adding advanced AI features such as LLMs 

which most current summaries lack could greatly improve the quality of output summaries. 

There are several other applications of LLM in the AI domain that have been proven to 

revolutionize. Though the use of LLMs has been limited to certain fields it can be employed in 

several cases which are yet to be discovered. Also, LangChain is a powerful Python-based 

framework not known to everyone that provides the complete infrastructure, tools, and overall 

environment in general to develop certain projects. LLM coupled with the use of LangChain or 

related framework can do wonders in the Artificial Intelligence domain.  
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CHAPTER 1: INTRODUCTION 

 

1.1 INTRODUCTION 

There are various social networking platforms such as LinkedIn, which is very important in 

professional activities. It is used for posting one’s professional successes and networking with 

other individuals who share similar interests while also seeking employment opportunities. It is 

not simple as a lot of data is present there which nobody can tell is true or not. Therefore, new 

applications should be developed to use the strength of artificial intelligence to help tackle this 

issue of information overload. 

The purpose of this project is to address the information overload challenges that exist in the 

social media environment using generative AI technology. Our web-based application will go 

through numerous critical phases, i will utilize the specially designed agents and APIs to gather 

data from LinkedIn. Data preprocessing will remove noise and useless information. Our 

application will majorly deal with the integration of LLM driven by LangChain. This will allow 

for precise, logical, and contextually relevant summaries of the accumulated data. Summaries 

will reflect the very specific key ideas of the original content. 

I will develop an appropriate user interface, in which the users can state their specific 

requirements as well as view the summaries presented. I will use Flask to build our application 

and it will comprise of friendly interface for users and an integrated AI backend. For this to 

work, communication between components must be seamless. 

I propose a solution that uses generative AI methods with effective data gathering and processing 

by creating this AI-based Social Summarizer. Our project would meet the growing demand for 

clear information. The application would aim to provide users with a tool that makes reading 

social media profiles an effective experience through the combination of technology and user-

centric design. This web application would be able to provide the medium where the user could 

look for a brief description of some person primarily the summary generated would be from 
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his/her LinkedIn profile. The core of the AI-based Social Summarizer relies on the extraction of 

relevant information from LinkedIn profiles. To accomplish this, the project leverages the 

ProxyCurl API, a robust tool designed for secure and ethical data scraping from LinkedIn. This 

ensures compliance with LinkedIn's terms of service while allowing the project to access profile 

information seamlessly. 

The project makes use of the ChatGPT3.5 Turbo, which is a strong language model that 

comprehends and produces natural language. Applying this model makes it possible for social 

summarizers powered with AI technology to extract informative write-ups of LinkedIn profiles. 

To ensure that the generated summaries capture the nuances and salient features of each profile, 

the LangChain framework is used for enhancement. 

This AI-powered social summarizer will be seen as one of the uncommon approaches in the area 

of AI-driven social network analysis. The project can change the way people access and navigate 

through LinkedIn profiles by using LLM’s advanced language models, ethically scraped data, 

and web applications connected to external APIs. 

 

 

1.2 PROBLEM STATEMENT 

As the number of users on LinkedIn continues to grow exponentially, leading to uncountable 

profiles, getting to a certain significant profile becomes an increasingly challenging task. The 

vast volume of information load makes it difficult for the user to fetch the relevant details about 

a person they are looking for in the desired way. This problem is unaddressed due to the absence 

of intelligent tools that can distill and summarize necessary information from LinkedIn profiles. 

This major project deals with the lengthiness of LinkedIn profiles as it is one of the critical 

issues while going through the platform. Understanding many shades of every profile has 

become a tedious task for the majority of its users as the platform increasingly finds its use 

among professionals for networking and communication purposes. However, it is difficult to 

analyze traditional profiles using old means designed for such purposes as there exists a lot of 

information that can affect an individual’s personality. Thus, this calls for a smart approach that 
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simplifies the generation of profile summaries allowing customers to comprehend required 

information within a small space. 

 

The underlying idea of the AI-based social Summarizer is that it can redefine user engagement 

with LinkedIn profiles. Manual profile analysis is not feasible, and users are also unaware of 

key details hidden in long contents. Advanced language models and data scraping help tackle 

the limitations by giving users a quick but useful way of comprehending profiles. 

The adoption of AI-based social summarizers is likely to produce positive outcomes including 

increased user efficiency, better understanding of profile information, and more precise starting 

points for communicating with others depending on the created summaries. The success of the 

project will be determined by users’ input, the quality of summaries, and its success in everyday 

use. 

 

 

1.3 OBJECTIVES 

1.3.1 CONTENT SUMMARIZATION: 

The main goal of the development of an AI-based Social Summarizer is building a strong 

system for generating content summaries taking into account the power of LLM. Textual 

information is vast on social media profiles, especially the sites like LinkedIn. Making an 

intelligent natural language system necessary. To understand the basis of each LinkedIn profile, 

OpenAI’s ChatGPT3.5 Turbo has been used. This can get major data including career events, 

skills, schooling, and others to create brief but meaningful outlines. 

Content summarization is made up of extracting significant parts of information, such that the 

system correctly presents every detail associated with each profile. LLM facilitates the 

contextual approach that understands that the profession is broad and varies in scope or field 

among different individuals. The system seeks to give relevant summaries of important issues 

as most people struggle to get meaning out of too much information available on these sites. 
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1.3.2 LANGCHAIN INTEGRATION: 

The project uses LangChain technology to provide better summary outputs. LangChain is 

essential for improving the validity, uniformity, and general soundness of language 

development. Whereas LLM like ChatGPT3.5 Turbo is good at producing text, LangChain 

serves as an additional level that provides a meaningful storyline in the generated summaries. 

The major achievement contributed by LangChain is in generating summaries not only with 

accuracy but also with well-structured logic based on relationships among different parts of the 

texts. To tackle such an issue of separated summaries, a process for integrating these results 

into natural language has been provided. The duo of LLM and LangChain improves the 

understandability and fluency of the created content. 

 

1.3.3 USER-FRIENDLY INTERFACE: 

The AI-based social summarizer works under advanced language processing and its interface 

is a web application developed using Flask. It should have a friendly interface that provides 

easy access and use, leading to the success of this endeavor and to make the summary tool 

feasible. 

Thus, it acts as a link between content summary, integration with LangChain, data extraction, 

and users’ needs. This makes it easy for users to enter the LinkedIn username and access the 

process of summary generation. It has a simple design that renders easy to follow the 

constructed summaries. The aim is to provide an effective UI coupled with several other 

features that give higher productivity at any time. 

The summaries produced by this process are made accessible to users through a user-friendly, 

simple and easy to access interface where professionals, employers, and individuals can find 

relevant information about various LinkedIn profiles without much efforts. A user-friendly 

design improves on the practical aspects of the AI Based Social Summarizer that can be 

understood by different users having different skill levels. 

 

  



5 

 

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT WORK 

The project is significant due to its potential to revolutionize the way people access and extract 

information from LinkedIn profiles. Also, this addresses the issue by bringing in use the 

advanced technologies, including LLM and LangChain, to cater to the summarization process. 

The system's ability to suggest conversation topics based on the summarization output improves 

its value even more. This feature would not only help initiating conversations but also enhance 

the overall user experience. Hence, the AI-Based Social Summarizer can be considered as a 

transformative tool, offering users a time-efficient and insightful means of getting through the 

struggles of social media profiles. The AI-Based Social Summarizer might prove significant for 

professionals, recruiters, and individuals seeking to optimize their interactions on LinkedIn. By 

employing OpenAI's ChatGPT3.5 Turbo, the project ensures that the generated summaries are 

not only accurate but also contextually relevant and desired.  

The motivation behind the "AI-Based Social Summarizer" project is from the recognition of 

existing challenges in the realm of profile analysis on professional networking platforms. 

Traditional methods of manually sifting through extensive profiles not only consume valuable 

time but also risk missing out on crucial details. The motivation to develop an automated 

summarization tool is rooted in the desire to empower users with a more efficient and effective 

means of profile comprehension. 

The scraping of data from LinkedIn via the ProxyCurl API adds another layer of motivation by 

addressing ethical considerations. The project is designed to adhere to LinkedIn's policies, 

ensuring that data extraction is conducted ethically and securely. This commitment to ethical 

practices aligns with the broader motivation to create a tool that not only meets technical 

excellence but also upholds ethical standards in data usage. Also, the motivation to develop and 

learn the advanced technologies in Artificial Intelligence like LLM based applications, learning 

about the LangChain framework and it’s working along with third party APIs had driven the 

working on the project.  
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1.5 ORGANIZATION OF PROJECT REPORT 

The report is organized as follows: 

● Chapter 1 is all about the idea of the need of the proposed system and how it can help. In 

present times we deal with a lot of information overload on social networking platforms. 

Therefore, i describe a problem statement and how to deal with it with the help of LLM and 

I have also defined a set of objectives for this project. 

● Chapter 2 outlines the existing related work in the field of LLMs and LangChain powered 

web applications in Artificial Intelligence. It further presents the outputs which i eventually 

compare and discuss in this report.  

● Chapter 3 puts forward the system that is formulated to cater the summarization of LinkedIn 

profiles precisely and is designed to work to fetch the information about a user. This is 

where we cover the requirements, project design and implementation along with challenges 

faced.  

● Chapter 4 is all about testing the system for the accuracy and precision of the generated 

summary of the desired profile discussing the test strategy, test cases and outcomes thus 

produced. 

● Chapter 5 puts forward the analysis of the results in depth and also with content to existing 

work in the field.  

● Finally, Chapter 6 presents the conclusion of the study. It also contains the application 

contribution with future scope of the project.  
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CHAPTER 2: LITERATURE SURVEY 

 

2.1 OVERVIEW OF RELEVANT LITERATURE 

M Konda et al. [1], demonstrated how to combine OpenAI and LangChain to construct a basic 

client-server application based on LLM dubbed "Answer Bot." A client-side API was made 

accessible for connecting to and invoking a Flask-based Python server. A basic user interface 

was constructed after the endpoint was tested with Postman. The tech stack featured the Open 

AI GPT 3.5 model (gpt-3.5-turbo), the LangChain framework, Python, Flask for server-side 

web server support, and the Streamlit framework for the client's user interface. created a server 

providing the API for talking with the server, designed in Streamlit, and successfully deployed 

LangChain. The client then makes a call to this API to obtain the results. 

Dash ICT et al. [2], posted another article that provides a detailed investigation of using 

LangChain and some of the trendiest subjects. The author also detailed how he established his 

chatbot, which he utilizes in conjunction with proprietary APIs to assist users and give insights 

from their web data. An AI based personal shop advisor was developed to aid consumers in 

reviewing their online store data and making advice on how to increase sales and where to 

commit more cash to improve average revenue per visitor. The Chatbot verified an endpoint 

depending on the user's response to the query using the app's API swagger file in order to obtain 

vital data from the app's backend for corrective feedback. It goes over LLM again, as well as 

its text production, translation, summarizing, answering queries, finishing papers, and language 

comprehension capabilities. It also offers free and paid models such as GPT-3 (Generative Pre-

trained Transformer 3), Falcon LLM, and LLaMA. Using the Planner agent as a tool to improve 

planning and analysis of user inputs, it updated the prompt template while keeping the app's 

API in mind. The planner agent analyzes the yaml file, converts all endpoints into tools that the 

agent can use, generates a plan with all the APIs that must be called in order to provide the best 

response to a human question, calls these APIs in order to analyze the data, and returns the best 

response to the user. 
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Keita et al. [3], illustrates how to design a system that can communicate with any PDF and 

image file. The entire chat system's workflow was documented from beginning to end. The user 

must first submit the document to be processed, which could be in image or PDF format. The 

second module was built up to recognize the file format and then start the appropriate content 

extraction process. The Data Splitter module was used to separate the document's information 

into smaller bits. Finally, the chunk converter translated the chunks into embeddings, which 

were then saved in the vector storage. In the last phase, each chunk held an answer to the user's 

query, and the results were provided to the user in the form of a JSON response. The approach 

employed was decided by whether the input document was an image or a PDF. To extract data 

from a specific type of file, utilized a LangChain library with a lot of separate components. A 

larger document, such as a research paper, may, on the other hand, comprise numerous sections. 

Chunk embeddings are created. A vector store was designed to identify the response to a given 

query concerning a defined collection of chunks that are most comparable to that query. It 

constructed a dictionary with two keys, the confidence level associated with the query's answer. 

When communicating with the PDF document, we had to specify the file's path as well as the 

question to which we wanted our model to answer. The model responded like a human in a 

matter of seconds. Depending on the length of the document, putting a human through the same 

process could take minutes or even hours. 

C. Greyling et al. [4], focused on utilizing LangChain to the HuggingFace inference API for a 

Q&A chatbot. It was then followed by a few real-world examples of how to use LangChain and 

HuggingFace to insert context into a debate utilizing a few-shot learning technique. offered a 

simple example of how to govern conversational context in an LLM-based chatbot. An LLM 

was employed in a generating process, and the LLM got the initial input. This initial query 

includes a description of the chatbot, the first human input, and the LLM response. To continue 

the conversation, a fresh additional block was delivered. The LLM's response is well-informed 

and based on the context of the blocks provided collectively. Simply, the conversational flow 

buffered each discussion turn. Furthermore, it suggested two approaches for resolving lengthy 

conversations, deleting the first part of the conversation history at specific moments by 

truncating the conversational history. This method is comparable to using rolling logs to limit 

the size of log files. The second way is to utilize LLMs to record the history of the debates as 
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they occur. Discusses on the ChainBufferMemory that is a form of memory that adds all 

previously sent text both input and output to the context that is provided with each user message. 

LangChain introduced three ways to context management: combination, summary, and 

buffering. The application code that uses the HuggingFace inference API was successfully 

executed. 

S. Talebi et al. [5], published research work on the use of LLMs. In this situation, three phases 

of dealing with LLMs were presented, as well as an introduction to them. It is described a 

language model that is smaller and more general than a huge language model. Not all squares 

are rectangles, just as not all rectangles are squares. All LLMs are language models, it is a 

relatively recent innovation in artificial intelligence and machine learning. ChatGPT was 

characterized as a chat interface that ran on the GPT-3 LLM (which has since been improved 

to either GPT-3.5 or GPT-4 as of this writing). It evaluated both qualitative and quantitative 

sorts of LLM depending on the number and type of metrics utilized or displayed. 

A. Biswas et al. [6], offered a chatbot that overcomes the shortcomings of typical chatbots. The 

most recent ChatGPT API version was used. OpenAI's GPT-3.5-Turbo big language model 

recognizes and produces natural language or code. It is one of the most capable and 

competitively priced devices in Open AI's current GPT3.5 series. The ConversationChain, 

which has a simple memory type that preserves all previous inputs and outputs and appends 

them to the passed context; and the memory made out of a buffer that can take n user interactions 

as a context summary, which can provide an overview of prior talks, were employed. Both can 

occasionally be present in the same memory at the same time. Front-end programming was 

utilized to create the chatbot utilizing an online DataButton platform that comprised an 

integrated code editor (IDE), a package plus configuration maintenance environment, and a 

real-time development viewing area (localhost). Because DataButton makes use of the Streamlit 

framework, the code was written in basic Streamlit syntax. This resulted in the successful 

development of a Memory Bot that can be further customized and expanded with one's own 

datasets. It can have genuine human-like discussions while still being aware of the talks and 

context. 
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O. Topsakal et al. [7], stresses at the usage of LLMs in the rapid development of applications. 

This article focuses on the open-source software library LangChain. It begins with talking about 

revolution in AI highlighting ImageNet Challenge [8], [9] and implementation of reinforcement 

learning [10]. LLMs have gained popularity since they can handle a number of duties including 

as writing code, explaining things, writing essays, and troubleshooting. LLMs have been 

utilized by millions of individuals courtesy to OpenAI's ChatGPT. The core emphasis of the 

research is LangChain, which is aimed to speed up the development of specialized AI 

applications employing LLMs. LangChain is well-known in the field of artificial intelligence 

for its smooth integration with a varied variety of apps and data sources. The paper analyzes 

LangChain's core parts, such as its chains and components, which serve as adaptive, use-case-

specific pipelines and modular abstractions, respectively. Using a variety of real-world 

examples, the study clarifies this framework's ability to accelerate the development of LLM-

based applications. A "prompt" is an LLM's input. They are commonly generated dynamically 

in an LLM application and contain the user's input (question). LangChain provides a set of 

classes for building prompts by employing numerous customizable Prompt Templates. A 

prompt template is a repeatable way for constructing a prompt. The chain is typically made up 

of an LLM and a prompt. When an application requires a flexible chain of calls to LLMs and 

other tools that rely on user input, agents can be deployed. An agent selects the correct tool 

from a selection of tools to utilize for user input. The development of LLMs, such as OpenAI's 

ChatGPT, signifies a paradigm change in AI research with multiple applications. Because of its 

versatility to interface with a large number of data sources and applications, the open-source 

library LangChain is a helpful resource in the AI field. LangChain's modular architecture, which 

provides pipelines that can be customized for various use cases, speeds up the creation of LLM 

applications. This work contributes to the topic on LLM application development in an intent 

to motivate additional research into LangChain and comparable technologies. 

Wei et al. [11], looked at language models' ability to construct a logical chain of thought, or a 

sequence of brief words that resembles the type of reasoning a human may use in response to an 

inquiry. Experiments reveal that when pressed to induce a chain of thought, sufficiently big 

language models perform better on reasoning problems with flat scaling curves. This research 

explored the use of chain of thought prompting to improve the reasoning task performance of 
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language models. Before arriving at a solution, language models could construct a logical path 

of thought, comparable to how people do when faced with a multi-step reasoning difficulty. 

When ordinary few-shot urging is insufficient for a certain reasoning activity, chain of thought 

prompting is easy to utilize and increases overall performance. Importantly, the trial results hint 

to the likelihood that successful chain of thought prompting is an emergent attribute of model 

scale, which means that its benefits become apparent only at a sufficiently large model scale 

(about 100B parameters). The datasets investigated were the SingleOp [12], SingleEq [13], 

AddSub [14], ASDiv [15], MultiArith [16], and GSM8K [17]. Several complex left-to-right 

transformer language models with just decoders were utilized. The models were pre-trained 

using a combination of web publications, dialog data, and Wikipedia. Chain of thought 

prompting is a basic and often utilized method that was studied in this work to improve reasoning 

in language models. As shown by tests on symbolic, arithmetic, and commonsense reasoning, 

chain of thought processing is an emergent property of model size that permits sufficiently big 

language models to execute reasoning tasks that would otherwise have flat scaling curves. It is 

expected that increasing the spectrum of reasoning problems that language models can handle 

will inspire additional study into language-based reasoning methodologies. CoT prompts foster 

more thorough and logical reasoning. The model's performance variations are dictated by 

prompt quality. 

Xiao et al. [18], introduced P-Tuning, a revolutionary technique that blends discrete prompts 

with trainable continuous prompt embeddings. Natural language understanding (NLU) can be 

accomplished by using natural language patterns to prompt a pre-trained language model. 

However, preliminary research indicates that manual discrete prompts frequently result in 

unstable performance; for example, changing a single word in the prompt can result in a 

substantial reduction in performance. P-Tuning not only minimizes the time gap between 

discrete prompts to stabilize training, but it also enhances performance on a range of NLU tasks 

such as SuperGLUE and LAMA. It works effectively for adjusted or frozen language models 

in both fully-supervised and few-shot conditions. The datasets and tools used were LAMA-

TREx (LAMA-34k and LAMA-29k) and AutoPrompt. P-tuning improves best knowledge 

probing outcomes. Furthermore, P-tuning outperforms prior discrete prompt searching 

algorithms as AutoPrompt [19] and LPAQA [20] on the same-size models. As this indicates, 



12 

 

distinct prompts may not be the ideal method. This work presented the P-Tuning technique, 

which combines discrete and continuous prompts. In both the few-shot and fully-supervised 

scenarios, P-tuning is useful with both tuned and frozen language models. It increases 

performance and stabilizes training for the adaptability of pre-trained language models. GPT-3 

goes beyond pattern memorization to indicate linguistic understanding. Excellent performance 

on a number of language-related tasks. 

Liu et al. [21], presented a new work coupled with a discussion of Bidirectional Encoder 

Representations from Transformers (BERT). This paper illustrates that considerable 

performance benefits are attainable and models (Transformers) function best when matched 

with this method. It also indicated higher transferable representations and language 

comprehension. This enables for enhanced generalization and insights into contextual 

representations. It was utilized as a pre-trained language model to improve a range of natural 

language processing jobs. This study created a thorough framework for both extractive and 

abstractive models and proved how BERT may be productively applied to text summarization. 

Many intersections Transformer layers are built on top of the encoder to build the extractive 

model. A new fine-tuning schedule for abstractive summarization was presented in order to 

alleviate the mismatch between the pre-trained encoder and the non-pre-trained decoder. This 

is accomplished by deploying distinct optimizers for each. A two-staged fine-tuning technique 

was also presented, which could help to boost the quality of the summary supplied. Experiments 

were done utilizing three datasets, and the findings demonstrated that the model consistently 

provides cutting-edge outcomes in both extractive and abstractive settings [22]. This work 

shows how pretrained BERT may be employed in text summarization. A unique encoder at the 

document level was also introduced, as well as a basic framework for abstractive and extractive 

summarization. The focus of this research was on document encoding for summary. As a result, 

in terms of generating coherent summaries, the system proposed in this research beats earlier 

summary systems. 
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A Radford et al. [23], revealed great improvements on a range of tasks, including textual 

entailment, question answering, semantic similarity assessment, and document classification. 

can be performed by discriminatively fine-tuning a language model on each particular task 

following generative pre-training on a variety of unlabeled text. Although huge unlabeled text 

corpora are routinely available, labeled data for these specific tasks is limited, limiting the 

performance of discriminatively trained models. In contrast to other methods, due to the 

application of task-aware input transformations during fine-tuning, successful transfer was 

achieved with minimal model architectural changes. The usefulness of this method has been 

proved over a wide range of natural language understanding criteria. Through pre-training on a 

vast corpus with extended portions of continuous text, model got considerable expertise and the 

capacity to handle long-term dependencies. These abilities were then successfully used to 

discriminative tasks such as text classification, entailment determination, question answering, 

and semantic similarity evaluation, enhancing the state of the art on 9 of the 12 datasets 

investigated. 

A. Vaswani et al. [24], presented the Transformer, a revolutionary neural network design that 

altered tasks involving natural language processing (NLP), was the first attempt that came near 

to bringing about a revolution. Vaswani et al. published it in 2017. Convolutional neural 

networks (CNNs) were extensively used prior to transformers and was utilized in NLP 

applications, but they had several drawbacks. The authors suggested a fully attention-based 

model that outperformed earlier methods while being easier to train and more parallelizable. 

The key idea behind the Transformer is the self-attention mechanism, which allows the model 

to determine the relative relevance of multiple phrases or tokens in a sequence while processing 

the sequence. Because it does not employ sequential processing, the Transformer beats RNNs 

and CNNs in capturing word dependencies. The Transformer architecture is made up of an 

encoder and a decoder. The encoder and decoder are built of multiple layers, each of which use 

position-wise feed-forward neural networks and a self-attention mechanism. Using the self-

attention method, the model can pay attention to different words in the input sequence and 

recognize their associations. In order for the self-attention mechanism to work, the query, key, 

and value linear transformations of the input must be computed. Following these input 

projections into various subspaces, the model computes attention ratings for each query and key 
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pair. The output of the self-attention layer is obtained by adding the corresponding values, 

which are weighted depending on these scores. In addition to the self-attention technique, the 

Transformer features positional encoding to incorporate the word order in the sequence. For 

this, many datasets were applied. Hyperparameters were chosen following testing on the 

development set. When possible, the maximum output length during inference to input length 

+ 50 was terminated as soon as practicable [25]. The Transformer may be learned significantly 

faster than systems based on recurrent or convolutional layers. This Transformer design 

surpassed the competition in terms of competitive performance, faster training times, and 

excellent efficacy in parallelization and capturing long-range links. 
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Table 1.1: Literature review of research papers 

S. No. Paper Title 

[Cite] 

Journal/ Conference 

(Year) 

Tools/ Techniques/ 

Dataset 

Results Limitations 

1. Oguzhan Topsakal et.al., 

“Creating LLM Applications 

Utilizing LangChain: A Primer on 

Developing LLM Apps Fast” [7] 

All Sciences Proceedings 

(2023) 

  

LLM based API for making 

an API call. 

  

Insights into LangChain's usage, 

fostering rapid application 

development using LangChain 

for LLM applications. 

Security concerns in LLM 

application development. 

  

2. Jason Wei et.al., “Chain of 

Thought Prompting Elicits 

Reasoning in LLMs” [11] 

Advances in Neural 

Information Processing 

Systems 35, NeurIPS 

(2022) 

SingleOp, SingleEq, 

AddSub, ASDiv, 

MultiArith, GSM8K 

  

CoT prompts lead to more in-

depth and coherent reasoning. 

Model performance varies based 

on prompt quality. 

Performance can still vary 

depending on prompt design. 

Limited exploration of prompt 

variations. 

3 Xiao Liu et al., “GPT Understands, 

Too” [18] 

AI Open (2021) LAMA-TREx dataset  

(LAMA-34k and LAMA-

29k) 

AutoPrompt 

GPT-3 exhibits linguistic 

comprehension beyond pattern 

memorization. Strong 

performance in various linguistic 

tasks. 

There were instances where 

GPT-3 generates incorrect or 

irrelevant responses 

4. Yang Liu et.al., “Text 

Summarization with Pre-Trained 

Encoders” [21] 

Association for 

Computational Linguistics 

(2019) 

Summarization datasets: 

CNN/DailyMail news 

highlights dataset,  

Improved performance in terms 

of generating coherent 

summaries, surpassing previous 

summarization methods. 

Challenges in achieving 

fluency and accuracy. 

5. Alec Radford et.al., “Improving 

Language Understanding by 

Generative Pretraining” [23] 

OpenAI (2018) Natural language inference: 

SNLI, MultiNLI, etc. 

Question Answering: 

RACE, Story Cloze 

Sentence similarity 

Improved language 

understanding, transferable 

representations. Enables better 

generalization, insights into 

contextual representations. 

Challenges in handling out-of-

distribution inputs. 

 

6. Ashish Vaswani et.al., “Attention 

Is All You Need” [25] 

Neural Information 

Processing Systems, 

NeurIPS (2017) 

 

Various language datasets Competitive performance, faster 

training times. Effective in 

capturing long-range 

dependencies, parallelization 

Less effective for tasks 

requiring structured outputs. 
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2.2 KEY GAPS IN THE LITERATURE 

While these papers/articles revolutionized the Artificial Intelligence domain there are some key 

gaps: 

In A. Vaswani et al.’s work, the model used here faced difficulties when dealing with very long 

sentences or extensive variations. Training very big models can prove costly when it comes to 

computing resources and they still can prove to be unreasonable for any research or industrial 

application.  

In A. Radford et al.’s work, it is significant to note that different evaluation metrics may be 

required for different tasks, and improvement of one parameter does not mean better 

performance. The scalability of the approach is not discussed. The study considers benchmark 

datasets used in research, its application in real life situation has not been fully addressed. 

In Liu et al.’s work the LLM used BERT can be very demanding when it comes to 

computations. The proposed framework was not enough to address large datasets and for 

different domains. However, the paper did not discuss on how readable the generated 

summaries were. 

In Liu, Xiao et al.’s paper there was no information provided about how prompt embeddings are 

created but have been discussed many times in the paper. The paper addresses briefly the quality 

of P-Tuning in few-shot situations in general but does not study its behavior in different contexts. 

The paper overlooks the possible influence of P-tuning on the transformed models. 

In Jason Wei et al. the author talked about chain-of-thought prompts which may not offer a 

clear way to measure improvements numerically in terms of scores. Pre-training method and 

process can influence the output accuracy of a given model greatly. The description is not 

explicit for each dataset. 

O. Topsakal et al.’s paper made no mention about LangChain’s limitations and barriers in its 

usage but kept on talking about its positive aspects. Developer experience was not discussed 

while working on user information and adopting to challenges. The paper lacks a detailed look 

at other available frameworks or libraries offering similar services. 
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In A. Biswas et al.’s work there was no discussion on how the proposed architecture would deal 

with extended conversations. No discussion of its performance aspect with respect to the how 

it handles several users at the same time and keeping up with the conversation. Data security 

and privacy concerns where there as conversational agents were used. 

In S. Talebi et al.’s work it was not clear how LLMs distinguish themselves from other language 

models. The details about LLMs were not specified by the article that how using ChatGPT will 

make an impact when one updates these models. No practical examples where LLMs such as 

GPT 3.5 was used. 
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CHAPTER 3: SYSTEM DEVELOPMENT 

 

3.1 REQUIREMENTS AND ANALYSIS 

3.1.1 SOFTWARE REQUIREMENTS: 

● PyCharm IDE: To cater the need for user friendly interface and environment for 

development and testing. 

● ProxyCurl API: The system must be capable of securely and ethically scraping data from 

LinkedIn profiles using the ProxyCurl API. 

● OpenAI's ChatGPT3.5 Turbo: Integration with OpenAI's ChatGPT3.5 Turbo is a critical 

component for generating accurate and contextually relevant summaries of LinkedIn 

profiles. 

● LangChain: The LangChain technology must be integrated to enhance the consistency of 

the generated summaries. This involves ensuring a logical and structured flow of 

information in the summaries for improved user comprehension. 

● Flask Web App: The development of a user-friendly web application using Flask is 

essential. 

 

3.1.2 HARDWARE REQUIREMENTS: 

There are no special requirements concerning hardware other than those needed to run all of the 

necessary software and the entire project itself. 

 

3.1.3 TECHNICAL ANALYSIS: 

The project brings together various modern AI technologies such as LLM using OpenAI’s 

ChatGPT3.5 Turbo model and LangChain. These particular technologies have been chosen due 

to their ability to produce good quality and rich summaries with focus on natural language 

processing and understanding. Flask is perfectly suitable as a web application framework 
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according to the ease of use and the range of customizations. The flask program helps to 

integrate the backend processes easily and has user friendly interface. 

 

3.1.4 LANGUAGE AND TOOL ANALYSIS: 

Python is used as a main programming language due to its flexibility and vast libraries of web 

development, data scraping, natural language processing, etc. The frontend development is done 

using HTML and CSS creating an appealing and responsive user interface. Use of APIs such as 

ProxyCurl API, SerpAPI, and GPT 3.5 API is an extension made in this regard. These are used 

for data extraction and language processing in order to produce the final output. For our AI-

Based Social Summarizer to be strong, flexible and efficient these technologies, programming 

languages, as well as other tools are chosen. 

 

Figure 3.1: Representation of the project entities 
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3.2 PROJECT DESIGN AND ARCHITECTURE 

This section covers the design and architecture of the project, the development of “AI-Based 

Social Summarizer” is based on a holistic approach that ensures that different elements can 

work with each other to provide an excellent system. The following components play an 

important role in shaping the architecture. 

 

3.2.1 DATA SCRAPING MODULE: 

The extraction of the information is done through the ethical way by using ProxyCurl API. 

Through ProxyCurl, LinkedIn’s security is assured and hence adheres to platform policies. This 

part provides the vital information including experiences, skills, and educational achievements 

on personal profiles for further processing. 

 

3.2.2 LANGUAGE PROCESSING MODULE: 

The system employs ChatGPT3.5 Turbo and LangChain. ChatGPT3.5 Turbo performs content 

summarization by presenting main points of the scraped data in a precise form referring to the 

context. Integrating LangChain leads to better logicality of the summaries, making them more 

relevant for consumption. 

 

3.2.3 WEB APPLICATION MODULE (FLASK): 

As for the user interface, it is a Flask-based web application that enables smooth interaction 

between the users and the system. The user interface is easy to use and requires users to simply 

enter in a LinkedIn profile username resulting in the data scraping and language processing 

algorithms. After that, the application showcases the created summaries and conversation starter 

(ice-breaking) points in an easy-to-read fashion. 

 

3.2.4 SERP API: 

SerpAPI is an API to access Google search results on real time basis. It handles proxies, solves 

captchas, and parse all rich structured data for further use. In order to improve the produced 

summarization, the approach uses this for searching the most relevant data about the LinkedIn 
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pages. Furthermore, it helps to build the context of all the summaries providing the user with a 

broader view on one’s web-presence. 

 

3.2.5 INTEGRATION WITH LLM: 

OpenAI API provides variety of models with different capabilities, ChatGPT3.5 Turbo is one 

of them. It understands and generates natural language contexts. In regard to the project, the 

extracted data is sent to the API by the system, resulting in syntactically and semantically 

correct summaries. The output goes through the LangChain technology in order to make 

summaries more logical.  

 

3.2.6 LANGCHAIN INTEGRATION: 

LangChain is a framework for developing applications using language models. It enables 

context aware applications and used to connect language models. This framework consists of 

several libraries and provides chains and agents the important entity in AI. The language 

processing pipeline incorporates this technology. Making sure that it considers the consecutive 

nature of the summary story and maintaining proper sequence to facilitate consistency by 

processing the GPT3.5 Turbo output. The presentation of this information is made structural as 

LangChain has been able to explain it within its context and this makes the summaries to be of 

good quality. 
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Figure 3.2: Idea of LangChain 
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3.2.7 FLASK WEB APPLICATION: 

Flask provides an interface for users to interact with the system. Once users enter the LinkedIn 

profile username, web scraping data extraction module gets triggered. Then the raw data will 

be processed thorough language processing module and finally presented to a customer through 

the web-interface. The application also gives users suggestions of what to chat about, following 

up on the summarized information. 

 

3.2.8 DATA FLOW: 

The data flow within the system follows a sequential process: 

● Via a Flask web interface, the user places an input of a LinkedIn profile URL. 

● Data scraping module is triggered by the web application by use of ProxyCurl API to pull 

the desired data. 

● Scraped data is related to a language processing component relying on OpenAI’s 

ChatGPT3.5 Turbo for content recapitulation. 

● Once the output is processed, it will guarantee cohesion and consistency for ease of 

comprehension and fluency in the flow. 

● At the same time, SerpAPI obtains extra data from relevant Google queries about the 

LinkedIn page. 

● A user is presented with an extensive summary of his/her profile that was supplemented 

with third party data as well as suggested discussion topics. 
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Figure 3.3: Flow chart 

 

This interaction flow ensures an uninterrupted user experience, utilizing the power of each file 

to deliver accurate and relevant summaries of LinkedIn profiles within the Flask web 

application. The architecture is carefully designed to balance efficiency, security, and user-

friendly approach, making the "AI-Based Social Summarizer" a powerful and accessible tool 

for professionals and users on LinkedIn. 
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3.3 DATA PREPARATION 

This section is all about the process of collecting and refining data from LinkedIn using 

ProxyCurl API and employing SerpAPI for integrating external information from Google 

searches. 

 

3.3.1 LINKEDIN DATA SCRAPING: 

For scraping data ethically from LinkedIn profiles, ProxyCurl API is used keeping in mind the 

policies of the platform. This involves extracting a range of information from the profile like 

full name, professional experiences, skills, educational background, and other relevant details. 

This extracts the information in JSON format which can further be implemented in some sort 

of application or can be accessed by simply printing the value. One API call costs one credit. 

This API provides the data ethically ensuring system’s adherence to valid scraping practices 

and the data hence collected can be put to further use for developing applications such as the 

‘AI Based Social Summarizer’. 

 

3.3.2 SERPAPI: 

This API is basically used to scrape Google searches, here this is utilized to gather additional 

context from Google searches about the LinkedIn profiles. This helps in understanding an 

individual’s existence online by providing supplementary information beyond the LinkedIn. 

This helps in improving the prepared summaries by scraping data from search results which 

eventually offers users a more knowledge about the individual’s online activity and professional 

life. This also extracts the information in JSON format which can further be implemented in 

some sort of application or can be accessed by simply printing the value. And same as ProxyCurl 

one API call costs one credit. 

The prepared data from these API is properly formatted for optimal utilization by LLM - 

ChatGPT 3.5 Turbo and LangChain framework for generating desired summaries. LangChain 

enhances the logical structure of the generated summaries whereas the ChatGPT 3.5 LLM is 

used to distill the required information. 
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3.4 IMPLEMENTATION 

This section showcases the implementation done so far in regards to the project undertaken. 

The AI Based Social Summarizer is a Flask web application designed to analyze the LinkedIn 

profiles and generate concise summaries about an individual along with topics (Ice Breakers) 

on which the conversation can be started. The project is based on advanced AI technologies 

including LLMs and LangChain. This summarization and ice-breaking functionalities are in 

existence by OpenAI’s GPT-3.5 Turbo API. And the data extraction is facilitated by ProxyCurl 

API while SerpAPI is used for scraping Google searches. 

 

3.4.1 PROJECT CODE: 

Set up a working directory in PyCharm IDE and imported and created desired files. The project 

is organized into several modules to ensure maintainability. 

● Agents: 

This consists of two files init.py that is an initialization file and linkedin_lookup_agent.py 

which has import statements importing functions and classes from various modules and also 

functions related to agents. The lookup function initializes a ChatGPT 3.5 Turbo model for 

language processing. PromptTemplate is defined specifying that the input variable would 

be the name of the person. A tool is defined specifying the get_profile_url function for 

scraping LinkedIn profile URLs. The agent is initialized and the agent type is specified as 

ZERO_SHOT_LEARNING. agent_run method is called to generate a response and finally 

LinkedIn username is returned by the lookup function. 
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Figure 3.4: Representation of linkedin_lookup_agent.py file 

● Chains: 

This again consists of two files init.py that is an initialization file and custom_chains.py 

which defines the LangChain chains used for generating summaries and conversation 

topics. Several classes and functions are imported from the LangChain library. Two 

instances of ChatOpenAI are created and configured with different temperature settings; 

these are llm used for creating summaries and llm_creative for generating ice-breakers. The 

code defines three functions each returning an instance of LLM Chain. get_summary_chain 

is designed to generate a short summary and two interesting facts about a person based on 

LinkedIn information. get_interests_chain is designed to generate three topics of interest 

based on LinkedIn information. 
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Figure 3.5: Representation of custom_chains.py file 
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● Static: 

It consists of CSS for styling the web application and an image used in the application. 

 

 

 

Figure 3.6:  Representation of script in the style.css file 
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Figure 3.7:  Continued representation of script in the style.css file 
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● Template: 

Contains index.html, the HTML template for rendering the web application interface and 

also includes the JavaScript for the code. 

 

 

Figure 3.8:  Representation of script in index.html file 

● Third parties: 

It comprises init.py, the initialization file and also linkedin.py which implements 

functionalities related to LinkedIn, including the interaction with the ProxyCurl API. 

scrape_linked_in function is responsible for scraping information from a LinkedIn profile. 

Function uses requests.get method to get requests to the specified api_endpoint with 

parameters, including LinkedIn profile URL and authorization headers. The response is 

converted to JSON using response.json() and the processed data is returned. 
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Figure 3.9: Representation of linkedin.py file 

● Tools: 

It also comprises init.py, the initialization file and also tools.py which contains utility 

functions used throughout the project. CustomSerpAPIWrapper class is initialized with the 

super call to the parent class SerpAPIWrapper. get_profile_url function searches for 

LinkedIn profile pages based on a given name. This handles interaction with SerpAPI for 

obtaining information related to LinkedIn profiles and relevant information. 
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Figure 3.10: Representation of tools.py file 
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● Venv- Library Roots: 

This part of the code includes header files and python standard library. It also contains 

scripts for activating virtual environments. 

● .env: 

It is the file that contains configuration files like environment variables and other sensitive 

information like API keys. 

● app.py: 

This is the main application file responsible for handling web requests and integrating 

various components of the project. It starts by importing necessary modules from Flask and 

a custom ice_breaker module. The process route handles POST requests made from the 

front end, calls the ice_breaker_with function and results in a JSON response. Also, this is 

the HTML file for the application and all the other files are integrated here. 

 

 

Figure 3.11: Representation of app.py file 
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• ice_breaker.py: 

This implements the ice-breaking functionality using GPT3.5 Turbo LLM from OpenAI 

API to generate conversation starter topics. Starts by importing required modules and 

functions like lookup from linkedin_lookup_agent and many more. ice_break_with function 

takes LinkedIn user’s name as input, looks up their username and scrapes the data using 

scrape_linkedin_profile and returns a tuple containing the summary, icebreaker, topics of 

interest. 

 

 

Figure 3.12: Representation of icebreaker.py file 
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Figure 3.13: Continued representation of ice_breaker.py file 

● output_parsers.py: 

This part of the code formats the output generated by the summarizer for user-friendly 

presentation along with conversation starters. The code defines three Pydantic models 

(Summary, IceBreaker, TopicOfInterest) and output parsers for these models. to_dict 

method converts model instances into a dictionary. Instances are created for each of the 

models that are summary which represents the summary and interesting facts, IceBreaker 

represents a list of icebreakers that could be used, TopicOfInterest represents the topics that 

might interest an individual. 
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Figure 3.14: Representation of output_parsers.py file 

The AI Based Social Summarizer project uses a technological stack consisting of web 

development using Flask, OpenAI’s GPT3.5 Turbo model for AI capabilities, profile scraping 

of LinkedIn via ProxyCurl API and Google searches scraping by SerpAPI. The use of 

LangChain is crucial for generation of concise and rich valid summaries and ice-breaking 

topics. 
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3.4.2 ALGORITHM PROPOSED: 

● User accesses the web application through Flask based interface and inputs the LinkedIn 

username which needs to be summarized. 

● The application triggers the LinkedIn data scraping module using ProxyCurl API data 

ethically. 

● Extracting the relevant information such as experiences, skills and education etc. 

● Google searches integration is performed by SerpAPI to gather additional information 

related to LinkedIn profiles. 

● Content summarization is done by integrating ChatGPT-3.5 Turbo model of OpenAI API 

which enables the generation of coherent summaries of the LinkedIn profile. 

● LangChain framework is integrated with the project code to enhance the logicality of the 

generated summaries. 

● Output parsers are employed to parse the generated summaries and additional information 

which is further represented to the user with a clear and organized view of summarized 

LinkedIn profile and suggested conversation topics. 

 

 

3.5 KEY CHALLENGES 

Below mentioned are the key challenges faced and their solution during the implementation of 

the project: 

● Working in the field which is new and less discovered is always challenging, so was the 

case with the implementation of this project as there are not many resources available to go 

through as and when needed. For this, as the project started the next steps in the project got 

clear automatically. 

● The first challenge in our implementation was ethical data scraping from LinkedIn, as while 

scraping data one needs to obey the guidelines specified by the platform, keeping in mind 

the privacy and related security concerns. To address this issue, ProxyCurl API was used 

for ethical data scraping without violating the policies of the platform. 
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● OpenAI recently updated their API accessing procedure billing that had to be done prior to 

using the API and it is no longer free, which was again challenging. To address this issue, 

billing of 5$ was done to get access to the OpenAI API. 

● Handling diverse search results produced by SerpAPI and its integration to the summarizing 

process of the project. To address this issue, A parsing mechanism was employed to extract 

relevant information from different search results providing more information about an 

individual. 

● Learning about the LangChain framework was a tough task as it is vast and has plenty of 

functionalities and its integration into the project flooded the code with errors. To address 

this issue, resolving the errors caused due to LangChain integration was the only way, it 

was a long process; few of them still occur at times. 

● Having no prior experience with Flask development was challenging the development of 

the user interface that needed to be intuitive and should be capable of presenting complex 

information in appealing format. This was managed anyhow and also the library root 

provided with the dedicated templates for HTML, hence the web application was carefully 

designed to present the summaries and other information in simple and organized manner. 

● Managing all the external dependencies and third-party libraries was a tedious task leading 

to a lot of code errors and compatibility issues. To address this issue, online resources helped 

tackle many of the issues along with LangChain documentation.  
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CHAPTER 4: TESTING 

 

4.1 TESTING STRATEGY 

● For testing purposes in each module, unit testing was performed by using the print 

statements in between lines of the code while debugging whenever encountered the errors. 

The above strategy made it clear which part of the code was responding and which was not. 

● Except the above generic approach of testing to ensure seamless integration amongst 

different modules connection between them, the importing modules were being checked if 

the code was responding. 

● Errors are the best indicators of a fault in the code. Thus, rectifying the errors was the main 

method adopted. 

● Also had to fetch new API keys and integrate them with the rest of the code since the API 

keys, especially the ProxyCurl API, had a limited fixed number of credits which were 

mostly exhausted while running these tests. 

● The above method and checking if the API key being used was valid and if the API is 

responding correctly served as a major component of testing, this is discussed with a test 

case in the following section. 

● The user interface developed using Flask, HTML and CSS, underwent testing to ensure that 

it is responsive and accessible. Manual testing of the web application was performed. 

 

Coupled with other uncommon developer-specific testing methods it was ensured that the 

project works fine enough and offers a smooth user experience. 
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4.2 TEST CASES AND OUTCOMES 

4.2.1 TESTING THE PROXYCURL API: 

On entering the username of an individual, we want to know about on the web application and 

upon clicking the ‘Do Your Magic’ button we test if the project is able to make a request to 

the ProxyCurl API.  

 

 

Figure 4.1: Representation of frontend application 

 

For this we go back to the terminal and check if the call to the API was made or not. 
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Figure 4.2: Representation of terminal while testing the ProxyCurl API 

 

As we can see from the figure that the API call was successfully made and the LinkedIn URL 

to the profile was provided. Upon clicking the link, we check if we found the actual profile we 

were looking for. 

 

 

Figure 4.3: Representation of LinkedIn profile from the URL produced by API 
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As we can see that we got the profile we were looking for and hence it can now be summarized, 

and summary hence generated can be seen on the web application. 

 

Let’s run one more test for the same: 

 

 

Figure 4.4: Representation of test case 2 

 

 

 

Figure 4.5: Representation of terminal while testing the ProxyCurl API for test case 2 
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Figure 4.6: LinkedIn profile from the URL produced by API for test case 2 

 

Thus, we can say that our project passes the test case of ProxyCurl API call. Similarly, the call 

for SerpAPI and OpenAI API showcased success too. 

 

4.2.2 TESTING THE OPENAI API: 

The ChatGPT3.5 Turbo LLM by OpenAI API could be tested by the same process of passing 

the input to the Flask front end. By providing the name of the LinkedIn user whose profile’s 

summary we are interested in generating in the input section of the flask frontend, we saw in 

the previous section that the code implemented was able to fetch the LinkedIn profile of that 

particular user, thus in this section we tested whether the heart and soul of the whole project 

summaries were being generated in a desired way or not by the help of  ChatGPT3.5 Turbo 

LLM. 
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Figure 4.7: Representation of test case 1 for OpenAI API testing 

 

After entering the user name of the LinkedIn user we hit the ‘Go’ button lets see what actions 

does this trigger in the console: 

 

 

Figure 4.8: Representation of console for test case 1 
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Hence we can see the output in the console, what happens here is that on hitting the go button 

the processes in the background get triggered which in return by the help of the ProxyCurl API 

and Serp API fetch the required LinkedIn data related to that particular LinkedIn user along with 

ChatGPT 3.5 Turbo model which provides summarized and concise information about the same. 

Alone showing the result in the console is not enough we need the output on our Flask based 

frontend: 

 

 

 

Figure 4.9: Representation of frontend output for test case 1 
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Hence we can say that the frontend part is also working completely fine since the summary 

generated was presented on the frontend cleanly and concisely, easy to read with genuine 

information, and simple, easy-to-understand language providing valuable insights about the 

user’s profile. 

 

For better understanding let's test the code again for another LinkedIn user, the process would 

remain the same, on hitting the ‘Go’ button upon entering the user name we could see the output 

in the console for some time and frontend too. Let us look at the console part first: 

 

 

Figure 4.10: Representation of test case 2 for OpenAI API testing 
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Figure 4.11: Representation of console for test case 2 

 

So now we know what information will be shown on our front end, the summarized information 

generated by applying the ability of ChatGPT 3.5 Turbo model which would present the required 

data in a very readable and user-friendly manner. The project code has been tested on numerous 

such test cases and hence can be considered to perform well enough as expected by generating 

a crisp and clear profile summary.  
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Let us take a look at our frontend part for this test case: 

 

 

 

Figure 4.12: Representation of frontend output for test case 2 
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CHAPTER 5: RESULTS AND EVALUATION 

 

5.1 RESULTS 

The result of this project is that I was successfully able to build a simple user-friendly Flask 

web application that takes the LinkedIn username of an individual as input and generates the 

summary of his/her or some other LinkedIn user’s profile.  

Let us finally test the project code for a LinkedIn user to evaluate the final result. This starts 

with entering the profile name of that LinkedIn user in the input field of the Flask-based front 

end: 

 

Figure 5.1: Passing the LinkedIn profile user name 

Now let's check the console to see if the username we provided is being processed or not this 

can only be visible and accessible to the developer side as once this gets deployed or in for 

production services, the background processes will get abstracted, and only the frontend would 

be visible. But still, to evaluate the result let's look into the console: 
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Figure 5.2: Representation of console 

 

It is evident that by incorporating the ChatGPT 3.5 Turbo model and Langchain, a summary, as 

well as an icebreaker topic, is being generated. To have a clear picture of the summary generated 

let us get back to the Flask-based frontend where the final output would be displayed. 
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Figure 5.3: Representation of frontend output 

 

The findings are as follows, outlining the key outcomes and their interpretation:  

LinkedIn profile summaries generated were accurate, and the core functionality on which the 

project is based on content summarization using OpenAI’s ChatGPT3.5 Turbo and LangChain 

proved to be favorable. The generated summaries filtered the relevant details from LinkedIn 
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profiles including interesting facts about an individual. LLM combined with LangChain ensures 

a clear and concise overview of certain profiles. 

Integration of SerpAPI to scrape data from Google searches enriched the summaries by 

providing additional information related to LinkedIn profiles. The project adheres to the policies 

of LinkedIn and respects the privacy of LinkedIn users as the API applied to scrape data is 

purely ethical.  
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CHAPTER 6: CONCLUSIONS AND FUTURE 

SCOPE 

 

6.1 CONCLUSION  

The AI Based Social Summarizer proved to be successful and is a significant approach in AI 

driven social media analysis. The main findings of the project are about its ability to generate 

accurate profile summaries using OpenAI’s ChatGPT3.5 Turbo and LangChain. Integration of 

these technologies resulted in coherent and relevant summaries as well as provided topics on 

which conversation can be started with an individual on the basis of his/her profile. 

Despite the pros there are few limitations to our project. The user interface can be more 

appealing and attractive, also other features can be provided to the web application which the 

project lacks. Also, the quality of summary generated depends highly on the data availability 

on LinkedIn. Project is highly dependent on third party APIs which are expensive and one 

cannot always rely on third party resources. Moreover, scraping data from every networking 

platform is not possible as each platform has its own policies regarding data security and user’s 

privacy.  

The information displayed as an output on the web application was well organized and accurate, 

similar to the natural way of writing as a result, users can quickly understand the profile details. 

Moreover, the Flask web application is quite simple and user-friendly thus easy to access. 

The system hence designed shows readiness for cloud deployment as it is adaptable to future 

growth and demand. The positive outcomes prove the effectiveness of chosen technologies and 

algorithms. To conclude, the ‘AI Based Social Summarizer’ project enhanced our learning 

about AI, LLM, particularly and working with them added up to our knowledge and experience. 

And this can prove as a promising tool for professionals, recruiters and any individual seeking 

for brief analysis on social networking platforms. 
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6.2 FUTURE SCOPE 

The ‘AI Based Social Summarizer’ project lays a foundation for further development in the AI 

driven social media analysis domain. The project has abundant future scope. 

● It can be aligned with other emerging technologies and can be improved continuously by 

training as it employs LLM, keeping it up to date with evolving patterns in the field. 

● The system can be introduced with multiple languages support and translation of the 

information. 

● The web application can be improved a lot by designing the front end more appealing and 

providing features like switching modes (dark and light) or by providing user specific 

customized summaries 

● The system can be integrated with other social media platforms like LinkedIn, scraping the 

data from them and producing rich summaries. 

● Introducing the real time data updates which can be reflected while a profile is being 

analyzed. 

There is a large scope of improvement in this proposed system which can enhance the overall 

project eventually. 
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