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ABSTRACT

The traditional way of living has been altered by the Internet of Things (IoT) to a lifestyle

where technology plays a significant role in our daily lives—sometimes even more so than

people. There is technology involved in everything we see, touch, and experience. The

Internet of Things has brought about life-changing innovations such as smartphones, smart

homes, smart cities, and smart energy-saving systems.

Even though the technologies are getting better by the second, the Internet of Things has

not yet reached its full potential. But as technology advances, so do the risks associated

with it. The issue of hacked networks and broken systems is getting worse very quickly. As

technologies advance, so do these threats—which are becoming more sophisticated and

changing quickly. In computer language, these dangers are known as bots.

The significance of identifying and stopping these bots is increasing every day. Among the

tools and techniques created for this purpose are antivirus software, network sniffers,

secure passwords, and regular system checks. Anti-botnet software, honeypots and

honeynets, signature-based and anomaly-based detection methods, and more are available

for detection. Though there are tried-and-true methods for dealing with botnet threats,

innovation is never out of the question.

That's the reason we developed this project, in which hot-pot technology is employed. For

this reason, we developed this project in which we detect botnet attacks on other network

using machine learning.

xi



CHAPTER 1: INTRODUCTION

1.1 Introduction

In 1999, Kevin Ashton came up with the term "Internet of Things" to emphasize the

seemingly endless possibilities of using sensor technologies to gather data. The use of IoT

in the fields of machinery, law enforcement, healthcare, physical security, and

transportation may decrease, according to Gartner data.

IoT, or "Internet of things," is a "network of objects," or "matters," that use a variety of

software, sensors, and technological advancements to connect multiple devices over the

internet. These gadgets include everything from simple household objects to complex

commercial machnies. This concept is still in the infancy and does not have thorough

security strategies, which puts important statistics at risk. On the IoT network, modern

security features must be implemented in order to protect IoT entities, agencies, and

individuals. The most serious security risk associated with the this is DDoS attacks, where

intruders harms system with scripts.

"Robot networks," or "botnets," are groups of infected computers under the direction of

attacker or "bot herdsman.". ‘bot’ is a device that is controlled by herdsman. The botnet's

biases can cooperate to carry out illegal operations under a single truth. It is acceptable for

adversaries to conduct extensive malware operations using botnets, some of which may

have hundreds of thousands of bots. However, biased content can be updated and modified

externally because botnets are managed by foreign adversaries. Consequently, bot herders

can choose to profit financially by continuously leasing access to botnet components on the

black market. The bushwhacker, also known as the Bot master, viruses, malware, or both,

including the range of devices on the internet.

Even though dispatch is thought of as an antiquated attack channel, spam botnets are

among the most significant real-world botnet attacks. Examples of such attacks include

spam and junk mail dispatch. Bots are typically employed to send out hundreds of

thousands of spam emails, most of which include malware.
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1.1.1 How a Botnet works

Fig 1.1 Botnet architecture

DDoS assaults take advantage of the large-scale botnet to flood a target network or garçon

with requests, making it inaccessible to the intended drug dealers. DDoS attacks target

organizations in order to achieve specific or political goals, or to compel oligarchies to halt

the attack. Botnets designed expressly to steal money from companies and credit card

details are examples of financial attacks. Financial botnets have held responsible for attacks

that have swiftly taken thousands bones from many agencies, much like the Zeus

botnet.Botnets can be distinguished from other forms of malware by their unique armature.

Botnets are similar to worms in that they can spread across tens of thousands of devices.

Moreover, promoting awareness about cybersecurity risks among IoT stakeholders and

fostering a culture of proactive risk management are crucial steps towards safeguarding IoT

ecosystems and mitigating the impact of botnet threats on businesses and individuals alike.

It is not possible to distribute botnets as distinct malware types due to their dispersed

armature. The phylogeny of botnets is attempted to be represented in many courses. The

propagation medium, exploitation strategy, bushwhacker-accessible set of operations, and

C&C structure topology are critical areas for botnet classification.
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1.1.2 COMMAND AND CONTROL TOPOLOGY

"Command and Control" servers, these are the centralised platforms with the ability to

issue commands and reveal information from within a botnet. In the event that an interloper

wishes to launch a DDoS attack, the packet sniffers interacted with the server

communicated the server could additionally launch a collaborated assault.

Alternatively, they could send some instructions to the command and manage servers to

instruct them to launch an attack against a designated target. One of four architectures is

commonly used to prepare botnet C&C servers; these are superstar, a handful of servers,

hierarchical, and arbitrary, and each has advantages and disadvantages.

In essence, C&C servers are the linchpin of botnet operations, providing attackers with the

means to orchestrate large-scale cyberattacks, manipulate compromised devices, and evade

detection by law enforcement or security measures. Effectively targeting and disturbing

C&C infrastructure is essential in reducing the impact of bot network driven cyber threats

and safeguarding digital ecosystems from malicious activities.

Fig 1.2 Architecture of Command and Control
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1.1.3 P2P TOPOLOGY

It give resilience precedence over centralized command and control botnets by creating a

peer to peer network. Peer-to-peer botnets are the same as centralised botnets in many other

respects. Devices connected to peer to peer networks instantly share resources without

going through the authority that manages centralized resources.

P2P botnets enable the sharing of commands, updates, and other data amongst bots via a

range of communication protocols, including HTTP, UDP, and TCP/IP. The botnet can

operate without a single point of failure because the bots can dynamically switch between

functioning as servers and clients. Because of this, it is not easy to stop the bot network by

bringing down its main C and C server.

Botmasters benefit from P2P topology in a number of ways. In the beginning, this gives the

botnet greater adaptability to takedown attempts because there isn't a single point of failure

that can be interfered with. In fact, the botnet can still function even if some of the bots are

eliminated because they can still communicate and receive commands from one another.

Fig 1.3 Architecture of P2P
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1.1.4 Why can botnet attacks affect IoT devices?

The botnet attacks in IoT are common due to the following reasons:

1. Limited Computing Resources: A lot of Internet of Things devices have low

amounts of memory, processing power, and storage. This restriction makes it

difficult to put strong security measures on these devices, which increases their

susceptibility to botnet exploitation.

2. Inadequate Security Measures:

a. Default Credentials: Manufacturers often ship IoT devices with default

usernames and passwords, and users frequently neglect to change them. This

common practice makes it easier for botnets to gain unauthorized access

through known credentials.

b. Lack of Updates: Some IoT devices lack mechanisms for regular security

updates. Without firmware updates to patch vulnerabilities, devices remain

exposed to evolving threats.

3. Interconnected Ecosystems: The interconnected nature of IoT ecosystems means

that a compromise in one device can potentially affect others within the network.

Botnets leverage this interdependency to rapidly propagate and amplify their

impact.

4. Inherent Design Flaws: In a few instances, safety isn't always given importance all

through the layout and improvement phase of IoT gadgets. Manufacturers may

awareness greater on capability and value, leaving vulnerabilities unaddressed until

they may be exploited.

5. Lack of Standardization: The loss of standardized in security protocols across all

IoT gadgets generally outcomes in a heterogeneous landscape. This range makes it

difficult to apply uniform safety practices, leaving gaps in system that botnets can

exploit.

6. Absence of Uniform Security Standards: IoT devices use a whole lot of

communique protocols, and the absence of a customary general makes it difficult to

implement regular protection practices. This diversity affords attackers with more

than one avenues to compromise devices.
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7. Weak Authentication Mechanisms: Some IoT gadgets might also moreover hire

weak or insecure authentication mechanisms. Inadequate authentication makes it

less complicated for malicious actors to advantage unauthorized get entry to and

manipulate over the device.

8. Lack of Encryption: In scenarios where IoT devices communicate over networks

without encryption, the transmitted data is vulnerable to interception. This lack of

encryption can expose sensitive information and facilitate unauthorised access.

9. Remote Locations: Many IoT devices are deployed in remote or inaccessible

locations, making it challenging to apply security patches promptly. This delay

provides a window of opportunity for botnets to exploit unpatched

vulnerabilities.

Multiple Botnet prevention techniques exist. Mitigating and preventing botnet

attacks involves a multi-faceted approach that addresses various aspects of

cybersecurity.

1. Strong Authentication:

● Use Complex Passwords: Practice using strong, specific passwords for

all gadgets and structures, to keep devices safe

● Implement Multi-Factor Authentication (MFA): Require an additional

layer of authentication to decorate protection.

2. Regular Software Updates:

● Firmware and Software Patches: Make sure the vulnerabilities are

addressed by maintaining each tool have normal update.

● Automate Updates: adoption automated replace mechanisms within the

system for quicker and much less tough patching technique.

3. Network Segmentation: Network segmentation to restriction the effect of a

credibility attack particular segments now not permitting facet to facet movement.

4. Firewall Configuration:

● Strict Firewall Rules: Set up firewalls to permit important web site

6



traffic and close greater chatting.

● Intrusion Detection and Prevention Systems (IDPS): Use intrusion

prevention machine (IDPS) to detect and block sport primarily based

attacks.

5. Security Awareness Training: Train customers to apprehend phishing attempts,

keep away from clicking on suspicious links, and take a look at consistent practices.

6. Device Monitoring:

● Traffic Analysis: Ensure that there are ordinary tests on uncommon

traffics that could enter into the groups and additionally unauthorised

sports activities.

● Behavioral Analysis: Conductivity of device may be checked the use of

analyzing gear.

7. Access Control:

● Least Privilege Principle: Limit person and tool permissions to the

minimum essential for his or her functions.

● Regular Access Reviews: Periodically review and update get entry to

permissions..

8. Network Monitoring Tools: Know community sports using a device that gives

visibility, see any unusual pattern or anomaly.

9. Encrypted Communication:Ensure that information transmitted among gadgets

is encrypted the use of stable protocols.

10. Intrusion Prevention Systems (IPS): Real-Time Threat Prevention: Deploy IPS

to detect and prevent known and unknown threats in real time.

Detecting botnets poses a significant challenge due to their minimal use of

computational resources, making them elusive and hard to identify. In recent years,

network security experts have extensively explored the identification and tracking of

botnets.
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1.1.5 Anomaly-based Detection Technique

Several hours are expended on studies of new algorithms for the identification of botnets,

taking into account indicators of Internet traffic. Botnet detection based upon anomalous

network behavior considers unusual latency delays, NetFlow on atypical and unused ports,

heavy traffic load to a semi-network, or irregular structure behaviors that might indicate

rogue elements in the network.It especially enables the identification of zero-day botnet

attacks that have no signatures or patterns. It is also capable of identifying botnets with

advanced evasion tactics, like cryptography, camouflage, and dynamism, by interpreting the

changing behaviors as abnormalities.

Nevertheless, anomaly-based detection is not without its challenges. "False positives" can

also arise from the way the system responds to an alert or from typical variations in

network traffic. An increase in network traffic, for instance, brought on by regular

occurrences like software updates and high user activity, may also seem unusual. Setting

appropriate thresholds and improving anomaly detection algorithms are both necessary to

reduce false positives. To do this, it uses historical data, including packet size, average

traffic volume, and protocol distribution, to create baseline data.

Fig 1.4 Anomaly-Based Detection System
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1.2 Problem Statement

This project aims at developing an optimal approach for botnet attack detection within IoT

systems via machine learning and deep learning algorithms. This would entail developing a

means of analyzing and managing huge amounts of data produced in the form of network

activity, log files, and even device conduct, detecting signs of botnets by recognizing such

trends, behavior, and abnormalities.

The remedy should be employing ML model for instance supervised or unsupervised

learning to detect botnets in real time but limiting the occurrence of faulty positive and

faulty negative. The associated problems that come along with this problem statement

include having to handle heterogeneity of data formats, limited computing resources,

variable connectivity issues.

Another issue is that of dynamic botnet attack, botnet constantly changes its structure to

avoid detection. Upon attainment of this undertaking, there will be an innovative approach

to Botnet attack detection and suppression by using Machine learning algorithms within

IoT.

In addition, such outcomes may become the groundwork for subsequent machine learning

studies concerning the IoT botnet detection.

1.3 Objective

The objectives of the project are:

● This project seeks to determine whether a device is being attacked by a botnet.

● Developing methods for identifying botnet-induced denial-of-service attacks is the

main goal of this work in an Internet of Things context.

● Developing an approach that will include designing and implementing an IoT data

collection and preprocessing system.

● To build the best classification model using machine and deep learning algorithms

to determine the optimal accuracy in predicting whether a system is under botnet

detection or not.

● Optimising the models for real-time detection

9



1.4 Significance and Motivation of the Project Work

In researching cybersecurity, this is always a daunting assignment. Therefore, this has

forced cybercriminals to remain on guard to look for ways of identifying

vulnerabilities with which they can carry out unlawful activities. New and ingenious

means for malware propagation are becoming popular. After that, malware is used to

carry out secondary attacks like denial-of-service attacks and data exfiltration that

target or use compromised systems.

1.5 Organization

The project overview is covered in this chapter, along with information on what a

botnet attack is, how and why it occurs, modern methods for prevention and detection,

the necessity of stopping or at least halting them, and our strategy for doing so

through the use of machine learning technologies. The following is the report's

structure.

In Chapter 2 - Literature Survey, To ascertain what makes our approach special and

better than others, a brief review of other research papers on the topic will be studied.

In Chapter 3 - System Development, We are going to examine the conception,

development, and application of our model before conducting an analysis.

In Chapter 4 - Testing,We are going to study the different evaluation metrics that we

have used for evaluating our model accuracy.

In Chapter 5 - Performance Analysis, We are going to review our implemented

model's performance statistics, outcomes, and output at different phases. We will also

make a comparison between these findings and the previous models and hypotheses

evolved.

In Chapter 6 - Conclusion, The project will be summarized, along with restrictions

or extra work that may come up before, during, or after our model is put to use.

10



Chapter 2: Literature Survey

The proliferation of insecure IoT devices has inevitably brought about serious bot

assault in the IoT networks. Cyber-attack detection mechanisms are deployed

which help to continue the intended operation of connected devices and their data.

Through the use of machine and deep learning algorithms, which are capable to

recognize patterns and variances from a given data set, they are also capable of

detecting such bot attacks in IoT data.

Like that of other sectors, the recent research in this field concentrates on utilizing

machine learning algorithms to reveal botnet assaults performed by the Internet of

Things. The research course must include different methods and techniques that are

focused on the detection and prevention of a botnets', which threatens various IoT

devices.

Botnet detection in IoT has also made use of deep learning algorithms, including

recurrent neural networks (RNNs) and convolutional neural networks (CNNs).

According to Tan et al. (2020), a CNN-based method for identifying botnet attacks

in the Internet of Things by examining network traffic patters. The authors used the

CNN model's learned features to detect botnet attacks with high accuracy. By

examining the behavior of IoT devices, Singh et al. (2021) proposed an

RNN-based method for botnet detection in the Internet of Things. The writers

utilizing sequential data from the activities of IoT devices, RNNs were able to

detect botnet attacks with high accuracy.

In order to simplify and boost the effectiveness of machine learning algorithms,

feature selection and dimensionality reduction techniques are frequently employed

in botnet detection in the Internet of Things.Yang et al. (2018) proposed a feature

selection approach using information gain and recursive feature elimination to

select the most relevant features for botnet detection in IoT.

The literature survey highlights that machine learning algorithms have been widely

used for the detection of botnet attacks in IoT. Various techniques, including

decision trees, support vector machines, neural networks, and ensemble learning

methods, have been employed to detect botnet attacks in IoT data.
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2.1 Overview of Relevant Literature

Title

Authors

Year of Publication

Summary

Title

Authors

Year of Publication

Summary

[1]Ensemble Machine Learning Techniques for

Accurate and Efficient Detection of Botnet Attacks in

Connected Computers

Stephen Afrifa, Vijayakumar Varadarajan, Peter Appiahene,

Tao Zhang and Emmanuel Adjei Domfeh

2023

Communication is crucial, and the surge in IoT devices

results from high internet message volumes. This paper

employs quantitative, and qualitative approaches, and

machine learning algorithms like random forest and a

stacked prediction ensemble model for Internet of Things

botnet detection. It suggests preventive actions, emphasizing

importance of combating these attacks.

[2]Botnet Attack Detection in IoT Using Machine

Learning

Khalid Alissa, Tahir Alyas, Kashif Zafar, Qaiser Abbas,

Nadia Tabassum and Shadman Sakib

2022

Addressing cyber intrusions like botnets and the growing

IoT devices, this study employs machine learning in

one-class classification with balanced UNSW-NB15

datasets oversampled using SMOTE-Oversampling. The

machine learning pipeline, comprising six steps, includes

data analysis and preprocessing. Three models—XGBoost,

logistic regression, and decision tree—are trained and

evaluated for accuracy, F1 score, recall, and precision.

Experiments show the decision tree's superior performance

with a 94% test accuracy rate.
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Title

Authors

Year of Publication

Summary

Title

Authors

Year of Publication

Summary

[3]BOTNET Attacks Detection in Internet of Things

Using Machine Learning.

Nookala Venu, Sanyasi Rao Allanki, Aarun Kumar

2022

Network becomes vulnerable with growing dependence on

rising IoT devices. Such a growth surge also puts the IoT

networks at risk, rendering the devices even more

vulnerable to attacks. The need for quick detection of such

attacks grows rapidly. Attackers exploit vulnerabilities in

devices so they can carry out BotNet attacks and ultimately

develop more sophisticated DDoS attacks. Dataset

challenges facing existing botnet detection. The work herein

outlines common features in ML model with better

performance than existing solutions and detection of botnets

among various data sets.

[4]Detection of Botnet Attacks against Industrial IoT

Systems by Multilayer Deep Learning Approaches

Devrim Unal, Mohammad Hammoudeh, Mohammed

Mudassir, and Farag Azzedin

2022

The high rise in reliance on surgung IoT devices makes the

networks vulnerable. With the larger exposure of the attack

surface, IoT networks are prone to quick detection coupled

with efficient response management. Attackers utilize

botnet’s ability to exploit device vulnerabilities in order to

perform sophisticated DDOS incidences. Botnet detection

currently has problems concerning datasets. The presented

paper describes a unified feature set for the ML models that

exceeds existing approaches of detecting botnet attacks

using different datasets
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Title

Authors

Year of Publication

Summary

Title

Authors

Year of Publication

Summary

[5]IoT Security: Botnet detection in IoT using

Machine learning

Satish Pokhrel, Robert Abbas, Bhulok Aryal

2021

As devices used when accessing IoT applications increase,

hackers become interested in conducting cyber-attack,

which makes security the most significant concern. The

proposed model makes use of KNN, NB and MLP ANNs

with feature engineering and smart oversampling technique

(SMOTE) for performance evaluation of both imbalanced

and balanced classes datasets.

[6]A Two-Fold Machine Learning Approach to

Prevent and Detect IoT Botnet Attacks

Faisal Hussain; Syed Ghazanfar Abbas; Ivan Miguel Pires;

Sabeeha Tanveer; Ubaid U. Fayyaz

2022

Increased dependency on the internet has accelerated growth

and exposure of IoT devices creating network vulnerability.

The increased attack surface generated by this surge leaves

IoT networks and devices increasingly vulnerable. This

implies that it calls for the speedy detection and

management of effective attacks. Attackers take advantage

of flaws and vulnerabilities in IoT devices which form

Botnet attacks resulting into advanced DDoS attacks. The

challenges facing the existing botnet detection approaches

are mainly attributed to data set problems.
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[7] Botnet Attack Detection by Using CNN-LSTM

Model for Internet of Things Applications

Hasan Alkahtani and Theyazn H. H. Aldhyani

2022

The internet of things is expanding at a quick pace causing

security concerns making it necessary to come up with an

IoT algorithm that involves a cnn lstm algorithm. The

algorithm detects various BASHLITE and Mirai botnets

targeted at commercial IoT devices with superior accuracies

as high as 90.88% for doorbells and 89.64% for security

cameras. EmpIRical experimentation uses the RN-BaIoT

dataset, whereby the algorithm proves useful.

[8] Machine Learning-Based IoT-Botnet Attack Detection

with Sequential Architecture

Yan Naung Soe, Yaokai Feng, Paulus Insap Santosa, Rudy

Hartanto and Kouichi Sakurai

2020

With the spreading of IoT devices, there are various types of

bots like botnets which contribute largely to cyber

attacks.This article proposes a sequence architecture

ML-based botnet detection system. The results achieved

almost 99% accuracy with J48 decision tree, ANN, and

Naïve Bayes ML algorithms, thus confirming the

applicability of the suggested structure for detecting novel

attack types.
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[9]Performance evaluation of Botnet DDoS attack

detection using machine learning

Tong Anh Tuan, Hoang Viet Long, Le Hoang Son,

Raghvendra Kumar, Ishaani Priyadarshini & Nguyen Thi

Kim Son

2020

Botnets; major vulnerabilities in internet attacks and

use of ANN, SVM, DT, NB, and USML for the

combating of distributed denial of service. The study

evaluates in terms of the KDD99 and UNBS-NB 15

dataset. Remarks about KDD99 indicate better results

which are indicative of computer security. The system

provides a benchmark of botnet DDoS attacks based

on ML.

[10]Botnet Attack Detection Using Machine Learning

Mustafa Alshamkhany, Wisam Alshamkhany, Mohamed

Mansour, Salam Dhou

2020

This paper uses the Bot-IoT and UNSW datasets to detect

botnets and evolving security threats using machine

learning. Four classifiers are used: NB, KNN, SVM,

Decision Trees. Using 82 thousand records from the

UNSW-NB15 dataset, Decision Tree model was used to

detect botnet attacks. It achieved an unprecedented accuracy

of 99.89% and precision of 100%.
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2.2 Key Gaps in the Literature

[1] The paper lacks discussion on the practical challenges and limitations of

implementing the suggested preventive measures in diverse IoT environments. This

limitation restricts a comprehensive understanding of the proposed solutions'

real-world applicability and effectiveness, highlighting the need for further research

and practical validation. Considering the variability and complexity of IoT

ecosystems, addressing practical implementation challenges is crucial for ensuring the

feasibility and success of proposed cybersecurity measures. In-depth analysis and

testing in diverse IoT scenarios are necessary to validate the efficacy of preventive

measures and their ability to mitigate evolving cyber threats effectively.

[2] While useful for botnet detection, this paper's focus on a single model and

configuration may overlook nuances in attack types across diverse Internet-of-Things

environments. This limitation calls for broader model exploration and validation to

ensure comprehensive threat coverage. Exploring various models, configurations, and

datasets can enhance the research's robustness and applicability to real-world IoT

security challenges. It's crucial to consider the variability and complexity of IoT

ecosystems to develop effective and adaptive botnet detection systems that can

address evolving cyber threats effectively.

[3] The potential limitations of this study stem from its exclusive focus on the

UNSW-NB15 dataset, which restricts its generalizability to other datasets and

real-world scenarios. Additionally, while the study acknowledges dataset imbalance,

it lacks specific recommendations to address this issue. There is a clear need for more

research to enhance robustness against adversarial attacks. However, practical

deployment challenges and scalability considerations are not thoroughly explored,

and the absence of open-source implementations hinders reproducibility and wider

adoption of proposed solutions. Addressing these gaps would strengthen the study's

impact and practical relevance in the field of cybersecurity for IoT environments.

[4] Using a publicly available dataset limits the real-life applicability of the research

findings. The paper lacks explicit discussions on dataset properties and biases,

hindering generalization of proposed criteria for diverse IoT environments.

Understanding dataset characteristics is crucial for assessing research validity and
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reliability. Acknowledging biases is essential for ensuring proposed criteria

effectiveness across IoT scenarios. Thorough discussions on dataset properties and

biases would enhance research transparency and credibility.

[5] The feature engineering process plays a crucial role in enhancing botnet detection

capabilities, but it can be complex, particularly when applied to IoT devices. This

approach requires a delicate balance between comprehensive evaluation of features

and practical implementation feasibility to ensure adaptability and effectiveness in

real-world scenarios. The challenge lies in identifying relevant features that capture

meaningful patterns indicative of botnet activity while considering the computational

constraints and resource limitations inherent in IoT environments. Striking this

balance is essential to develop robust and scalable botnet detection solutions that can

effectively safeguard IoT ecosystems against evolving cyber threats.

[6] The improvements achieved in our models on the BoT-IoT dataset may not

seamlessly transfer to diverse IoT scenarios, leading to limitations in the

generalizability of our findings. This necessitates the development of customized

methods tailored to specific contexts within the IoT ecosystem. Each IoT

environment may present unique challenges and characteristics that demand

specialized approaches for effective threat detection and mitigation. Therefore, while

our advancements on the BoT-IoT dataset are valuable, they serve as a starting point

for further research and adaptation to varied IoT deployment scenarios.

[7] The suggested CNN LSTM model shows promising accuracy in identifying

attacks on IoT devices, particularly those targeting doorbell devices. However, it

faces limitations in detecting certain types of attacks, such as Scan and TCP flooding

attacks. This underscores the challenges in effectively addressing cybersecurity

threats, especially in the constantly evolving landscape of cyberattacks. The model's

success in specific scenarios highlights the potential of advanced machine learning

techniques in enhancing security measures but also emphasizes the ongoing need for

innovation and adaptation to combat a wide range of cyber threats effectively.

[8]The educational algorithms within the machine mastering model are not entirely

tailored to the proposed framework, potentially causing them to struggle in adapting

to evolving attack techniques. The system lacks explicit handling of learning
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processes or adaptive changes required by this model, which could limit its capacity

to respond effectively to emerging threats. As a result, there may be gaps in the

model's capability to mitigate and detect new and sophisticated attacks, highlighting

the importance of ongoing refinement and adaptation of machine learning algorithms

within cybersecurity frameworks.

[9]The filter-based feature selection mechanism may introduce bias, affecting overall

performance. Relying on statistical measures like Information Gain or Chi-square

could overlook relevant features crucial for accurate DDoS attack detection. This bias

could lead to false positives or negatives, compromising the detecting system's

effectiveness. Therefore, careful consideration and validation of feature selection

methods are essential to ensure robust and reliable DDoS detection capabilities.

[10]Certain classifiers, especially ones like Support Vector Machines (SVMs) that

demand significant computational resources, may face challenges in real-time

applications or large-scale deployment. This is due to their computational complexity

and resource-intensive nature, leading to scalability issues, longer processing times,

and higher resource utilization. These challenges are particularly pronounced in

environments with constrained computational resources or demanding throughput

requirements, highlighting the need for efficient algorithmic optimizations and

hardware support in such contexts.
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Chapter 3: System Development

3.1 Requirements and Analysis

Let us look at the libraries and platforms that we employed in the development of our

project.

3.1.1 Python

Python is a popular, object-oriented, highly motivated, and highly interactive

programming language that supports HLL. It is a garbage-gathering programming

language that has dynamic typing. Around 1985–1990, Guido van Rossum designed

it. It is a powerful and versatile programming language that is easy to learn, making it

a fascinating choice for developing applications.

It's syntax, dynamic typing, and interpreted nature make it the ideal language for

scripting and rapid software development. It supports a wide variety of programming

patterns, including imperative, practical, and item-oriented programming patterns.

3.1.2 Numpy

The Python module NumPy is used to handle arrays. Matrix multiplication exercises,

the Fourier transform, and matrices are also included. Travis Oliphant founded

NumPy in 2005. We could use Numpy because it is an open-supply tool. The

acronym for Numerical Python is NumPy.

NumPy adds more computational power to Python by integrating FORTRAN and C.

The NumPy module in Python allows us to paint with multidimensional arrays and

matrices. It is useful for mathematical or medical operations due to its speed and

performance. NumPy also has linear algebra and sign processing features. NumPy

provides tools for generating random numbers and sampling from various probability

distributions, making it useful for simulations and statistical analysis. NumPy allows

us to read and write data from/to files, including CSV files, binary files, and more,

facilitating data handling and interoperability with other formats.
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3.1.3 Pandas

An information evaluation program with a Python core is called Pandas. A strong and

flexible tool for mathematical modeling was needed, so Wes McKinney founded

Pandas in 2008. One of the most used Python programs right now is called Pandas.

Pandas serves as a foundation of Key Python libraries. We can create a chart with

little code because the Plot() function integrates multiple Matplotlib exercises into a

single method. This integration allows users to create various types of charts and

plots with minimal code, streamlining the process of visualizing data and gaining

insights.

Pandas provides robust support for time series data analysis, including date/time

indexing, resampling, and time zone handling. This makes it well-suited for analyzing

temporal data trends and patterns.

3.1.4 Sklearn

The most reliable and practical Python machine learning library is called Scikit-learn,

or Sklearn. Through a Python consistency interface, it offers a range of effective tools

for statistical modeling and machine learning, such as regression, clustering,

classification, and dimensionality reduction.

It supports all of the device study techniques, including random forests, ok-way

clustering, logistic regression, linear regression, and selection timber.

3.1.5 Matplotlib

A well-liked Python graph charting tool for data science and device learning

applications is called Matplotlib. Matplotlib is the primary plotting library used by

Seaborn, but it also includes a few extra functions to enhance the visual appeal and

usability of the graphs.

Matplotlib seamlessly integrates with Pandas, enabling easy creation of plots directly

from DataFrame and Series objects, streamlining the data visualization

process.Matplotlib is scalable and can handle large datasets, making it suitable for

both small-scale and enterprise-level projects with diverse data visualization needs.
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3.1.6 Logistic Regression

For binary classification tasks, such as estimating the likelihood that an instance will

belong to one of two classes, statistical methods such as logistic regression are

employed.

The relationship between the independent variables (features) and the likelihood of an

outcome occurring is modeled by logistic regression. It accomplishes this by fitting

the observed data to a logistic curve. A function is used in Logistic Regression

referred to as sigmoid function used to convert predicted values into probabilities.

This function converts any real value lying between 0 and 1 to another value.

This function has precisely one inflection point and a non-negative derivative at each

point.

Fig 3.1.1 Sigmoid curve

3.1.7 Decision Tree

A decision tree is a well-known machine learning algorithm that is used for both

classification and regression tasks. In this structure, which resembles a flowchart,

each internal node stands for a "decision" made in response to a feature, each branch

for the decision's result, and each leaf node for the ultimate choice or forecast.

It moves through the tree from the root node to a leaf node in order to generate a

prediction for new instance. Based on the value of a feature, each internal node makes

a decision before moving on to the next node by following the corresponding branch.
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Fig 3.1.2 Decision tree Classifier

3.1.8 Random Forest

Based on decision trees, Random Forest is an effective ensemble learning technique.

It is extensively utilized in machine learning for tasks involving both regression and

classification. Random Forest bootstraps the training dataset to create multiple

decision trees. Bootstrapping is the process of generating multiple new datasets of the

same size as the original by randomly sampling the training data with replacement.

Predictions are created by combining the predictions of each decision tree after they

have all been constructed. The class that receives the most votes (the mode) among

the trees is the one that is ultimately predicted for classification tasks.

Fig 3.1.3 Random Forest
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3.1.9 XgBoost

The powerful ensemble learning method known as gradient boosting machines is

implemented in an efficient and scalable way by XGBoost, or eXtreme Gradient

Boosting. It has gained popularity for its performance and adaptability in numerous

machine learning competitions and real-world applications. It is widely used for both

classification and regression tasks.

The gradient boosting framework, on which XGBoost is based, aims to iteratively

add new models (usually decision trees) to an ensemble, each of which corrects the

mistakes made by the earlier models. XGBoost is widely adopted in various domains

such as finance, healthcare, marketing, and computer vision, showcasing its

versatility and effectiveness in solving complex predictive modeling tasks.

XGBoost is an open-source library available in multiple programming languages,

including Python, R, Java, and Scala, making it accessible to a broad community of

developers and data scientists.XGBoost uses tree pruning to control model

complexity and reduce computation time, resulting in faster training and prediction

speeds.

Fig 3.1.4 XgBoost architecture
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3.1.10 Ensembling Method in Machine Learning

Ensemble learning is a machine learning technique that combines predictions from

several models to improve forecasting accuracy and resilience. It uses the collective

intelligence of the ensemble to reduce errors or biases that can be present in

individual models. Ensemble learning has shown to be a strong technique in a variety

of disciplines, providing more robust and trustworthy forecasts by efficiently

combining predictions from numerous models.

The simple ensembling techniques are:

1. Max Voting

2. Averaging

3. Weighted Averaging

Max Voting:

Max Voting ensembling technique is generally used for classification tasks. The

multiple models are used to make predictions on each data point and the predictions

that we get from the majority of the models are considered as final prediction.

Fig 3.1.5 Max voting
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Averaging:

In averaging, multiple predictions are made from each data point and we take average

of predictions from all the models and use it as the final prediction.

Fig. 3.1.6 Averaging Method

Weighted Averaging:

In this all the models are assigned different weights according to the importance of

each model for prediction. We multiply each models prediction by the weight and

then sum up the weighted predictions to obtain the final prediction.

Fig. 3.1.7 Weighted averaging
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3.1.11 CNN

CNN stands for Convolutional Neural Network. It's a kind of deep neural network

that's mostly employed for image analysis. For tasks like object detection, image

classification, and image recognition, CNNs are particularly well-suited.

CNNs are made up of several layers, the main components of which are

convolutional layers. In these layers, the input image is subjected to a set of learnable

filters, also known as kernels, by the network.

Every filter applies convolution operations to the input image in order to extract

various features, including textures, edges, and more intricate patterns. To add

non-linearity to the network and help it understand intricate relationships in the data,

non-linear activation functions such as Rectified Linear Unit, or ReLU, are applied

following each convolutional and pooling layer. CNNs often leverage data

augmentation techniques (e.g., rotation, flipping, scaling) to increase the diversity of

training data and improve model generalization.

A softmax layer is added at the end of the network to transform the class probabilities

from the raw scores generated by the preceding layers in classification tasks. The

probability distribution across all classes is represented by the softmax function's

output, and each node in the softmax layer corresponds to a class.

3.1.8 Convolutional Neural Network
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3.1.12 RNN

Recurrent Neural Network is referred to as RNN. This kind of artificial neural

network is intended to handle time-series or sequential data, where the elements'

sequence holds significant information. Time-series prediction, speech recognition,

natural language processing (NLP), and other sequential data-related tasks are among

the many applications for RNNs.

Recurrent connections enable RNNs to remember information about prior inputs, in

contrast to feedforward neural networks, which process input data in a single

pass.The network's output at one time step becomes a portion of the network's input

at the subsequent time step due to this recurrent connection, creating a loop.

There are different types of RNN architectures, including vanilla RNNs, Long

Short-Term Memory (LSTM) networks, and Gated Recurrent Units (GRUs), each

with variations in handling memory and learning long-term dependencies. RNNs can

be implemented using deep learning frameworks like TensorFlow, PyTorch, Keras,

and MXNet, providing tools and libraries for building, training, and deploying RNN

models.

Fig 3.1.8 Recurrent Neural Network
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3.2 Project Design and Architecture

Fig 3.2.1 Flowchart
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3.3 Data Preparation
Data Collection:

● Collected the dataset from Kaggle repository, The UNSW-NB15 dataset has been

used in our project.

● The dataset consists of 44 features and and 2.5 million records in which we

have used 2,57,673 records which are labeled as either attack traffic or normal

traffic and further expanded to the category of attack and the subcategory.

● This dataset includes a wide range of network attributes, including protocol

types, source and destination IP addresses, service-related information, and

timestamps.

● Numerical data was coded using categorical information such as "proto,"

"service type," "state," "sptks," "sload," and "attack cat."

Data Labeling:

● The dataset has only two classes that is 0 and 1 that indicates that this dataset

is for binary class classification.

● The dataset is imbalanced as we have more number of 0s in our dataset than 1.

Data Splitting:

● Divided the dataset into two training and testing subsets. 70% of the data was

used for training and the rest 30% of the data was used for testing.

Fig 3.3.1 Features of Dataset
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3.4 Implementation

➢ IMPORTING LIBRARIES:

The model was implemented and the dataset was trained using the following libraries:

Fig 3.4.1 Importing Libraries

A file in Python is considered as a module. It needs to be implemented using the

import keyword before it is used. We need not to import all the functions only the

necessary functions can be implemented using the “from” keyword.Using import and

module name which is the filename or library to be used all module can be imported.

➢ IMPORTING DATASET:

Fig 3.4.2 Importing Dataset
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Importing the UNSW_NB15 training and testing datasets from the Kaggle repository

and merging them. There are 83223 rows in the training dataset and 175341 rows in

the testing dataset.

➢ PREPROCESSING OF THE DATASET:

Fig 3.4.3 Preprocessing of the Dataset

Preprocessing is carried out on the dataset. Some features in the dataset consists of

the categorical data which were converted to numerical data. Next, the distribution of

attack categories is counted and visualized. Important features are updated and the

covariance matrix is computed.

➢SPLITTING THE DATASET INTO TRAINING AND TESTING:

Fig 3.4.4 Splitting dataset into Training & Testing

As the next step, we need to divide our dataset into training and testing. The ratio we

had taken is 70:30 which means that the model is trained in the 70% of the dataset

and the rest is used for testing. Then the machine learning algorithm are used to

generate the predictions based on the data that was not used in the training, their

performance is evaluated
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➢ IMPLEMENTATION OF LOGISTIC REGRESSION

▪ IMPORTING LOGISTIC REGRESSION

Fig - 3.4.5 Implementing Logistic Regression

This code creates a logistic regression model, then it trains it on the training data

(X_train for features, y_train for labels). After training, the model is ready to make

predictions.

▪ ACCURACY, MATRICES, CONFUSION MATRIX OF LOGISTIC

REGRESSION

Fig 3.4.6 Implementing Confusion Matrix, Accuracy and Classification Report for

LR

In this code snippet, the logistic regression model (logreg) is trained to predict labels

for the test dataset. We have calculated the accuracy of the model, and evaluated the

classification report which includes metrics like precision, recall and F1-score. We

then generated a confusion matrix to visualize the result.
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➢ IMPLEMENTATION OF DECISION TREE

▪ IMPORTING DECISION TREE

Fig 3.4.7 Implementation of Decision Tree

This code creates a decision tree classifier, then it trains it on the training data

(X_train for features, y_train for labels). After training, the model is ready to make

predictions.

▪ ACCURACY, MATRICES, CONFUSION MATRIX OF DECISION TREE

Fig 3.4.8 Implementing Confusion Matrix, Accuracy and Classification Report for

DT

In this code snippet, the decision tree model (dectree) is trained to predict labels for

the test dataset. We have calculated the accuracy of the model, and evaluated the

classification report which includes metrics like precision, recall and F1-score. We

then generated a confusion matrix to visualize the result.
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➢ IMPLEMENTATION OF RANDOM FOREST

▪ IMPORTING RANDOM FOREST

Fig 3.4.9 Implementing Random Forest

This code creates a random forest classifier, then it trains it on the training data

(X_train for features, y_train for labels). After training, the model is ready to make

predictions.

▪ ACCURACY, MATRICES, CONFUSION MATRIX OF RANDOM FOREST

Fig 3.4.10 Implementing Confusion Matrix, Accuracy and Classification Report for

RF

In this code snippet, the random forest model is trained to predict labels for the test

dataset. We have calculated the accuracy of the model, and evaluated the

classification report which includes metrics like precision, recall and F1-score. We

then generated a confusion matrix to visualize the result. Sns.heatmap creates a

heatmap of the confusion matrix using seaborn library.
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➢ IMPLEMENTATION OF ENSEMBLE METHOD MAX VOTING

USING LOGISTIC REGRESSION AND DECISION TREE

▪ IMPORTING MODELS

Fig 3.4.11 Importing models of LR and DT

This code trains two classifiers that are logistic regression and decision tree, then it

trains it on the training data (X_train for features, y_train for labels). After training,

the model is ready to make predictions.

▪ IMPLEMENTING MAX VOTING

Fig 3.4.12 Implementing Max Voting

▪ ACCURACY, MATRICES, CONFUSION MATRIX OF MAX VOTING

Fig 3.4.13 Implementing Confusion Matrix, Accuracy and Report for Max Voting

36



➢IMPLEMENTATION OF ENSEMBLE METHOD AVERAGING

USING LOGISTIC REGRESSION AND DECISION TREE AND KNN
▪ IMPORTING MODELS

Fig 3.4.14 Importing Models LR, KNN and DT

This code trains three classifiers that are logistic regression, decision tree and KNN,

then it trains it on the training data (X_train for features, y_train for labels). After

training, the model is ready to make predictions.

▪ IMPLEMENTING AVERAGING

Fig 3.4.15 Implementing Averaging on Models LR, KNN and DT

In the above code, a function called averaging is used, which takes a list of

predictions from multiple models as input and returns the average prediction. Each

prediction in the list is assumed to be a numeric value representing the model's

confidence or probability for a certain class.

After defining the averaging function, the code aggregates predictions from three

different classifiers (Logistic Regression, K-Nearest Neighbors, and Decision Tree)

using this averaging technique. The predictions from these classifiers are stored in the

variables logistic_predictions, knn_predictions, and decision_tree_predictions
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▪ ACCURACY, MATRICES, CONFUSION MATRIX OF AVERAGING

Fig 3.4.16 Implementing Confusion Matrix, Accuracy and Report for Averaging

In the above code, we print the accuracy of the ensemble method.We convert the

ensemble predictions to binary format based on a threshold of 0.5. If the prediction is

greater than or equal to 0.5, it's classified as 1 (positive), else, it is classified as 0

(negative). Then we calculate and print the classification report which is a summary

of various classification metrics such as precision, recall and f1-socre. Then the

model visualise the confusion matrix displaying the number of true positives, true

negatives, false positives, and false negatives.
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➢ IMPLEMENTATION OF XgBOOST

▪ IMPORTING XgBOOST

Fig 3.4.17 Implementing XgBOOST model

This code creates a XgBoost model, then it trains it on the training data (X_train for

features, y_train for labels). After training, the model is ready to make predictions.

▪ ACCURACY, MATRICES, CONFUSION MATRIX OF XgBOOST

Fig 3.4.18 Implementing Confusion Matrix, Accuracy and Classification Report for

XgBOOST

In this code snippet, the XgBoost model is trained to predict labels for the test dataset.

We have calculated the accuracy of the model using the accuracy_socre, and

evaluated the classification report which includes metrics like precision, recall and

F1-score. We then generated a confusion matrix to visualize the result. We have used

the sns.heatmap to create the heatmap of the confusion matrix .
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➢ IMPLEMENTATION OF CNN

▪ IMPORTING CNN

Fig 3.4.19 Implementing CNN model

This code defines a Convolutional Neural Network (CNN) model using the Keras

API with TensorFlow backend.

▪ ACCURACY, MATRICES, CONFUSION MATRIX OF CNN

Fig 3.4.20 Implementing Confusion Matrix, Accuracy and Classification Report for

CNN

This code trains a Convolutional Neural Network (CNN) model, evaluates its

performance on a test dataset, and visualizes the results using a confusion matrix. The

model accuracy is evaluated and then the Classification Report is printed . Then we

have displayed the confusion matrix to visualize the model’s performance.
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➢ IMPLEMENTATION OF RNN

▪ IMPORTING RNN

Fig 3.4.21 Implementing RNN model

This code defines a Recurrent Neural Network (RNN) model using the Keras API

with TensorFlow backend.

▪ ACCURACY, MATRICES, CONFUSION MATRIX OF RNN

Fig 3.4.22 Implementing Confusion Matrix, Accuracy and Classification Report for

RNN

This code trains a Recurrent Neural Network (RNN) model, evaluates its performance

on a test dataset, and visualizes the results using a confusion matrix. The model

accuracy is evaluated and then the Classification Report is printed . Then we have

displayed the confusion matrix to visualize the model’s performance.
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3.5 Key Challenges

1. Dataset Quality:

Managing the various features of Internet of Things devices, including their diverse data,

constrained mathematical capabilities, and dynamic internet, is project's main

challenges. As we have imbalance data which is a challenge in our project as imbalance

data can lead to biased result that favor the majority class .

2. Nature of Botnet Attacks:
The dynamic nature of botnet attacks presents another difficulty because the networks

constantly change and adapt in order to avoid detection. IoT devices may contain

sensitive data, so it's also critical to protect the IoT data during the observation process.

3. Feature Engineering:
As our dataset has high number of features so we need to use dimension reduction

technique to reduce the number of features. Extracting and recognising the important

features in our project pose as a challenge in our project.

4. Handling Categorical Data:
The presence of categorical variables in the dataset posed a significant challenge because

they needed to be transformed into a numerical format for analysis and modeling. Since

categorical variables cannot be numerically valued by nature, they cannot be used with

some machine learning algorithms that require numerical inputs.

5. Identifying optimal Machine Learning models:
The project presented a significant challenge in determining the best machine learning

algorithm. Discovering which algorithm best fits the problem statement required testing

a number of them due to the dataset's complexity and variety of features.

Comprehending the features of the dataset, the subtleties of various algorithms, and their

suitability for the given task posed a difficulty.
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Chapter 4: Testing

4.1 Testing Strategy

In the testing phase, we have applied various evaluation techniques to calculate the

performance of our model.

Evaluation metrics are quantitative measures that are used to assess the effectiveness

and performance of a statistical or machine learning model. These metrics provide

useful information about the model's performance when comparing different models

or algorithms.

The predictive power, generalizability, and general quality of a machine learning

model should all be considered when assessing it. Objective standards for measuring

these elements are provided by evaluation metrics. The evaluation metrics selected

will vary depending on the particular problem domain, data type, and intended result.

Confusion Matrix: A confusion matrix is a N*N matrix , in which N is the number

of predicted classes. It is used to visualise the performance of a classification model.

It has four terms that are true positive, false negative, true negative and false positive.

Since for our problem, the N=2, so we obtain a 2*2 matrix.

The terms that are used in the confusion matrix are:

● True Positive: True Positive, which shows how many positive examples are

correctly classified

● True Negative: A True Negative indicates how many negative examples were

correctly classified.

● False Positive: If a model predicts a positive outcome for a negative instance then

it is false positive

● False Negative: If a model predicts a negative outcome for a positive instance then

it is false negative.
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Accuracy: Accuracy is an evaluation metric which is used to find the overall performance

of a classification model in Machine Learning. A high accuracy value indicates that the

model is making correct predictions across all classes in the dataset.

The formula for calculating Accuracy is:

Number of correct Predictions/Total number of Predictions

Precision: Precision measures the proportion of true positive predictions among all

positive predictions made by the model. A high precision value indicates that the model

makes fewer false positive predictions, leading to more reliable positive predictions. The

formula for calculating Precision is:

True Positive/(True Positives+False Positives)

Recall: Recall is an evaluation metrics and it the proportion of all the true positive

instances among all the positive instances in the dataset.A high recall value implies that the

model is successful in obtaining the positive instances, even if they are rare.The formula

for calculating Recall is:

True Positive/(True Positive+False Negatives)

F1-Score: A common evaluation metric for classification tasks that combines recall and

precision into a single number is the F1-score. When working with unbalanced datasets

that have an uneven class distribution, it is extremely helpful. It is used in binary

classification tasks, where there are two classes. It provides a single metric to assess the

overall performance of a classifier in terms of both false positives and false negatives.The

formula for calculating F1-score is:

2*(Precision*Recall)/(Precision+Recall )
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4.2 Test Cases and Outcomes

4.2.1 Results of Logistic Regression

Fig 4.2.1.1 Accuracy and Classification Report of LR Model

Fig 4.2.1.2 Confusion Matrix of LR Model

The accuracy achieved by the Logistic Regression is 90%
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4.2.2 Results of Decision Tree

Fig 4.2.2.1 Accuracy and Classification Report of DT Model

Fig 4.2.2.2 Confusion Matrix of DT Model

The accuracy achieved by the Decision Tree is 94%
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4.2.3 Results of Random Forest

Fig 4.2.3.1 Accuracy and Classification Report of RF Model

Fig 4.2.2 Confusion Matrix of RF Model

The accuracy achieved by the Random Forest is 95%
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4.2.4 Results of Max Voting using LR and DT

Fig 4.2.4.1 Accuracy and Classification Report of Max Voting

Fig 4.2.4.2 Confusion Matrix of Max Voting

The accuracy achieved by the Ensemble Method Max Voting is 92%
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4.2.5 Results of Averaging using LR, DT and KNN

Fig 4.2.5.1 Accuracy and Classification Report of Averaging

Fig 4.2.5.2 Confusion Matrix of Averaging

The accuracy achieved by the Ensemble Method Averaging is 93%

49



4.2.6 Results of XgBoost

Fig 4.2.6.1 Accuracy and Classification Report of XgBoost Model

Fig 4.2.6.2 Confusion Matrix of XgBoost Model

The accuracy achieved by the XgBoost is 95%
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4.2.7 Results of CNN

Fig 4.2.7.1 Epochs values of CNN Model

Fig 4.2.7.2 Accuracy and Classification Report of CNN Model

Fig 4.2.7.3 Confusion Matrix of CNN Model

The accuracy achieved by the CNN is 93%
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4.2.8 Results of RNN

Fig 4.2.8.1 Epoch values of RNN Model

Fig 4.2.8.2 Accuracy and Classification Report of CNN Model

Fig 4.2.8.3 Confusion Matrix of RNN Model

The accuracy achieved by the RNN is 92%
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Chapter 5: Results and Evaluation

Evaluations done during testing are informed by a numbers of statistical tools. False

positives (Fp) are machines that are mistakenly identified as positives, whereas true

positives (Tp) are machines that are correctly identified as being under a botnet

attack. False negatives are known as false negatives (Fn), and true negatives (Tn) are

ground truth negatives that have been recognized as negatives.

Table. 5.1 Performance Analysis Table

In the above Table 5.1 , the valued that we have obtained in the multiple machine

learning and deep learning models that we have applied on our project.
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ML/DL
MODELS

Different Performance Measure (in %)

Precision Recall F1-score Accuracy

Logistics
Regression

89 97 93 90

Decision tree 95 95 95 94

Random Forest 96 96 96 95

Xg Boost 97 95 96 95

Max Voting 96 93 94 92

Averaging 93 96 95 93

CNN 96 94 95 93

RNN 97 92 94 92



The results here of Machine Learning and Deep Learning algorithms are shown in

percentage. We have achieved the highest accuracy in the Random Forest model.

Fig 5.1.1 ML Model Comparisons

Fig 5.1.2 DL Model Comparisons

In the above Figure 5.1.1 and 5.1.2 , the results that we have obtained in our project

have been displayed visually in a bar plot. The bar plot shows the comparison

between Performance parameters accuracy, precision, recall, f1-score achieved by

different Machine and Deep learning algorithms.
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Chapter 6: Conclusions and Future Scope

6.1 Conclusion

Explored real-world scenarios of Botnet Attacks and their global impact. Developed a

machine learning and deep learning based models using classifiers for botnet

detection in IoT devices

As we have applied six machine learning algorithms that is Logistic Regression,

Decision Tree, XgBoost,, Random Forest,Ensembling Methods like Max Voting and

Averaging, CNN and RNN, we found that Random Forest has shown the best

performance with the accuracy of 95%. It can be due to, Random Forest might be

better at capturing the complex relationships and patterns present in your IoT data.

Botnet detection in IoT environments can involve intricate interactions and behaviors,

and Random Forest's ability to handle such complexity could give it an advantage

over simpler models like logistic regression. Random Forest has shown the best

accuracy it can also be due to Random Forest is an ensemble learning method that

combines multiple decision trees. This ensemble approach helps reduce overfitting

and improves generalization compared to individual decision trees or simpler models

like logistic regression.

Our future plan is to investigate additional classifiers and algorithms to enhance

model performance. Aim to continuously update and expand dataset for improved

applicability and efficacy. Intend to validate model performance on larger datasets

like UNSW_NB15 and compare results with universal datasets.
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6.2 Future Scope
We see several opportunities to further develop and expand our model as we move forward

with our work. Improving our model's performance on the recently created dataset is our

primary priority right now. In order to develop a new algorithm that might possibly

produce better accuracy in botnet detection, we intend to investigate the use of various

classifiers and combine them.

We intend to constantly add new data as it becomes available to our dataset in order to

maintain it more robust and up to date. In order to give a more thorough assessment of our

model's efficacy, we also hope to validate its performance on the whole UNSW_NB15

dataset. Furthermore, we might think about adding more universal datasets to our dataset

in order to boost its variability and improve our model's ability to adapt to real-world

situations.

We plan to explore the application of additional classifiers, such as SVM, as well as

additional supervised, unsupervised, ensemble machine learning techniques and deep

learning algorithms in addition to the current classifiers, which include Decision Tree,

Logistics Regression, and Random Forest. We can identify which classifiers perform best

by comparing their results, and we may even be able to create a new algorithm that

combines the benefits of multiple classifiers to produce even better results.

In order to assess our machine learning model's accuracy outside of carefully controlled

laboratory experiments, we also want to test it in real-time settings. This will enable us to

better understand our model's performance in real-world scenarios and its ability to handle

various threats, both known and unknown.

In conclusion, our next research endeavours will centre around refining our model's

performance on the dataset, verifying its efficacy on more extensive datasets, investigating

supplementary classifiers, and assessing its performance in real-time scenarios. Through

continued improvement and development, these initiatives will help our botnet detection

model become more accurate and useful.
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