
BLIND MATE CHESS

A major project report submitted in partial fulfillment of the
requirement for the awarded degree of

Bachelor of Technology in

Computer Science and Engineering

Submitted by

Sheel Bhadra Joshi (201175)

Mohit Verma (201173)

Under the guidance and supervision of

Dr. Ruchi Verma

Assistant Professor (SG)

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology, Waknaghat
173234, Himachal Pradesh, INDIA

Table Of Contents

Declaration I
Certificate II
Acknowledgement III
Abstract IV

Chapter 01 1
1.1 Introduction 1
1.2 Problem Statement 2
1.3 Objectives 3
1.4 Significance and Motivation 4
1.5 Organization of Project Report 5

Chapter 02 6
2.1 Overview of Relevant Literature 6
2.2 Key Gaps in the Literature Survey 10

Chapter 03 11
3.1 Requirements and Analysis 11
3.2 Project Design and Architecture 13
3.3 Dataset Preparation 18
3.4 Implementation 19
3.5 Key Challenges 47

Chapter 04 48
4.1 Testing Strategy 48
4.2 Test Cases and Outcomes 49

Chapter 05 50
5.1 Results 50
5.2 Comparison with Existing Solutions 57

Chapter 06 58
6.1 Conclusion 58
6.2 Future Scope 60

References 62

List Of Figures

S No. Figure Name Page No.

1. Sobel image of chessboard 50

2.

3.

4.

5.

6.

7.

8.

9.

Binary edge map of chessboard

Chessboard detected lines with their coordinates

Recognized chess piece with their confidence score

Different gestures recognized by the model

Win percentage by a particular opening

Win probability by rating gap

Games won against higher and lower elo opponents

Win probability for a opening by black’s response

50

51

51

53

54

54

55

55

List Of Tables

S No. Table Name Page No.

1. Literature Survey 7-9

2.

3.

4.

Evaluation metrics for chessboard detection

Evaluation metrics for chess piece detection

Evaluation metrics for hand gesture recognition

51

52

52

DECLARATION

We hereby declare that the work presented in this report entitled “Blind Mate Chess” in
partial fulfillment of the requirements for the award of the degree of Bachelor of Technology
in Computer Science & Engineering submitted in the Department of Computer Science &
Engineering and Information Technology, Jaypee University of Information Technology,
Waknaghat is an authentic record of our own work carried out over a period from August 2023
to May 2024 under the supervision of Dr Ruchi Verma (Assistant Professor (SG),
Department of Computer Science & Engineering and Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree or
diploma.

Mr. Sheel Bhadra Joshi Mr. Mohit Verma
(201175) (201173)

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

Dr Ruchi Verma
Assistant Professor(SG)
Department of Computer Science & Engineering and Information Technology Jaypee
University of Information Technology

I

CERTIFICATE

This is to certify that the work which is being presented in the project report titled “Blind
Mate Chess” in partial fulfillment of the requirements for the award of the degree of B.Tech
in Computer Science And Engineering and submitted to the Department of Computer Science
And Engineering, Jaypee University of Information Technology, Waknaghat is an authentic
record of work carried out by “Sheel Bhadra Joshi (201175)”, “Mohit Verma (201173)”
during the period from August 2023 to May 2024 under the supervision of Dr. Ruchi Verma,
Assistant Professor (SG), Department of Computer Science and Engineering, Jaypee
University of Information Technology, Waknaghat.

Submitted by:

Mr. Sheel Bhadra Joshi Mr. Mohit Verma
(201175) (201173)

The above statement made is correct to the best of my knowledge.

Dr Ruchi Verma
Assistant Professor(SG)
Department of Computer Science & Engineering and Information Technology Jaypee
University of Information Technology

II

ACKNOWLEDGEMENT

Firstly, we express our heartiest thanks and gratefulness to almighty God for his divine
blessings that makes it possible for us to complete the project work successfully.

We are really grateful and wish our profound indebtedness to our Supervisor Dr. Ruchi Verma
(Assistant Professor (SG), Department of CSE Jaypee University of Information
Technology,Wakhnaghat). Deep Knowledge & keen interest of our supervisor in the field of
our project “Blind Mate Chess” helped us to carry out this project. Her endless patience,
scholarly guidance, continual encouragement, constant and energetic supervision, constructive
criticism, valuable advice, reading many inferior drafts and correcting them at all stages has
made it possible for us to complete this project.

We would like to express our heartiest gratitude to Dr. Ruchi Verma(Assistant Professor (SG),
Department of CSE), for her kind help to finish our project.

We would also generously welcome each one of those individuals who have helped us
straightforwardly or in a roundabout way in making this project a win. In this unique situation,
We might want to thank the various staff individuals, both educating and non-instructing,
which have developed their convenient help and facilitated our undertaking.

Finally, We must acknowledge with due respect the constant support and patience of our
parents.

Mr. Sheel Bhadra Joshi Mr. Mohit Verma
(201175) (201173)

III

ABSTRACT

Chess is one of the most popular board sports in the world currently. It has evolved to become
a highly competitive and professional sport. In the 20th century International Federation of
Chess(FIDE) was founded which organizes and governs chess tournaments and
championships all around the world. Traditionally the game was played on a physical board
with the presence of the players physically but as the Internet came, the world of chess took a
major shift. Now players are able to compete against each other from anywhere in the world at
any time without being physically present next to each other. According to an article [1] by
chess.com as time went by many popular online chess platforms were founded such as
Chess.com and Lichess and saw a growth of a huge number of registered players on their
platform as the internet became more accessible to the common people. Around the mid
2000’s independent tournaments started being organized on online chess platforms and later
on FIDE also gave recognition to these platforms and started conducting several major
championships on these platforms. It became very easy for players to participate in
competitions from anywhere around the world. However a community of chess players
consisting of people with visual impairments are still not able to find their place in the online
chess world. They are not able to compete in online tournaments and championships as the
platforms on which these championships take place do not provide any interface for blind
people to access it. This does not provide them with equal opportunities to compete in the
game.

To solve this problem the project aims to develop an application that would assist blind
players to access these online chess platforms and play on them without any hassle. The
application begins with recognizing the chessboard and pieces shown on the computer screen
and then asking the player to prompt his/her move in the form of a voice prompt or hand
gestures at his turn while simultaneously giving guidance and feedback to the player about the
chessboard position, move played by the opponent and status of the game. The application
gets the opponent moves and status of the game data using the Lichess API token generated
by the player. After the move is prompted the application confirms the move with the player
and calculates the board coordinates of the starting and ending position of the piece and finally
plays that move by simulating mouse movements and clicks on the chessboard. The
application also provides the player with various other features such as puzzles, game
analysis, and a database of chess games.

IV

Chapter-01 Introduction

1.1 Introduction

Chess is a beautiful game of strategy, intellect, calculation, patience and foresight. A beautiful
aspect of chess is that even people with physical and visual disabilities can also enjoy the game
to the fullest. Everyone has an equal and fair advantage in the game regardless of any
disabilities. This is what makes it so inclusive and embracing in nature.

Chess players with visual impairment have been able to successfully shatter the perception that
they are in any sense behind other players. These players are easily able to reconstruct the
chessboard positions in their minds and are able to remember and also quite remarkably
calculate the moves in their mind without being able to see a physical chessboard. In today's
time many popular online chess platforms like Lichess and Chess.com are available with more
than 100 million registered users on these platforms. Nowadays many of the important chess
tournaments like International Bullet Chess Championship, Titled Tuesday etc. are being
organized on these online chess platforms giving players the advantage to play in a
comfortable environment of their choice without the need of being present physically. Online
chess platforms are a very powerful tool to practice and improve in the game of chess as it
allows you to play to a wide variety of players without being physically present.

However to this date blind players are not able to participate in online tournaments due to the
lack of any interface to help or guide them. They still need to be physically present in front of
their opponents to play a game of chess. This can be very time and money consuming. This has
been a major drawback for blind individuals as they are unable to practice to their full potential
and take part in various online chess tournaments and competitions. Our project aims to
overcome this problem and develop an application that can be integrated with online chess
platforms and help people with visual impairments to access these online chess platforms and
participate in online tournaments and championships. It would also help them to practice and
hone their skills as it would provide them with the opportunity to play with players from all
around the world without being able to go anywhere. It would save a lot of time and money for
people with visual impairments and allow them equal opportunity to participate in the sport.

1

1.2 Problem Statement

Chess has become a very popular game amongst people of every age group all over the world
and most of the people enjoy this game with the help of online chess platforms such as lichess
and chess.com. There are more than 110 million online users that are registered on these
websites. The drawback of these platforms is that they do not provide any way or interface for
people with visual impairments to access these applications and play on these platforms.

Our project aims to bridge the gap between online chess platforms and people with visual
impairments and find a way to let the blind players have an engrossing, engaging experience of
playing chess on online platforms.

Our problem statement is to develop an application that assists people with visual impairments
to access online chess platforms, assisting them in playing online chess games without any
hassle. The application should provide the blind users with real time update on chessboard
positions, inform them about the opponents moves, current player with advantage in the game,
ask the users the move they want to play in the game, reconfirm the moves being prompted by
the user and accurately simulate those movements on the online chessboard in real time.

Our project aims on using image recognition techniques to accurately identify chessboard on
the computer screen, using machine learning model to accurately predict the chess pieces and
their positions on the board, use the API of the online Lichess platform to get the current
moves being played by the opponent in the game, continuously assist the blind individual with
voice feedback to inform the person about the game status, position updates, ask him for the
moves he wants to play, get the moves of the user using the voice command or hand gestures,
check if the moves being prompted are valid or not and finally use python library to simulate
the mouse movement to play the desired move prompted by the user.

In conclusion our aim is to resolve the problem of playing online chess for people with visual
impairments and thus promote inclusivity and competitiveness in online chess and contribute
towards making the online chess community more diverse and accessible for all individuals
regardless of any disabilities.

2

1.3 Objectives

The primary objective of this project is to develop an application that assists people with visual
impairments to play chess on online chess platforms with an easy user interface and without
any hassle. The detailed objectives of the project include:

1. Accurately recognize chessboard on screen: The first objective of this project is to
accurately identify the chessboard that has been displayed on the screen using image
recognition techniques to identify straight lines on the screen and make use of the fact that a
chessboard has ten equally spaced horizontal and vertical lines present on it.

2. Accurately identify the position on the chessboard: The second objective of the
project is to to accurately identify all the pieces that are present on the chessboard and
recognize the current position on the chessboard.

3. Real time chess game monitoring: The third objective of the project is to monitor the
ongoing game of the individual in real time so that current game status, positional advantage
and move turn of the player can be known. The application should be able to tell the current
position of the chessboard whenever the user asks for it.

4. Voice feedback and guidance: The fourth objective of the project is to continuously
provide voice feedback and guidance to the individual about the status of the game, ongoing
position of the game, whether the move prompted by the user is valid or not, whose turn is it
to play in the game and what is the outcome of the game.

5. Accurately recognize prompts from the user: The fifth objective of the project is to to
accurately recognize the chess moves or other commands prompted by the user in the form
of hand gestures or voice commands and play the correct move or do the needful.

6. Accurate chess move simulation: The sixth objective of the project is to convert the
chess notations prompted by the user into precise pixel coordinates on the screen. After
identifying the correct pixel coordinates on the screen the application should simulate the
mouse movements and clicks to execute the move on the board and move the chess piece
from its original position to the target position.

7. Provide game analysis and puzzles: The final objective of the project is to provide
game analysis to the player and help the player in evaluating a position by suggesting him
best, worst and good moves and also to provide different categories of puzzles for the player
along with their solutions.

3

1.4 Motivation and Significance

A research paper titled Problems of blind chess players published in the year 2015 [2] in the
6th IEEE International Conference on Cognitive Infocommunications discussed how blind
players are left out from the world of online chess. There is no way for them to engage in
online chess on popular online chess platforms such as Lichess and Chess.com. There has been
little to no research conducted on the field of online chess for blind people. Most of the chess
tournaments and championships that take place now are held on online chess platforms in
which almost all professional chess players participate in but blind players are left out of these
championships as the platforms on which these championships take place do not provide any
tool for people with visual disabilities to assist them in playing online chess. The physical
chess tournaments are held in different countries in different time zones, therefore it would
require a lot of money and time to be present physically to play the tournament. In the covid
time period physical chess tournaments were shifted on online chess platforms. In this time
period blind players were left with no option to but abstain from participating in these
tournaments. This is unfair to the sport of chess and to blind players. Our project aims to
address this problem and make chess accessible for all.

The significance of this project is that it addresses the longstanding issue of exclusion of
visually impaired individuals from the world of online chess. By making an application that
breaks down the barrier between blind people and online chess players the project aims to
empower and include people with visual impairments in the world of online chess. The project
intends to provide equal opportunities for training, practicing and playing chess for people
with visual impairments. The application will allow people with visual impairments to
participate in online chess competitions and not let them be excluded from these tournaments
which is the case currently. This project takes a significant step towards helping people with
visual impairments to be independent to play chess on online platforms and provide an equal
opportunity to compete with professional chess players in any online chess tournament.

4

1.5 Organization of Project Report

This project report is made in a way to provide a complete understanding of the Blind Mate
Chess project, discussing its objectives, methodology, implementation, challenges, results, and
future scope. The report is organized into six chapters, each dealing with a specific aspect of
the project:

Chapter 1: Introduction

This chapter deals with introduction to the Blind Mate Chess project, providing a brief
overview of its purpose, significance, and motivation. It highlights the objectives and problem
statement of the project.

Chapter 2: Literature Survey

This chapter presents an overview of relevant literature and key gaps in the literature studied
during the making of Blind Mate Chess application, covering existing research and
developments in the field of chess boards and chess pieces detection.

Chapter 3: System Development

This chapter delves into the requirements and analysis phase of the project. It gives a detailed
description of Project Design and Architecture, describes the Data preparation process and
Implementation of the project along with the screenshots of the code snippets and finally Key
challenges are addressed that were faced during the project.

Chapter 4: Testing

This chapter describes the testing methodology used in testing of the application, explaining
the test cases and outcomes for various components of the code of the Blind Mate Chess
application.

Chapter 5: Results and Evaluation

This chapter discusses the key findings of the project and their interpretation along with a
snapshot of the results and evaluation metrics for detection of pieces, chessboards and hand
gestures. Finally a comparison is performed with the existing solutions.

Chapter 6: Conclusion and Future Scope

This chapter concludes the project report by summarizing the key achievements, contributions
and limitations of the Blind Mate Chess project. It also discusses potential future scope and
enhancements for the application.

5

Chapter-02 Literature Survey

2.1 Overview of Relevant Literature

There has been very little research conducted in the field of making an application to assist
blind individuals to play chess on online platforms. However there have been studies
conducted in the field of physical chess board and chess pieces recognition so that moves
played by the player over the board can be converted into a digital board for analysis and
better visualization.

The techniques that have been mostly used in the research papers for accurate chessboard
detection and chess pieces detection are Canny edge detection, RANSAC algorithm, CNN and
Hough transform. The results have shown that these algorithms can achieve up to 99%
accuracy and are very efficient in accurate detection of physical chess boards and pieces.
These algorithms however have not been tested upon virtual chessboard and pieces detection.
Upon extensive research we were still not able to find research papers on virtual chessboard
and chess pieces detection. Virtual chess boards can have various different kinds of styles for
chess boards as well as pieces as opposed to physical boards and pieces which generally have
the same style therefore we cannot say for sure whether the algorithms would work accurately
on virtual chess boards and pieces or not.

There has been development of voice activated physical chess boards that have been built for
physically impaired people which use various electronic devices such as motors and
microcontrollers to move the pieces and speech to text technologies for interaction with the
chessboard but these devices do not provide the wide range of features and wide spectrum of
opponents that are offered by online applications. Moreover these devices depend upon voice
commands from the user to play the desired move but are not very effective in case of ambient
noise.

The two major online chess platforms Chess.com and Lichess host the official chess
tournaments and championships. Lichess platform provides an API token with the help of
which we can fetch current game data of the player. The Lichess API documentation [3]
mentions that the game data consists of the game status and moves played by the opponent.

The python-chess library [4] in python provides support for verifying whether the chess move
is legal or not which can be useful to correct the blind player in case he/she tries to play an
illegal move in the game.

6

Literature Review

S No. Paper Title Journal &
Conference
Year

Tools and
Techniques

Results Limitations

1. Determining
chess game
state from
image [5]

Journal of
imaging (2021)

Canny edge
detection and
CNN

Accuracy: 92% Model may
misidentify
chess pieces

2. Chessboard and
chess piece
recognition
with the
support of
neural network
[6]

Foundations of
computing and
decision
science (2020)

Hough lines
transform and
CNN

Accuracy: 95% Slower than
alternative
approaches

3. Augmented
reality chess
analyzer [7]

Journal of
emerging
investigators
(2020)

Canny edge
detection,
hough lines
transform and
CNN

Accuracy: 93% Algorithm is
only designed
to work with
physical
chessboards
and pieces

4. Robust
computer
vision chess
analysis and
interaction with
humanoid robot
[8]

IEEE
international
conference on
control,
automation and
robotics (2019)

Canny edge
detection and
hough lines
transform

Accuracy: 95% Algorithm may
be less accurate
if the
chessboard is
not placed in a
well lit area

5. Chess position
identification
using pieces
classification
based on deep
neural network
fine-tuning [9]

21st
Symposium on
virtual and
augmented
reality (2019)

Canny edge
detection,
hough lines
transform and
VGG16

Accuracy: 96% Model may not
be able to
predict chess
pieces
accurately at
different
camera angles

7

Literature Review

S No. Paper Title Journal &
Conference
Year

Tools and
Techniques

Results Limitations

6. Chessvision:
chess board
and piece
recognition
[10]

Stanford
journal of
science,
technology and
society (2019)

Canny edge
detection and
SVM

Accuracy: 99% Likely to make
mistakes if the
images are
blurry

7. CVChess:
computer
vision chess
analytics [11]

Stanford
journal of
science,
technology and
society (2018)

Harris corner
detection and
RANSAC
algorithm

Accuracy: 99% Algorithm is
computationaly
expensive

8. Chess piece
recognition
using oriented
chamfer
matching with
comparison to
CNN [12]

IEEE winter
conference on
applications of
computer
vision (2018)

Canny edge
detection,
hough lines
transform and
oriented
chamfer
matching

Accuracy: 95% Algorithm is
not able to
detect occluded
chess pieces
accurately

9. Chess
recognition
from a single
depth image
[13]

IEEE
international
conference on
multimedia and
expo (2017)

CNN using
data from
kinect v2
sensor

Accuracy: 90% Proposed
algorithm is
sensitive to
different
camera angles
and lighting
conditions

10. Geometry
based
populated
chessboard
recognition
[14]

The 10th
international
conference on
machine vision
and machine
learning (2017)

Canny edge
detection and
hough lines
transform

Accuracy: 99% Model may not
be able to
predict chess
pieces
accurately at
different
camera angles

8

Literature Review Table

S No. Paper Title Journal &
Conference
Year

Tools and
Techniques

Results Limitations

11. A computer
vision system
for chess game
tracking [15]

IEEE winter
conference on
applications of
computer
vision (2016)

Canny edge
detection and
CNN

Accuracy: 99% Model is
sensitive to
lighting
conditions and
camera angles

12. Visual chess
recognition
[16]

Stanford
journal of
science,
technology and
society (2015)

Hough
transform and
fourier
descriptor

Accuracy: 90% Dataset used to
train and
evaluate the
algorithm is
relatively small

13. Gambit: a
robust chess
playing robotic
arm [17]

IEEE
international
conference on
control,
automation and
robotics (2011)

RANSAC
algorithm and
CNN

Accuracy: 93% Model is only
able to detect
standard chess
pieces

14. A simple
autonomous
robotic
manipulator for
playing chess
against any
opponent in
real time
[18]

International
conference on
computational
vision and
robotics (2011)

Shi-Tomasi
corner
detection and
canny edge
detection

Accuracy: 95% Algorithm is
tested on a
limited dataset

15. Automatic
chessboard
detection for
intrinsic and
extrinsic
camera
parameter
calibration [19]

Sensors (2010) Harris corner
detection and
hough
transform

Accuracy: 93% Algorithm is
only designed
to work with
physical
chessboards
and pieces

9

2.2 Key Gaps in Literature

1. No integration with popular online chess platforms: The very few voice based chess
applications for blind people that exist mostly have only the feature of playing chess with a
computer. Most of the tournaments that take place for chess are organized on two famous
online chess platforms Lichess and Chess.com. These two platforms have the highest
number of registered chess users and all the professional chess players use these platforms
to practice and train their skills. Moreover these platforms allow players to play with
people all over the world. Standalone voice based chess applications that only allow
players to play with a computer do not provide the benefits of online chess.

2. Insufficient voice guidance and feedback: The voice based chess applications that
exist do not provide sufficient guidance and commentary for the person with visual
impairments. To play the game in an efficient manner and to remember complex chess
positions correctly the individual needs a time to time guidance and update about the
position when asked for and also the current situation of the game. The applications that
exist do not provide the current scenario of the chessboard positions every time the user
asks for it. They only update the user about the current move played in the game. Most of
the time it can happen with the individual that he or she forgets the current position of
pieces in the game. In such a case he needs to be again guided by the voice guidance about
the current position of pieces on the chessboard.

3. Lack of research on recognizing a virtual chessboard: Most of the research that has
been conducted regarding the accurate recognition of chessboards has been done and tested
with physical chess boards. The pieces and board orientations can be very different in the
case of a virtual chessboard as opposed to a physical board. A lot more research is needed
for recognizing a virtual chessboard which will eventually help in making an application to
assist people with visual impairments to play the game of chess on online platforms.

4. Issues in voice command recognition: Voice assisted chess applications rely on
accurate voice recognition features to interpret the prompt given by the user. In online
chess the player is required to prompt the moves he wants to play in the game. In such a
case the voice recognition should be accurate because once a move is played it can’t be
taken back. The effectiveness of voice recognition can be hampered if there is ambient
noise. The existing solutions assume an ideal acoustic environment and neglect the
potential real life scenarios.

10

Chapter-03 System Development

3.1 Requirements and Analysis

Language Used: Python 3.11.2

Technical Requirements:

● A computer with at least 4GB of RAM and a multicore processor
● Internet Connection

Software:

● Python 3.5 or higher
● Visual Studio Code or any other code editor

Libraries:

● requests (making HTTP requests)
● json (handling JSON data)
● PIL (image processing)
● numpy (numerical computing)
● math (mathematical operations and functions)
● cv2 (computer vision library)
● pyautogui (automating mouse movements)
● chess (evaluating chess positions)
● whisper (speech text transcription)
● wave (handling audio data)
● os (interacting with operating system)
● warnings (handling warnings and exceptions)
● speech_recognition (speech recognition library)
● re (regular expression pattern matching)
● pyttsx3 (text to speech library)
● YOLO (YOLO object detection model)
● mediapipe (detecting hand landmarks)

Additional Requirements

● stockfish chess engine (analyzing the games)

11

Functional Requirements

● The application should be able to accurately identify the chessboard and distinguish
between different types of pieces from the screenshot of the screen.

● The application should be able to accurately transcribe move notations and prompts
from the player.

● The application should be able to accurately identify the gestures shown by the player.

● The application should be able to assist the player by providing the game status, current
chess board position and inform the player about his turn.

● The application should be able to calculate coordinates of starting and ending squares
of the notation and simulate the mouse movements accordingly.

● The application should be able to notify the player when he/she tries to play an illegal
move.

● The application should be able to provide puzzles and analysis of games to the player.

Non Functional Requirements

● The application should be able to process image and speech input in real-time with
minimum latency to provide a real time gameplay experience.

● The application should be able to detect the chessboard and transcribe the prompt with
maximum accuracy to ensure a desired gameplay experience.

● The application should be stable and reliable, minimizing crashes or unexpected
behavior.

● The application should be compatible with different types of devices, including
smartphones, tablets, and computers.

● The application should be able to adapt to different accents, speech patterns, and
languages, providing accurate speech recognition.

● The application should be able to adapt to different camera angles, lighting conditions,
and hand orientation, providing accurate gesture recognition.

12

3.2 Project Design and Architecture

↓

13

↓

14

1. Firstly we take a screenshot of the current window screen on which the blind person is
playing his current game of chess. Then we convert the screenshot(PIL image) to a numpy
array to make it compatible with the OpenCV functions. After that we convert the colored
image of the screenshot to a grayscale image which removes the color information of the
image while preserving its intensity information. This helps in removing extra information
from the image and making it easier to detect edges in the image which is an important step
towards line detection in the image.

2. Next we apply a sobel filter on the grayscale image in both horizontal(x) and vertical(y)
directions. Edges in an image represent those areas where there is a rapid change in the
intensity or color. The Sobel filter aids us in capturing the intensity changes in the image in
both horizontal(x) and vertical(y) directions. The Sobel filter highlights the regions of the
image where there are significant intensity variations by computing the gradients in the x
and y directions which makes it easier to identify the edges. After this we calculate the
absolute values of the gradients in both horizontal and vertical directions which results in
two gradient magnitude tensors.

3. After computing the gradient magnitude we obtain an image where each pixel represents
the strength of the edge at that particular point on the image. To identify and isolate
significant edges in the image we need to distinguish between strong and weak edges.
Thresholding helps us in creating a binary image that highlights the regions which have
edges of certain strengths and suppress the regions with weaker edges. The output image of
this step is an image where each pixel in the image is assigned with one of the two values,
either 0(black) or 255(white). The binary images we obtain are combined using Bitwise OR
operation and we get a single binary image called “edge map” which has edge information
from both x and y gradient directions.

4. Finally we apply Hough Transform on the edge map which is a mathematical technique to
detect geometrical shapes particularly lines in an image. The Hough Transform represents
lines in the hough space which is parameterized by the polar coordinates ρ (rho) which is
the distance from the origin to the closest point on the line and θ (theta): The angle between
the x-axis and the line perpendicular to the line being represented. We use the
HoughLinesP function to implement the Hough Transform. The function takes parameters
such as minLineLength, maxLineGap which is the maximum allowed gap between line
segments to treat them as a single line, threshold which is the number of votes a line should
get in the accumulator array to be considered a valid line.

15

5. After the lines are detected in the image we look for lines which are at equal distance from
each other. In a chessboard there are nine equally spaced lines present in both horizontal
and vertical direction. If we get those nine equally spaced lines in the image we are
correctly able to identify the chessboard and its position on the computer screen.

6. Next we take an image of each square of the chessboard and apply a YOLO [20] object
detection algorithm to identify the chess piece present on that square. YOLO which stands
for You Only Look Once is an object detection algorithm that makes predictions with
bounding boxes and class probabilities for an image in a single pass. The YOLO model
gives a vector as its output for each object detected in an image and the vector contains
bounding box coordinates (x,y,width,height) for each detected object in the image, object
class probabilities and an objectness score.

7. Then we integrate the application with the popular Lichess platform using the API key of
the player and his username which helps us to fetch the data of the current ongoing game of
the player and keep a track of the moves played by the opponent in the game. It also helps
us to get an update of the current status of the game, such as the winner of the game or if
there is any resignation in the game.

8. Afterwards we include the Whisper AI model [21] which is an open source general purpose
speech recognition model. It has been said to have been trained on 6,80,000 hours of
labeled audio recordings available on the internet which include audios in different
languages. A big and varied set of data makes the model better at understanding different
accents and background noises. A study comparing Whisper and six other speech
recognition models concluded that Whisper was able to outperform the most widely used
open source model NVIDIA STT on all the tested datasets. We use it to accurately identify
the move notations and prompts from the player.

9. We then use pyttsx3 library in Python to give voice feedback to the user and ask him/her to
prompt the move the user wants to play. Once the user prompts the move it is transcribed
using Whisper AI and the application asks the user to confirm the move he/she wants to
play. Once the move is successfully recognized we convert it into precise pixel coordinates
on the screen which are determined by the current configuration of the chessboard.
Subsequently the application simulates the mouse movements and clicks to execute the
move and relocate the piece from its starting position to the desired destination.

16

10.We then implement a hand gesture recognition system for taking prompts from the user. We
make the use of mediapipe [22] which is an open source framework that was developed by
Google to build machine learning pipelines. The Hand Landmark model is trained on thirty
thousand real world images and it also works effectively on occluded or partially visible
hands. We use it to track hands and locate hand landmarks. Each hand landmark represents a
specific point on the hand. We then iterate over specific landmarks and check their positions
with respect to other landmarks. To check if a finger is open or closed we will compare the
Y-coordinate of the finger_tip landmark and finger_pip landmark. Whenever the finger will
be upwards the y coordinate of the finger_tip landmark will have a lower value than the
finger_pip landmark. We then create custom gestures to represent columns and rows in a
chessboard along with other requests.

11.We then fetch all the games of a user from both Lichess and Chess.com using API and
create a database out of it in which the games are filtered on the basis of various factors
such as accuracy, openings, brilliancies, time format etc. This helps in providing the user
with useful statistics and information in a clear manner. It can help the user to understand
his/her gameplay in a better manner. The user can also look up in the database for any game
he/she wants to analyze and can analyze it at any time.

12.Then we implement a feature for daily puzzles and fetch the daily puzzle from Lichess and
also create a database containing puzzles from positions that were encountered in famous
games. The puzzles also contain a wide variety of scenarios such as “mate in 1”,
“zugzwang, fork” etc.

13.Finally we include engine analysis for the user to provide the user with valuable insights of
their game. With the help of a very powerful chess engine called “stockfish” the users can
evaluate any chess position and can choose to try and play moves in that particular position
and understand the move advantage or disadvantage in that position. The stockfish engine
provides a score of the chessboard position in the form of centipawn which is equivalent to
one hundredth of a pawn and in the case of mate it represents it with a “#” followed by a
number which denotes the number of moves in which the checkmate is due. The engine also
gives the best n moves in any position for a player. The player can prompt his own move in
a position and analyze the evaluation of the position before and after his move. This helps
the user to compare various moves and identify the best, worst and good moves in a
position.

17

3.3 Data Preparation

Data Collection:

● Collected images of chess boards and chess pieces from various online chess platforms
such as Chess.con, Lichess, Chess24.com etc.

● Ensured images cover a diverse range of chess piece and chess board styles with
different colors and backgrounds including traditional wooden chess boards, modern
plastic chess boards and chess boards with unique designs or colors.

● Captured images of chess pieces in different orientations, including upright, flipped,
and partially occluded.

● Took around 250-300 images of each chess piece and chess boards with different styles
and backgrounds.

● Collected images of various hand gestures for testing the hand gesture recognition
algorithm.

Data Labeling:

● Manually labeled each image to identify different types of chess pieces in each square.

● Used appropriate annotation tools to create bounding boxes chess pieces.

Data Splitting:

● Divided the dataset into two training and testing subsets. 80% of the data was used for
training and the rest 20% of the data was used for testing.

18

3.4 Implementation

Snippet 3.4.1

The above code is used for importing necessary libraries for the application to run such as
requests for making HTTP requests, PIL for image processing, pyautogui library [23] for
mouse movements simulation etc and it also contains the api token and username of the blind
player for Lichess platform which will be needed to fetch game data from the platform.

Snippet 3.4.2

19

Snippet 3.4.3

In the above code we filter the vertical lines and the coordinates are sorted in ascending order
to calculate the difference between consecutive coordinates of the detected lines.

Snippet 3.4.4

In the above code, the difference between consecutive x coordinates and consecutive y
coordinates are calculated for all the lines that were detected in the previous step. The lines
that have the same difference between consecutive x coordinates and consecutive y
coordinates are appended in the list. The goal is to look for nine such lines that are almost
equidistant to one another since it is the main feature that helps in identifying a chessboard.
The chessboard is made up of nine equally spaced horizontal and vertical lines containing
sixty four squares.

20

Snippet 3.4.5

In the above code a YOLOv5 model instance is created and the path to the model weights are
passed as an argument. A list containing piece names is defined that the YOLO model can
detect.

Snippet 3.4.6

The above code firstly we create a empty 2d numpy array to represent a chessboard with 8*8
dimensions. Each element in the array will contain the piece present in the corresponding
square of the virtual chessboard. Next we iterate over each square of the chessboard, calculate
the coordinates of the square and crop the square image for identification of the chess piece
lying on the square. The cropped image is converted into grayscale and a YOLO model is
applied to predict the piece on the square. Once the piece is predicted it is mapped to chess
notation code. Eg. A white pawn is represented by ‘P’ and a black pawn is represented by ‘p’.
The determined piece is then assigned to the corresponding position in the chessboard array.
The generated chessboard with the piece code is printed on to the console.

21

Snippet 3.4.7

The above code defines a function named get_current_ongoing_game() that takes the
username of the player as an input and attempts to retrieve the current ongoing game for that
user from the Lichess API. The function uses the ‘requests.get’ method to make a GET
request to the lichess API endpoint for retrieving the current game information. The function
then checks the HTTP status code. If the request is successful (status code 200), it parses the
JSON response using response.json() to obtain game data and if the status code is different
from 200, an error message is printed on to the console. If it is successful then the function
returns the game data. The above code also handles any kind of network errors or exceptions
using a try-except block, which is used for catching exceptions of type requests.
RequestException and printing the error message before returning None. The game data
received is of the following form.

{'id': 'VLrDU8Zp', 'rated': False, 'variant': 'standard', 'speed':

'correspondence', 'perf': 'correspondence', 'createdAt': 1715487615065,

'lastMoveAt': 1715487649836, 'status': 'started', 'source': 'ai', 'players':

{'white': {'user': {'name': 'Happy02001', 'id': 'happy02001'}, 'rating': 1500,

'provisional': True}, 'black': {'aiLevel': 1}}, 'opening': {'eco': 'C20', 'name':

"King's Pawn Game: Leonardis Variation", 'ply': 3}, 'moves': 'd3 e5 e4 Nf6 f3 Bc5

Be2 Nh5 Bd2 Nc6 Nc3 d6 Nh3 O-O Na4 Bxh3 Nxc5', 'division': {'middle': 18}}

Snippet 3.4.8

In the above code an empty string variable game_id is initialized. This variable will be used to
store the unique game id of the current ongoing game. The code then checks if the
current_ongoing_game variable is not None. If the current_ongoing_game variable is not
None it means that the API call was successful and the game data was retrieved. Now the code
extracts the current ongoing game’s id which will be used in the further process of extracting
the relevant game data.

22

Snippet 3.4.9

Snippet 3.4.10

23

Snippet 3.4.11

Snippet 3.4.12

24

In the above code a function is defined named stream_game_moves() which takes an API
token for authentication and a game ID which is the unique identifier of any chess game
happening on Lichess platform as input and establishes a live stream connection with the help
of Lichess API to receive real-time updates for the current ongoing game of the blind person.
The function constructs an API url with the help of f strings using the game id obtained in the
previous step. It then sets the required HTTP header which is the authorization header with the
Lichess API token of the player.

The function then sends a HTTP GET request to the Lichess API endpoint using the
requests.get() method for streaming the moves of the opponent with the help of API token and
establishes a streaming connection to get real time updates. Once the data is received the
function iterates through each line of the response using response.iter_lines().

Next there is a nested function check() defined which is for checking the current game status.
The function checks if the current game status is mate, resign or draw and then identifies the
winner of the game. Then the engine.say() method is used to declare to the blind person the
winner of the game or a resignation or a draw message in case if the game is drawn or any of
the opponents resigned. After the game has ended the program exists.

The function then determines the color of the pieces for the blind player by comparing it with
the username of the player with the JSON data. It then counts the number of moves that have
been played in the game to determine whose turn it will be to play the next move. If the moves
count is even then it is white players turn to play the move or else if the move count is odd it
is black players turn to play the move. The function determines the player's turn and then
announces to the blind player about the opponent's last move and asks the opponent to play
his/her move.

After announcing the opponents moves and asking the blind player to play, the move()
function is invoked for further proceedings. The function meanwhile continuously checks the
game status changes for any kind of draw, resignation or checkmate and if there is any error
occurred during the streaming process it prints an error message. The streamed moves data is
returned in the following manner.

{'id': 'VLrDU8Zp', 'variant': {'key': 'standard', 'name': 'Standard', 'short':

'Std'}, 'speed': 'correspondence', 'perf': {'name': 'Correspondence'}, 'rated':

False, 'createdAt': 1715487615065, 'white': {'id': 'happy02001', 'name':

'Happy02001', 'title': None, 'rating': 1500, 'provisional': True}, 'black':

{'aiLevel': 1}, 'initialFen': 'startpos', 'type': 'gameFull', 'state': {'type':

'gameState', 'moves': 'd2d3 e7e5 e2e4 g8f6 f2f3 f8c5 f1e2 f6h5 c1d2 b8c6 b1c3

d7d6 g1h3 e8g8 c3a4 c8h3 a4c5 d8e7 g2g3 h3g2', 'wtime': 2147483647, 'btime':

2147483647, 'winc': 0, 'binc': 0, 'status': 'started'}}

{'type': 'gameState', 'moves': 'd2d3 e7e5 e2e4 g8f6 f2f3 f8c5 f1e2 f6h5 c1d2 b8c6

b1c3 d7d6 g1h3 e8g8 c3a4 c8h3 a4c5 d8e7 g2g3 h3g2 e1f2', 'wtime': 2147483647,

'btime': 2147483647, 'winc': 0, 'binc': 0, 'status': 'started'}

25

Snippet 3.4.13

The move() function is an important component of the application, responsible for the
execution of moves on the virtual chessboard. In the above code a function move is defined
which takes two parameters: last move of the opponent and color of the pieces of the blind
player. Then the function calls another go() function which will be used to ask the user for the
starting position of the square from which he/she wants to move the piece from and also the
ending position of the square on which the piece is supposed to go. After the user gives the
notation the function based on the color of the blind player it converts the algebraic notation
of the move prompted by the player into row and column indices. For white it uses the
standard chessboard orientation and for black it flips the orientation to match the perspective.
It then calculates the pixel coordinates for the start and end positions on the chessboard based
on predefined constants such as BOARD_LEFT_COORD, BOARD_TOP_COORD, and
CELL_SIZE. Finally the function makes use of the pyautogui library to simulate the mouse
movements based on the calculated pixel coordinates and move the piece from the starting
square of the chessboard to the desired square of the chessboard.

26

Snippet 3.4.14

Snippet 3.4.15

In the above code firstly the function go is defined in which variable notation is set to None
and until the notation does not get a value the while loops keep on running and invokes the
function recognize_notation. In the recognize_notation() function firstly the Whisper model is
loaded which will be used to transcribe spoken english speech to text. Then the function enters
a loop where it announces the player to say the chess notation and continuously listens for
prompts from the player. When the audio is detected it saves the audio file temporarily with
the extension .wav and then the whisper model transcribes the audio into text. Afterwards with
the help of regular expressions the transcribed text is searched for a valid chess notation and if
a valid chess notation is found then it is stored in the notation variable.

27

Snippet 3.4.16

After the notation is recognized the above code announces the player of the notation that has
been recognized by the model. It then calls the recognize_confirmation function to get
confirmation from the player for the recognized chess notation. If the player does not confirm
the notation then the application announces to the user for incorrect recognition and again
repeats the process of listening for a valid chess notation from the user. The function also
includes error handling in case there is a timeout, or a valid audio is not recognized. This
process involves handling various exceptions such as timeouts (sr.WaitTimeoutError),
unrecognized audio inputs (sr.UnknownValueError), and errors in requesting results from
the Google Speech Recognition service (sr.RequestError). In all such cases the application
announces to the player the following errors and again asks the player for a valid chess
notation. The function asks for the destination square chess notation, after receiving the
notation it calls the move_legal function to check if the player has prompted an illegal chess
notation or not. If the player has prompted for a legal chess notation it then returns the
notation or else it continues the whole process from starting and again asks for the starting
square chess notation.

28

Snippet 3.4.17

Snippet 3.4.18

In the above code a function is defined to check if the move prompted by the player is legal or
not. In the function create_fen_board() the board is created using the create_board() function
which creates an 8*8 chessboard as a numpy array of strings where each cell has a character
representing the piece and its color and a dot for an empty square. The goal of the function is
to convert the board position to FEN string [24] so that the chess.Board() method can create a
board object and then check for legal moves. It then iterates over each row of the board and
counts the number of consecutive empty squares squares and appends the count to the FEN
string when a non-empty square is encountered. Finally the FEN string is added with the
information about the side to move and castling rights. Finally the is_legal_move() checks if
the move prompted by the player is legal or not.

29

Snippet 3.4.19

Snippet 3.4.20

The above code contains a function recognize_confirmation which is used to confirm the
chess notation prompt given by the player. Firstly the whisper AI model is loaded to transcribe
the audio confirmation into text. The function enters a loop and continuously listens for
confirmation from the player. The adjust_for_ambient_noise method is used to adapt to the
surrounding noise. When audio is detected, it is captured and saved to a file named
"captured_audio.wav." The loaded language model then transcribes the audio into text using
the transcribe method. The transcribed text is processed to identify positive and negative
matches based on the defined patterns.

30

Snippet 3.4.21

Snippet 3.4.22

The above code is to detect and visualize hand landmarks of hands using the mediapipe
library. MediaPipe Hands is a tool that accurately tracks the position of hands and fingers
using machine learning. It can identify 21 key points on the hand in 3D space from a single
image. First, it detects the palm of the hand in the picture, and then it calculates the exact
position of each finger joint within that area. The above image shows the 21 landmarks that
are detected by the mediapipe hand landmark model.

31

Snippet 3.4.23

Snippet 3.4.24

Snippet 3.4.25

32

The above function is used for counting the number of fingers that are open. The
fingers_tips_ids list contains the landmark IDs for the tips of the index, middle, ring, and
pinky fingers and the fingers_statuses dictionary is used to keep track of the status (open or
closed) of each finger. For each hand, the function checks the y-coordinate of each finger tip
landmark relative to the corresponding landmark of the proximal interphalangeal joint. If the
tip is above the joint, it considers the finger to be open, updates the fingers_statuses dictionary
accordingly, and increments the finger count for that hand in the count dictionary.

Snippet 3.4.26

Snippet 3.4.27

33

Snippet 3.4.28

The above function is used for recognizing various hand gestures shown by the user. The
function recognizeGestures takes five parameters: image, fingers_statuses, count, draw, and
display. image is the input image, fingers_statuses is a dictionary containing the status of each
finger, count is a dictionary containing the count of fingers on each hand, draw specifies
whether to draw the recognized gestures on the image, and display specifies whether to
display the image. The function iterates through each hand label ('RIGHT' and 'LEFT').
Within each iteration, it determines the recognized gesture based on the finger count and
finger statuses for that hand. Based on the finger count and statuses, the function assigns a
gesture label to each hand. For example, if the finger count is 1 and the index finger is up, it
recognizes the gesture as "1". Similarly, for other finger configurations, different gestures are
recognized.

Snippet 3.4.29

34

Snippet 3.4.30

Snippet 3.4.31

The above code initializes a video capture object camera_video using OpenCV's
VideoCapture function. It sets the capture device index to 0 (default webcam) and specifies
the desired frame dimensions as 1280x960 pixels using the set method. It creates a resizable
window named 'Gesture' using OpenCV's namedWindow function. The guess function enters
a loop that continuously captures frames from the webcam while the video capture object is
open. It reads a frame from the webcam using the read method of the video capture object.
The frame is stored in the frame variable. If hand landmarks are detected
(results.multi_hand_landmarks), the countFingers and recognizeGestures functions are called
to count the fingers and recognize gestures for each hand, respectively. The recognized
gestures are stored in the hands_gestures dictionary. If all recognized gestures are not
"UNKNOWN" (i.e., meaningful gestures are detected), the function checks if the same
gestures persist for five consecutive frames. If the gestures remain the same for five
continuous frames then it returns the recognized gestures as a combination of letters
representing the left and right hand gestures.

35

Snippet 3.4.32

Snippet 3.4.33

Snippet 3.4.34

36

The above code is used to retrieve the games played by a specific chess player from the
website chess.com for a given month and year. The code sends an API request using the
get_player_games_by_month_pgn function to fetch the games of the specified player for the
given month and year. The response is stored in the response variable. The PGN content is
cleaned to remove unnecessary characters like clock times and comments and duplicate
numbers. This is done by iterating through each character in the PGN content and appending
only relevant characters to pgn_content_cleaned.

Snippet 3.4.35

The above code is used to retrieve all the games played by a specific chess player from the
Lichess website. The code sends an API request using the fetch_user_games function that
takes a username parameter to fetch all the games of the specified player. We construct the
URL to fetch the games for the given username. The username is inserted into the URL using
an f-string. A dictionary named headers is defined which contains the HTTP header settings.
Specifically, we set the Accept header to indicate that we are expecting the response in ndjson
format. A GET request is sent to the specified URL with the custom headers and we get the
PGN data in response. Additionally, the code employs error handling with the
response.raise_for_status() method to manage potential HTTP request errors effectively.

37

Snippet 3.4.36

Snippet 3.4.37

The above code contains two functions: fetch_daily_puzzle and pgn_to_board. These
functions work together to fetch the daily chess puzzle from the Lichess API, convert the
puzzle's PGN (Portable Game Notation) string to a chess board representation, and then print
the resulting board. The fetch_daily_puzzle function sends an HTTP GET request to the
Lichess API endpoint for fetching the daily puzzle. The URL for the API endpoint is
"https://lichess.org/api/puzzle/daily". The request includes headers specifying that the
response should be in JSON format. If the request is successful (status code 200), the function
parses the JSON response and extracts relevant puzzle data such as the PGN string. The
pgn_to_board function takes a PGN string representing a chess game as input. It splits the
PGN string into individual moves using the split method, initializes an empty chess board
object using chess.Board() and iterates through each move in the PGN string and pushes the
move to the board using the push_san method.

38

Snippet 3.4.38

The above code uses the stockfish chess engine library to perform evaluation of a chess
position. The get_best_move() function retrieves the best move suggested by Stockfish for the
current position, get_evaluation()function retrieves the evaluation score of the current position
by Stockfish, get_n_moves(n) function retrieves the top n moves suggested by Stockfish for
the current position, stats() function retrieves statistics about the current position, such as
win/draw/loss probabilities. It sets up an initial chess position using the set_fen_position()
method, which accepts a FEN (Forsyth–Edwards Notation) string representing the board
position. The code asks for a move from the user and prints the evaluation of the position
before and after the move by the user.

Snippet 3.4.39

39

Snippet 3.4.40

The above code sets up an environment for analyzing and processing data related to chess
games. It imports essential libraries such as numpy, pandas, matplotlib, and seaborn for data
analysis and visualization. Additionally, it imports the Stockfish engine and chess modules,
enabling interaction with chess engines and performing chess-related tasks programmatically.
The Stockfish engine is instantiated twice, once using the Stockfish class and once using the
chess.engine.SimpleEngine.popen_uci method, each providing the path to the Stockfish
executable. The Elo rating of the Stockfish engine is set to 2600. Furthermore, a CSV file
named 'chess_games.csv' is read into a pandas DataFrame named df, containing data related to
chess games for further analysis.

Snippet 3.4.41

The above code outputs the data types of each column in the DataFrame df. This gives a quick
overview of the data types present in the DataFrame, which is helpful for understanding the
nature of the data being worked with. It also displays the first row of the DataFrame df by
using the head() method with an argument of 1, only the first row is returned. This is useful
for inspecting the structure and content of the DataFrame, providing a glimpse into the actual
data values present in the dataset.

40

Snippet 3.4.42

Snippet 3.4.43

The code filters the DataFrame df to include only games with at least 3 turns using the line df
= df[df.turns >= 3]. This ensures that only meaningful games are considered for analysis. The
moves column is split into a list of moves using df['moves_list'] = df.moves.apply(lambda x:
x.split()). This allows for easier extraction of opening moves and responses. The opening
move and response for each game are extracted and stored in separate columns using lambda
functions. Then the opening moves are categorised into opening names such as "King's
Pawn," "Queen's Pawn," "English," "Reti," or "Other" based on the first move played by each
player. Following that rating gap between players is calculated and it is determined whether
the higher-rated player won the game. These calculations are stored in columns named
rating_gap, higher_rated_victory, and rating_gap_class. The games are grouped by opening
name and the number of games for each opening is counted using groupby. The pyttsx3
library is used to initialize a text-to-speech engine, and the opening percentages are spoken out
loud using this engine.

41

Snippet 3.4.44

Snippet 3.4.45

The above code uses the matplotlib library to create four pie charts, each representing the
winning percentages for a specific chess opening. The openings analyzed are the English
(after the move c4), Queen's Pawn (after d4), King's Pawn (after e4), and Reti (after Nf3). The
code computes the winning percentages for both White and Black, as well as draw
percentages for each opening based on the game data grouped by the winner. These winning
percentages are then visualized using pie charts, with each chart representing one opening.
Finally pyttsx3 library is used to convey the winning percentages for each opening to the blind
player.

42

Snippet 3.4.46

The above code is used to analyze the frequency of wins for the higher-rated player along with
draw or win for lower rated player across different chess opening moves. It starts by grouping
the DataFrame by the 'opening_name' column and summing the occurrences where the
higher-rated player wins ('higher_rated_victory'). These values are then stored in a DataFrame
called 'df_grouped_ratings'. Additionally, the total number of games played for each opening
move is calculated and stored in a new column named 'totals'. Another column,
'losses_or_draws', is computed to represent the number of games where the higher-rated
player did not win (i.e., either lost or drew). The code then prints the first 10 rows of the
DataFrame to inspect the data. After that, the DataFrame is sorted based on the total number
of games played ('totals') in descending order. This sorted DataFrame is used to create a bar
plot visualizing the wins by opening move. The higher-rated player's wins are represented in
one color ('#ae24d1'), while the games where the higher-rated player did not win (either lost or
drew) are shown in another color ('#24b1d1'). The x-axis represents different opening moves,
and the y-axis indicates the number of wins. A legend is included to distinguish between wins
and losses/draws. Text-to-speech functionality is also used to inform the player about the
statistics.

43

Snippet 3.4.47

Snippet 3.4.48

44

Snippet 3.4.49

The above code aims to visualize and audibly convey the winning rates of White in response
to different moves made by Black across four different chess opening scenarios. It begins by
creating a figure with four subplots, each representing a specific chess opening scenario:
King's Pawn, Queen's Pawn, English, and Reti. Within each subplot, a seaborn bar plot is
generated, where the x-axis denotes the moves made by Black in response to the opening
move, and the y-axis represents the winning rate of White in percentage. A horizontal line is
drawn at y=0.5 to indicate the 50% winning rate threshold. The speak_statistics function is
defined to articulate the statistics for each subplot. It narrates the title of the subplot, the axes
labels, and iterates through the data to verbally convey the winning rate of White
corresponding to each move made by Black.

Snippet 3.4.50

45

The above code aims to visualize and audibly convey the winning percentages of games
where both players have a rating under a certain threshold (ELO) through a pie chart and
text-to-speech (TTS) functionality. It begins by filtering the DataFrame to include only games
where both players' ratings are below the specified ELO threshold. Then, it calculates the
winning percentages for each player category (White, Black, or Draw) based on the filtered
DataFrame. The pie chart is generated to visually represent these winning percentages.
Simultaneously, the TTS engine is used to verbally convey the statistics, iterating through the
DataFrame to narrate the percentage of games won by each player category.

Snippet 3.4.51

The above code makes use of Seaborn to visualize how the rating gap between players affects
the outcome of chess games, particularly focusing on the win rate by higher ratings. It creates
a bar plot where the x-axis represents different rating gap classes, ordered from smallest to
largest, and the y-axis indicates the win rate by higher-rated players. Text-to-speech (TTS)
functionality is used to for visually impaired users, with a function defined to iterate through
the DataFrame and verbally convey the win rate for each rating gap class.

46

3.5 Challenges

1. Accurately identifying user prompt:

One of the key challenges in the project was to accurately identify the chess move notations
and other prompts given by the user. Initially we made the use of Python’s
SpeechRecognition library to transcribe the spoken words into text but it resulted in
frequent errors and misunderstandings. To overcome this problem we explored an
alternative open source speech recognition model provided by Open AI’s Whisper AI
model. After the integration of this model into the application there was a significant
improvement in the accuracy of speech recognition. We then also implemented a hand
gesture recognition model in the application to make the process of prompt input more
effective.

2. Efficient chessboard detection:

Another challenge faced during the project was efficient detection of chess boards on the
computer screen. The initial approach for detecting the chess board involved using a
YOLO(you only look once) object detection model to locate the chess board. Although the
model was successful in detecting the chessboard, its computational demands resulted in a
significant amount of delay in chessboard detection. To overcome this problem we made the
use of image recognition techniques. According to a research paper on comparison of edge
detection techniques, sobel filters for edge detection were found to be more simple and less
time consuming than canny edge detector [25]. With the help of Sobel operator and
HoughLines algorithm we were able to efficiently detect lines in the image and among those
detected lines we looked for 9 equally spaced horizontal and vertical lines amongst the
detected lines to accurately identify the position of the chessboard on the screen.

3. Real time monitoring of game moves and game status:

Another key challenge in the project was to monitor the move of the opponent in real time
and also get the game status in real time. The initial approach we took to handle this
problem was to at regular intervals in the game get the current position of pieces on the
board by applying the machine learning model on the chessboard to identify the chess piece
on each square and them compare the position with the previously calculated position to see
if there is any change in the position. This approach will be a bit time consuming and also
since chess games have time control in them the player cannot afford to lose even one
second in the game. Therefore to handle this problem we take the help of Lichess API to
stream game moves of the player and as soon as the opponent plays its move the API
returns the move played by the opponent and the current status of the game.

47

Chapter-04 Testing

4.1 Testing Strategy

Unit Testing:

In Unit testing we focussed on individual components of the code. The project code consists
of various modules in it such as Chessboard detection, Piece recognition, Lichess API
integration, Hand gesture recognition etc. The unit testing strategy focussed on validating the
functionalities of these modules independent of each other and ensuring that each one of them
perform their tasks accurately and efficiently. Firstly unit testing was done to evaluate the
chessboard detection and pieces identification. Different chessboard images with different
styles and colors and also of different sizes were taken to test on them. The main objective of
it was to verify if the detected board size and coordinates matched with the expected values
and also if the model was able to accurately identify different chess pieces under various
conditions. Speech recognition model was thoroughly tested by different individuals and
under different ambient noise conditions to check if prompt by the user was accurately
identified or not. Move generation functions were tested using user inputs to check if the start
and end coordinates were aligned with the square notations or not. Liches API testing was also
done for different scenarios including draw, resignation and checkmate. Hand gesture
recognition model’s testing was done by inputting various images containing different hand
gestures in different lighting conditions, camera angles and hand orientations to include all
possible scenarios.

End To End Testing:

In end to end testing we tested the entire application from start to finish. This helped in
verifying whether the application works fine as a whole or not. It started with opening the
Lichess Chess platform and starting a game with random players. Once the game started the
application was launched and firstly the application identified the chessboard on the screen
and its coordinates. Then it recognized each and every piece on the board and saved the
current position of the chessboard. Next we tested it for user interaction using speech
recognition and hand gesture recognition. While playing different games and giving different
commands to the application we verified the applications response to various game events
such as checkmates, resignation or draws. The testing approach mimicked real world
scenarios that could possibly occur in the game and made sure the application responds to it in
the desired way. Simulation of chess moves was thoroughly tested by prompting various kinds
of legal and non legal moves in the game. In case of a legal move the application was tested to
make sure that it makes accurate moves on the board. The testing strategy also included
scenarios such as network issues and incorrect voice commands.

48

4.2 Test Cases and Outcomes

Test Case 1: Chessboard detection

Objective: To verify that the chessboard detection components of the application can
correctly identify the chessboard.

Input: Different screenshots of the chess boards with different sizes, different styles with all
pieces in random positions were given as input to the function.

Expected Outcome: The application should be able to correctly identify straight lines in the
screenshot and also calculate the coordinates of the chessboard.

Actual Outcome: The application correctly identified all the straight lines in the screenshot
and accurately filtered the lines that were at equal distance and also calculated the coordinates
of those lines because of which the chessboard was detected successfully.

Test Case 2: Pieces Detection

Objective: To verify that the YOLO model correctly identifies all the chess pieces

Input: A screenshot of a chessboard containing different pieces of different styles and
backgrounds in different positions.

Expected Outcome: The application should be able to correctly identify the type and the
color of each chess piece.

Actual Outcome: The application correctly identified the type of chess piece and its color
almost in all cases.

Test Case 3: Speech Recognition and Gesture Recognition

Objective: To verify that the speech recognition and gesture recognition components of the
application can correctly recognize move notations and prompts from the player.

Input: A set of live audio recordings of the player saying different move notations and
prompts along with images of the person with various gestures was given as input

Expected Outcome: The application should correctly transcribe each audio recording and the
gesture and identify accurately the prompt of the user

Actual Outcome: The application correctly transcribed almost all audio recordings and
gestures except a few who had a bit more ambient noise and at different angles respectively.

49

Chapter-05 Results and Evaluation

5.1 Results

The blind mate chess project has been successfully developed and tested. The application is
able to correctly identify the chessboard and pieces, recognize move notations and prompts
from the player, and play a game of chess against a human opponent.

1. Chessboard Detection:

● The Sobel filter accurately highlighted edges, where there was change in gradient
magnitude.

● The Hough transform accurately identified vertical lines, helping in the accurate
detection of chessboard boundaries.

Figure 5.1 Sobel Image of chessboard

Figure 5.2 Binary edge map of chessboard

50

Figure 5.3 Chessboard detected lines with their coordinates

● During chessboard detection two sets of images were tested. In the first test there were
clear images of chess boards and in the second test images were blurry and occluded.
The following table shows the performance of the algorithm on both sets of images.

TABLE I

EVALUATION METRICS FOR CHESSBOARD DETECTION

2. Piece Recognition:

● The YOLO model for the piece recognition consistently identified the type and color of
various chess pieces, and helped in providing an accurate board representation. The
following table shows the performance of the YOLO model on both sets of images.

Figure 5.4 Recognized chess piece with their confidence score

Dataset Total Images Correctly
Detected

Incorrectly
Detected

Accuracy Mean Pixel
Deviation

Test A 160 155 5 96.88% 1.3 pixels
Test B 40 37 3 92.50% 1.8 pixels
Overall 200 192 8 96.00% 1.5 pixels

51

TABLE II

EVALUATIONMETRICS FOR CHESS PIECES DETECTION

3. Gesture Recognition:

● The mediapipe framework was accurately able to track the hands and the hand gesture
recognition algorithm was able to successfully identify and classify hand gestures in
real-time video input.

TABLE III

EVALUATIONMETRICS FOR GESTURE RECOGNITION

Chess Piece Test Set Total Images Correctly
Detected

Incorrectly
Detected

Accuracy

Pawn A 40 38 2 95.00%
Rook A 40 37 3 92.50%
Knight A 40 39 1 97.50%
Bishop A 40 38 2 95.00%
King A 40 38 2 95.00%
Queen A 40 38 2 95.00%
Pawn B 10 9 1 90.00%
Rook B 10 9 1 90.00%
Knight B 10 9 1 90.00%
Bishop B 10 9 1 90.00%
King B 10 9 1 90.00%
Queen B 10 9 1 90.00%
Overall - 250 230 20 92.00%

Gesture Total Images Correctly
Detected

Incorrectly
Detected

Accuracy

One 25 24 1 96.00%
Two 25 24 1 96.00%
Three 25 24 1 96.00%
Four 25 24 1 96.00%
Five 25 24 1 96.00%
Six 25 23 2 96.00%
Seven 25 23 2 92.00%
Eight 25 22 3 88.00%
Yes 25 23 2 92.00%
No 25 22 3 88.00%

Overall 250 231 19 92.40%

52

Figure 5.5 Different gestures recognized by the model

53

Figure 5.6 Win percentage after a particular opening

Figure 5.7 Win probability by rating gap

54

Figure 5.8 Games won against higher and lower rated players by opening

Figure 5.9 Win probability for a opening by black’s response

55

4. Speech Recognition:

● Speech recognition was successful in transcribing user voice commands into accurate
chess notations.

● The module effectively distinguished between conformations and rejections, enhancing
user engagement.

5. Lichess API Integration:

● The application was very well able to fetch the game data with the help of Lichess API
which contained information about the opponents moves and the current game status.

6. Mouse Movements Simulation:

● The application accurately converted the move notations of the starting and end
positions of the pieces into board coordinates and with the help of these coordinates
mouse movements were simulated onto the screen which enabled the piece to move
from one square to another.

Interpretation of Results

The results of the testing indicate that the blind mate chess project is a promising tool for blind
chess players. The application is able to accurately identify the chessboard and pieces,
recognize move notations and prompts from the player in the form of voice and hand gestures,
provide accurate analysis of board positions and puzzles and challenges, and help the player to
play a game of chess on an online platform. These findings suggest that the application could
be used to help blind chess players learn, practice, and compete in online chess games.

However, there is still room for improvement in the application. The accuracy of the
chessboard detection, gesture recognition, piece recognition and speech recognition
components could be improved. Additionally, the application could be made more
user-friendly and accessible to blind users if there is a possible way to integrate it within the
online chess platforms.

56

5.2 Comparison with Existing Solutions

1. There exists a handful of standalone applications like ‘verbal chess’ which are not
specifically designed for blind people but have the feature of playing online chess with the
help of voice commands. The problem with these applications is that they are not integrated
with popular online chess platforms like Lichess and Chess.com. They are independent
applications which provide the feature of voice command to play chess but only with
computers. Most of the online chess users play on Lichess and Chess.com therefore it will
be much more useful if the applications can be integrated with these platforms. Our
application can be started in the background while playing online chess on Lichess and
provide an interface to play on the platform with the help of voice commands.

2. A company with the name of Feelif [26] has developed an application Feelif Chess which
can be used by people with visual impairments to play chess. This application allows the
player to feel the chessboard with chess pieces on the screen and will simultaneously
inform the player about the chess piece he/she is touching. They are able to achieve it with
the help of a tactile grid which helps the user to feel what is on the screen with the help of
vibration and sound. The grid is transparent in nature and consists of dots that are put over
the device. A good thing about the application is that since it does not uses any voice
command of the player for playing the moves therefore there is no effect of ambient noise
on the application, meanwhile our application requires voice commands to play the moves
therefore it is sensitive to ambient noise which can hamper the gameplay experience of the
blind individual.

3. There are some screen reading applications like NVDA [27] and JAWS [28] which the
blind chess players use to analyze their games. When the blind player touches upon a word
on the screen the software informs the blind person about the words on which the cursor
has been placed upon. The problem with this approach is that the screen reader is not able
to read the position of the piece on the chessboard. An article published by Chessbase India
writes about an application developed by Soundarya Kumar Pradhan called Accessible
chess that helps to get the position of the pieces with the help of the FEN string of the board
position. The entire position is written down and the player can use the screen reader to
know about the position. Our application provides the player with the opportunity to get the
overview of the chessboard position at any time the person asks for it which makes it very
easy for the player to analyze and play the game.

57

Chapter-06 Conclusion and Future Scope

6.1 Conclusion

The development and testing of the Blind Mate Chess project has culminated in a sturdy and
innovative solution designed to empower visually impaired individuals in playing chess on the
online Lichess platform. The conclusion summarizes key findings, acknowledges limitations,
and highlights the project's contributions to the field.

The following are some of the key findings of the project:

● The chessboard detection component of the application is able to correctly identify the
chessboard with an accuracy of about 97%.

● The piece recognition component of the application is able to correctly identify the type
of each chess piece with an accuracy of about 95%.

● The speech recognition component of the application is able to correctly transcribe
move notations and prompts from the player with an accuracy of about 93%.

● The gesture recognition component of the application is able to correctly identify
different gestures with an accuracy of about 92%.

Limitations:

1. Dependency on Lichess API:

The Blind Mate Chess project currently works on only the Lichess platform. It is because
the application relies on the Lichess API to fetch the game status and opponent moves. Any
kind of Changes or disruptions in the Lichess API may impact the application's
functionality. Although Lichess is a reliable platform but it may occur that the API may
experience a downtime due to server error which will in turn affect the application’s
performance.

2. No Availability on Mobile Platforms:

Currently the application is made by keeping only desktop platforms in focus. The
application can not function on android or iOS devices. Online chess platforms also have
their app on playstore which can also be used to play chess but currently the application has
not been developed to work on mobile platforms.

58

3. Sensitivity to Ambient noise:

The application involves asking chess notations and prompts from the user to ensure that
the chess game can be played with the help of voice commands. Although the Whisper AI
model used for transcribing speech to text performs very well but is still sensitive to
ambient noise. If there is a significant amount of noise in the background the model may
not perform accurately and may misidentify the user prompts.

4. Language Dependency:

The speech recognition model may be sensitive to variations in accents, speech patterns, or
languages other than English. The model may not be able to correctly transcribe the speech
if it is spoken in a different language or with a thick accent. This hampers the inclusivity of
the application and makes it limited to players who know certain languages and have a
certain accent.

5. Lacks certain necessary features:

The application lacks certain necessary features that are needed so that the blind person can
be fully dependent on the application for his gameplay and post game analysis. The
application also lacks the feature of providing the player with the chance of resigning or
offering a draw in the game. This saves a lot of time for the player. The application also
lacks the feature of notifying the player about the current time left on the clock for him to
play his move. The player should know the amount of time left on his clock so that he can
plan accordingly which move to play in the game. The application is also not able to
premove the moves during the game.

6. Challenges in Gesture Recognition:

The application's gesture recognition functionality may face challenges due to various
factors such as inconsistent lighting conditions, variations in hand orientation, and
limitations in camera quality. Poor lighting conditions can affect the visibility and clarity of
hand gestures, leading to inaccuracies in recognition. Similarly, variations in hand
orientation, including angles and positions, may impact the model’s ability to correctly
interpret gestures. Additionally, the quality of the camera used for capturing hand
movements can influence the overall accuracy and reliability of gesture recognition. These
factors collectively contribute to potential limitations in the application's ability to
accurately detect and interpret user gestures.

59

Contribution to the field:

The blind mate chess project has made significant contributions to the field of assistive
technology for blind individuals by developing an innovative application that enables them to
play chess independently. Till now there is no inbuilt tool on online chess platforms that
assists people with visual impairments to access the platform's features and make use of them
to participate in online chess. The project's contributions are mainly on the sport of chess. The
project has addressed the accessibility needs of blind chess players by providing them a tool to
engage in online chess independently. This gives them an equal opportunity to participate in
online chess tournaments or championships and also to practice and improve their chess skills
by giving them the opportunity to play with opponents all around the world. According to an
article by Forbes [29] in the near future online chess will most probably completely replace on
the board chess for major chess events that take place around the world. The project has
contributed in providing people with visual impairments an equal chance in competing against
players like any other normal individual without any disadvantage. This promotes inclusivity
in the sport of chess and empowers blind players to showcase their talent and skills like any
other normal person. The blind mate chess projects findings and contributions have laid the
foundation for further research and development in the field of assistive technology to aid
players in participating and playing online chess.

5.2 Future Scope

1. Cross-Platform Compatibility:

The current application is compatible only with the Lichess platform while there are other
platforms also which host online chess tournaments and championships like chess.com.
Ensuring compatibility with various online chess platforms will increase the application's
accessibility and reach, allowing blind individuals to play chess on a wider range of
platforms.

2. Improved Accessibility:

The application can be enhanced to make online chess platforms more accessible to blind
players. Currently the application is not able to navigate through various tools of the online
chess platform. Natural Language Interaction can be implemented in the application and it
can be integrated with the platform's API which will allow the blind player to very
effectively navigate the platform and make use of various other tools such as lessons,
solving puzzles, and creating challenges provided by the platform.

60

3. Expanding Functionality: The application could be further expanded to include
additional features such as:

● Game Analysis: Providing a more in depth post-game analysis to help users learn from
their mistakes and improve their chess skills.

● Offering or accepting draws and resignations: Providing players with the
opportunity to offer draw or resign during the game as well as accept the opponents
draw offers which would save a lot of time in the game.

● Notify about time on clock: Notifying the players about the time left on their clock
will help them in planning for future moves in the game and play accordingly the time
left on the clock.

● Chat and Community Integration: Integrating a chat feature and community forums
within the application, enabling users to interact with fellow players, discuss strategies,
and participate in chess-related events.

4. Exploring Alternative Input Methods for prompt:

Currently the prompts of the player are taken with the help of voice commands which can
prove to be ineffective sometimes if there is a lot of ambient noise in the background or if
the player has a thick and strong accent. If we could develop a hardware device that is
suitable for blind players to give their prompts regardless of any ambient noise it would
prove to be much more efficient.

5. Multi-lingual Support and Integration with Online Platforms:

Incorporating multilingual support would help blind individuals form various parts of the
world with different accents and language to play the game on online chess platforms using
their own language as a source of communication. Currently the application is not
integrated within any online chess platform. If it is integrated with the platform it will have
much more features and will also have access to the platform's internal tools which would
make it much more efficient, accurate and easy to use for the player.

61

References

1. Chess.com, "Chess Is Booming! and Our Servers Are Struggling," Chess.com Blog,
Jan. 23, 2023. [Online]. Available: https://www.chess.com/blog/CHESScom/chess-is-b
ooming-and-our-servers-are-struggling

2. J. Balata, Z. Míkovec, and P. Slavík, "Problems of blind chess players," in 2015 6th
IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp.
179-183

3. Lichess, "Lichess API Documentation," June. 20, 2010. [Online]. Available:
https://lichess.org/api

4. python-chess, "python-chess: a chess library for Python,"Oct. 26, 2020. [Online].
Available: https://python-chess.readthedocs.io/en/latest/

5. G. Wölflein and O. Arandjelović, "Determining Chess Game State from an Image,"
Journal of Imaging, vol. 7, no. 6, p. 94, Jun. 2021, doi: 10.3390/jimaging7060094

6. M. Czyzewski, A. Laskowski, and S. Wasik, "Chessboard and Chess Piece Recognition
With the Support of Neural Networks," Foundations of Computing and Decision
Sciences, vol. 45, pp. 257-280, 2020, doi: 10.2478/fcds-2020-0014’

7. A. Mehta, "Augmented Reality Chess Analyzer (ARChessAnalyzer): In-Device
Inference of Physical Chess Game Positions through Board Segmentation and Piece
Recognition using Convolutional Neural Network," 2020

8. Chen and K. Wang, "Robust Computer Vision Chess Analysis and Interaction with a
Humanoid Robot, "Computers,vol.8,no.1,p.14, Feb. 2019,doi: 10.3390/ computers8010

9. A. de Sá Delgado Neto and R. Mendes Campello, "Chess Position Identification using
Pieces Classification Based on Synthetic Images Generation and Deep Neural Network
Fine-Tuning," in Proceedings of the 2019 21st Symposium on Virtual and Augmented
Reality (SVR),Rio de Janeiro, Brazil, 2019, pp. 152-160,doi: 10.1109 /SVR.
2019.00038.

10. J.Ding, “ChessVision: Chess Board and Piece Recognition, “Stanford Journal of
Science, Technology, and Society, 2019”

11. J. Hack and P. Ramakrishnan, "CVChess: Computer Vision Chess Analytics," Stanford
Journal of Science, Technology, and Society, 2018

62

References

12.Y. Xie, G. Tang, and W. Hoff, "Chess Piece Recognition Using Oriented Chamfer
Matching with a Comparison to CNN," in Proceedings of the 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 2018,
pp. 2001-2009, doi: 10.1109/WACV.2018.00221

13.Y. A. Wei, T. W. Huang, H. T. Chen, and J. Liu, "Chess Recognition from a Single
Depth Image," in Proceedings of the IEEE International Conference on Multimedia
and Expo, Hong Kong, China, July 10–14, 2017

14.Y. Xie, G. Tang, and W. A. Hoff, "Geometry-based Populated Chessboard
Recognition," in Proceedings of the International Conference on Machine Vision, 2018

15.C. Koray and E. Sümer, "A Computer Vision System for Chess Game Tracking," in
Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2016

16.C. Danner and M. Kafafy, "Visual Chess Recognition," Stanford Journal of Science,
Technology, and Society, 2015

17.C. Matuszek, B. Mayton, R. Aimi, M. P. Deisenroth, L. Bo, R. Chu, M. Kung, L.
Legrand, J. R. Smith, and D. Fox, "Gambit: An Autonomous Chess-Playing Robotic
System," in Proceedings of the 2011 IEEE International Conference on Robotics and
Automation, 2011, pp. 4291–4297

18.N. Banerjee, D. Saha, A. Singh, and G. Sanyal, "A simple autonomous robotic
manipulator for playing chess against any opponent in real time," in Proceedings of the
International Conference on Computational Vision and Robotics, 2011.

19.A. D. Escalera and J. M. Armingol, "Automatic Chessboard Detection for Intrinsic and
Extrinsic Camera Parameter Calibration," Sensors (Basel, Switzerland), vol. 10, pp.
2027-2044, 2010

20.R.Kundu,“YOLO: Algorithm for Object Detection Explained”,V7 Labs Blog,
Jan.17,2023.[Online].Available:https://www.v7labs.com/blog/yolo-object-detection

21.A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, "Robust
Speech Recognition via Large-Scale Weak Supervision," 2022

63

References

22.C. Lugaresi et al., "Mediapipe: A framework for perceiving and processing reality," in
Third Workshop on Computer Vision for AR/VR at IEEE Computer Vision and Pattern
Recognition (CVPR), 2019, vol. 2019

23.A. Sweigart, "PyAutoGUI," PyPI, 2014. [Online].Available: https://pypi.org/project/Py
AutoGUI/

24.Chess.com, "Forsyth-Edwards Notation (FEN)," July 2020. [Online]. Available:
https://www.chess.com/terms/fen-chess

25.R.Muthukrishnan and M. Radha, "Edge Detection Techniques for Image
Segmentation," International Journal of Computer Science & Information Technology
(IJCSIT), vol. 3, no. 6, Dec. 2011, Art. no. 3620-259, doi: 10.5121/ijcsit.2011.3620

26.Feelif Company. (2020) . "Chess" on Feelif. [Online].Available: https://www.feelif.com
/tactile-books-games-tools/games/713/chess-8153/

27.NV Access. (2023). NVDA User Guide. [Online]. Available: https://www.nvaccess.org/
files/nvda/documentation/userGuide.html

28.Freedom Scientific. (2023, March). JAWS Documentation. [Online]. Available:
https://support.freedomscientific.com/products/blindness/jawsdocumentation

29.M.LoRé, "Online Chess Taking Advantage Of Opportunity To Grow, Entertain During
Coronavirus Pandemic," Forbes, May 26, 2020.[Online].Available:
https://www.forbes.com/sites/michaellore/2020/05/26/online-chess-taking-advantageof
ofopportunity-to-growentertainduring-coronavirus-pandemic/?sh=451d8addb974

64

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: ………………………….

Type of Document (Tick):

Name: Department: Enrolment No

Contact No. E-mail.

Name of the Supervisor:

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters):

UNDERTAKING
I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.

 Total No. of Pages =

 Total No. of Preliminary pages =

 Total No. of pages accommodate bibliography/references =
(Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at (%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

(Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Abstract & Chapters Details

 All Preliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 Words String

Word Counts

Character Counts

Report Generated on
 Submission ID Page counts

 File Size

Checked by
Name & Signature Librarian

..………

Please send your complete Thesis/Report in (PDF) & DOC (Word File) through your Supervisor/Guide at

plagcheck.juit@gmail.com

B.Tech./B.Sc./BBA/Other M.Tech/M.Sc. Dissertation PhD Thesis

mailto:plagcheck.juit@gmail.com

	Date: ………………………….
	(Signature of Student)
	FOR LRC USE
	Checked by

