
YouTube/Podcast Summarizer using AI

A major project report submitted in partial fulfilment of the requirement

for the award of a degree of

Bachelor of Technology

in

Computer Science & Engineering/Information Technology

Submitted by

Mitushi Kohli (201174)

Ansh Choudhary (201302)

Under the guidance & and supervision of

Dr. Deepak Gupta

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology,

Waknaghat, Solan - 173234 (India)

iii

ACKNOWLEDGEMENT

Firstly, we express our heartiest thanks and gratefulness to almighty God for His divine

blessing makes it possible for us to complete the project work successfully.

We are grateful and wish our profound indebtedness to Supervisor Dr. Deepak Gupta,

Assistant Professor in the Department of CSE Jaypee University of Information Technology,

Waknaghat. Deep Knowledge & and keen interest of our supervisor in the field of “Artificial

Intelligence” to carry out this project. His endless patience, scholarly guidance, continual

encouragement, constant and energetic supervision, constructive criticism, valuable advice,

reading many inferior drafts, and correcting them at all stages have made it possible to

complete this project.

We would like to express our heartiest gratitude to Dr. Deepak Gupta, Department of CSE,

for their kind help to finish this project.

We would also generously welcome each one of those individuals who have helped us

straightforwardly or in a roundabout way in making this project a win. In this unique

situation, we might want to thank the various staff individuals, both educating and non-

instructing, which have developed their convenient help and facilitated our undertaking.

Finally, we must acknowledge with due respect the constant support and patience of our

parents.

iv

TABLE OF CONTENTS

LIST OF ABBREVIATIONS vi

LIST OF FIGURES vii

LIST OF TABLES ix

ABSTRACT x

1 INTRODUCTION ..1-7

1.1 Introduction ... 1

1.2 Problem Statement… .. 3

1.3 Objectives .. 4

1.4 Significance and motivation of the project report ... 5

1.5 Organization of project report.. 7

2 LITERATURE SURVEY ... 8-15

2.1 Overview of relevant literature ... 9

2.1.1 Introduction ... 9

2.2 Key gaps in the literature ... 14

3 System Development 16-31

4 Requirements and Analysis.. 17

4.1 Project Design and Architecture………………………………………………...19

4.1.1 Methodology……………………………………………………………...19

4.1.2 Data Preparation… ……………………………....22

4.2 Implementation .. .22

4.2.1 Implementation using Google Gemini Pro………………………………..22

4.2.2 Implementation using Hugging Face……………………………………...28

4.2.3 Implementation of two Parallel Videos…………………………………...28

v

4.3 Key Challenges…………………………………………………………………..29

5 Testing .. 32- 39

5.1 Tools used in project………………………………………………………….....34

5.2 Test Cases and Outcomes…………………………………………………….,…38

6 Results and Evaluation .. 40-44

6.1 Results…………………………………………………………………………..41

7 Conclusions and Future Scope .. 45-47

7.1 Conclusion……………………………………………………………………...46

7.2 Future Scope……………………………………………………………………48

REFERENCES .. 49-50

vi

LIST OF ABBREVIATIONS

Abbreviations Meaning

LLM Large Language Model

AI Artificial Intelligence

GPT General Pre-trained Transformers

NLP Natural Language Model

URL Uniform Resource Locator

API Application Programming interface

Standlibs Standard Library

BERT Bidirectional Encoder Representations

from Transformers

vii

LIST OF FIGURES

S. No. Title Page No.

1 Figure 3.1: Flow Graph of The Project
20

2 Figure 3.2: Flow Graph with LLM
20

3 Figure 3.3: Flow Graph with YouTube Transcript and LLM
21

4 Figure 3.4: Flow Graph for Long YouTube Video/Podcast
21

5 Figure 3.5: The download_transcript function extract its transcript. 22

6 Figure 3.6: Transcript is extracted using the YoutubeTranscript API.
25

7 Figure 3.7: The Gemini API is called, and it starts summarization
25

8 Figure 3.8: Cosine Similarity function is used to calculate the similarity.
25

9 Figure 3.9: Heatmap is plotted between the transcript and summary
26

10 Figure 3.10: Fetches the transcript of a YouTube video from a user-provided

URL

26

11 Figure 3.11: Utilizes a Hugging Face summarization pipeline to summarize

the transcript
27

12 Figure 3.12: Generates summaries for each chunk
27

13 Figure 3.13: Calculates the cosine similarity between the transcript and the

final summary

28

14 Figure 3.14: Creates a heatmap to visualize the similarity score between the

transcript and summary.

28

15 Figure 3.15: The important libraries were installed
29

16 Figure 3.16: A function is made to get the transcript of the videos
29

17
Figure 3.17: It summarizes the data using the model being used

29

18 Figure 3.18: ThreadPoolExecutor to fetch transcripts in parallel for

the provided YouTube video URLs.

30

19
Figure 4.1: Transcript is downloaded.

39

20 Figure 4.2: Output when incorrect URL is input. 39

viii

21 Figure 4.3: Output when no URL is input. 40

22 Figure 5.1: User must enter the link of video which is to be summarised.
41

23 Figure 5.2: Generated summary of the YouTube video.
42

24 Figure 5.3: Similarity score between Transcript and generated

Summary.

42

25 Figure 5.4: Similarity score between Transcript and generated

Summary

43

26 Figure 5.5: Similarity score between Transcript and generated

Summary

44

27 Figure 5.6: Result of multiple video summarization
45

ix

LIST OF TABLES

2.1 Summary of the Relevant Literature10

x

ABSTRACT

The boom of video content in today’s age of information overload places increasing demands

on end-users to digest more and better-quality information than ever before. However, this

is a challenge that calls for a new tactic—using Artificial Intelligence (AI) to automate video

summarization in this project. YouTube video summarizer utilizes Natural Language

Processing (NLP) and deep learning approaches to comprehend, condense, and identify the

main aspects of a video.

This is a project of a YouTube video summary leveraging the Large Language Model (LLM)

for language comprehension and content abstraction. The summarizer uses the abilities of

LLMs like Google Gemini Pro and HuggingFace models. It extracts cognitive insights from

text-to-text transcribing of videos by integrating linguistic subtleties into environmental

context.

The methodology involves input retrieval, processing, and incorporation of LLMs in the

summary generator. LLM is enhanced language understanding models that generate

summaries for videos in a holistic manner.

The evaluation demonstrates that the proposed YouTube video summarizer is quite

successful and an effective tool for improving accessibility in video-sharing systems and user

experiences. The project assesses the advantages and disadvantages of the model, which will

lay the foundation for future studies and improvement.

This provides another input into the discussion of automated video summaries assisting

content providers, viewers, and software manufacturers. With the changing face of video

technology, the development of artificial intelligence within video summarization plays an

important role in negotiating the vast ocean of internet video data.

1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

One of the most prominent digital worlds is YouTube where we can get educational,

entertaining storylines or other fascinating video clips. Though that may constitute

success in democracy by YouTube itself, it also presents a further problem for the

audience who find it difficult to separate beneficial information by wading through seas

of videos.

Nonetheless currently, in the realm of the internet flooded with videos, YouTube is a

treasure chest with information, entertainment, and wisdom. The massive archive of

videos created through the democratization of content generation has been possible due to

millions of people uploading their stories, skills, and ideas onto the web. However, this

comes with another hurdle to users, how will they find usable and useful items in such a

big pool of content?

Recognizing this challenge, our project endeavors to introduce a transformative solution:

Weaving the sophistication of a YouTube video summarizer together with the

sophistication of AI fabric. The key objective here is to distill it to the essence, in

summary form, which are the highest hopes for improvement of the user experience.

Further, it helps solve the issue of overload with information, as well as facilitating the

decision-making process of users regarding what should be checked out.

As the new paradigm of video media becomes the main means, there is a demand for

innovative solutions that enable new ways of watching videos. This project addresses

this need by introducing a cutting-edge solution: A Smart YouTube video summarizer

with AI. The summary generated tries to alter viewers’ habits of watching, finding, or

using videos online.

The motivation for this project lies in the recognition of the increasing information

overload faced by users at websites like YouTube. They are also limited by lack of time

and information overload in trying to go through many lengths of video clips to get some

important parts that they want to digest. The issue under consideration concerns the

2

design of a YouTube Video Summarizer that aims to improve the ease of viewing and

interacting with online videos. This is important for the successful operation of this

project. It could change the way we communicate with users for YouTube and related

media. To make it simpler for end-users, a summarizer has applied the newest NLP

advances such as advanced natural language models and artificial intelligence to produce

a summary of short but relevant videos. On the other hand, apart from facilitating fast

content intake, it provides power for people to choose if such videos can be viewed

briefly or in detail. LLM models and AI will therefore be whittler in making the

Summarizer. Essentially, whenever we want to tell what exactly the scene entails, it is

necessary to observe image and audio effects together with major happenings taking

place when the characters talk. This problem is being solved, thanks to the development

of LLM which makes it possible for computers to decipher these phrases as if humans

themselves were saying them.

Similarly, large language models can be viewed as a group of superheroes for reading

text. Consequently, they excel in understanding what an individual word means and its

coherence to other words. To this end, we will be able to understand what they are

speaking about when viewing their video. However, YouTube and other media have

thousands of channels through which we can play virtually any video imaginable – from

informal to formal educational videos. Thus, since the range is quite wide, the LLMs are

very useful due to their flexibility. This kind of video summarizer would suit any content,

which would employ the casual voice of a vlogger or the more formal tone of an

instructional video.

Video Summarizer does not choose any words and phrases randomly, in this case it uses

LLMs because they understand the language of this specific video. For our summaries,

our application is going to extract the transcript of the video and summarize it. It is like

there’s a computer that understands what is being presented in the video. Therefore, in

short, LLMs function like language brains making our initiative. This helps ensure that

our summarizer does not only look at the contents of videos, but it also understands what

each video means. Provides computers with a type of superpower to identify the most

important parts of a video out of several in just a few seconds. The main principle of this

project involves the fusion of large language models, such as Google Gemini Pro and

HuggingFace, enabling detailed analysis of videos’ visuals and speech. Some degree of

revolution is involved when using LLMs for video summarization as such algorithms

3

understand the language well and consider context and content. It has been more than

mere summarization; rather building a versatile web tool with today’s fluidity involved

in clips. The goal was to develop a productive method for developing substantial

synopses on emerging domains of User-Generated Content that can learn by itself.

This project has targeted revolutionizing internet video consumption offering easy-to-

use interfaces allowing users to navigate through an ocean of information they find

online, and finally, opening new avenues for future technology.

1.2 PROBLEM STATEMENT

In the vast world of online videos, especially on platforms like YouTube, there's a big

problem: insufficiency of time due to an overload of content. People are always interested

in seeing entertaining items, something unusual, or just having some amusement.

However, after a while of watching all these videos may become tiresome. This is the

reason why we developed YouTube Video Summarizer.

However, the biggest issue is that users encounter numerous information problems.

Thousands of video clips can be found that address practically every imaginable topic.

Therefore, one cannot just figure out which one among a million videos is worth

watching the first minute he watches it. Some individuals may be looking for certain

things in a long video clip / some people cannot watch the whole movie. The

conventional techniques of using manual tags or classes. Nevertheless, the massive

volume of freshly generated information today has rendered these methods obsolete

beyond the point of reparation. This means users are not able to find things they want by

simple routes.

However, the plethora of available choices overburdens the end-users while the

conventional means of content filtering, such as tagging, classification, and search

engines fail to tackle the emergence of all these videos covering assorted themes.

Information explosion means, in some respects, cases when a person does not manage

to find necessary and useful content, they seek it.

Users also have time constraints that make it impossible for them to watch every video

just to know whether it will be useful to them. This has created a demand for a tool that

can compress a video into a condensed and useful summary such that the end user can

choose those videos worth exploring.

4

Our objective in the course is to find a solution to the challenge by creating a self-

generating summarizer for YouTube videos. Briefly, we hope to help users decide in the

first couple of seconds or minutes whether this clip is useful for them. This procedure

does not necessarily cater only to the audience but also gives way for television programs

to adapt to the changing video arena.

As technology gets advanced, people’s expectations increase as well. People demand

more intelligent instruments that can be ahead of them and provide decisions quickly.

The goal our YouTube Video Summarizer project aspires to meet is to narrow the gap

that continues to widen between tons of videos available, while viewers are craving more

engaging experiences. Now, our challenge is to summarize online videos that will make

online videos more accessible and fun.

1.3 OBJECTIVES

With this YouTube Video Summarizer project, we hope to take advantage of the

potential that AI gives and improve the user’s experience as well as the time spent

watching videos on YouTube. The project seeks to address the following key objectives:

1. Efficient Content Consumption:

Provide a quick and simple method of user consumption of YouTube videos. Offer

meaningful, concise, and summaries with the main goal of addressing “overload”

information, which viewers will use to choose what videos to watch.

2. Adaptability to Diverse Content:

Create a strategy that handles videos found on YouTube such as educational

materials, entertainment, tutorials, and so forth. Ensure that the YouTube video

summarizer is adaptable and can comprehend and summarize material in various

disciplines and dialects.

3. User Empowerment:

Providing users with an effective tool that allows them to find out its applicability

within a short period before they watch the entire video. Simplified movement

through YouTube’s vast video database to provide an enhanced holistic use

experience.

5

4. Integration of Advanced AI Models:

Utilize up-to-date AI models, particularly LLMs, for advanced video summarization

practices. What are some ways that such models could understand the context and

come up with appropriate summaries given the dynamism of user-driven material?

5. Continuous Learning and Improvement:

Create a guide for iterating and enhancing the summarization model as time passes

by. Devise ways through which the system can respond to emerging trends, changes

in users’ interests, and the evolving character of YouTube content.

6. Contribution to the AI-Driven Content Landscape:

Make a valuable contribution to the wider discussion around AI-generated curation

and summary. Consider how new AI technologies can improve access and usefulness

of web-based videos. Primarily the YouTube video summarizer project investigates

reworking how a person interacts with YouTube Videos. The use of a summary

enables easy accessibility to the core information in videos.

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT

WORK

This YouTube Video Summarizer project is significant in that it aims to change the way

users view and consume content on the famous YouTube platform. The influence of this

tool is multidimensional. It can affect user experience as well as the issue regarding the

integration of AI in content curation.

The project involves an effort geared towards improving content utilization through the

improvement of consumption efficiency. The old system that involves manually listing

videos as well as relying on search engines fails to grant viewers an at-a-glance preview

of all available material. The project will use state-of-the-art AI models such as LLMs

to analyze not only the visual but also language aspects of videos, enabling detailed

perspective. It makes summarization easier and provides a versatile tool that adjusts to

the varied subject matter in the platform.

In addition, the YouTube Video Summarizer highlights the transformative power of

LLMs for video summarization. These models can be integrated into the project to enable

the system to understand the spoken or written word in a video, moving past the usual

6

visual signs. Such in-depth comprehension allows the creation of outlines with not only

pictures’ meaning but also linguistic details transmitted by speech. This way the project

helps advance AI applications for multimedia content analysis and description.

Finally, the success of the YouTube Video Summarizer project is based on its potential

to reshape YouTube usage by introducing a tool that simplifies both consumerism and

entertainment. The project aims to deal with issues such as information overload,

advanced artificial intelligence modeling, and contribution to the wider discussions

concerning AI and content curation.

This realization that users have a shared problem with copious amounts of web material,

especially on websites such as YouTube motivated the YouTube Video Summarizer

project. With the overwhelming growth of the digital world with thousands of videos on a

wide range of topics, audiences are typically faced with one big challenge: how to search

for videos that suit their interests and requirements in a fast way?

Indeed, the main purpose behind that is to respond to the term “information overload”.

Millions of videos are uploaded every day, and it is hard to find from all these movies

those that may be useful, meaningful, or interesting. It is difficult to decide what to watch

due to such huge amounts of choices that users must scroll through and become frustrated

by, leading to a waste of their time.

Additionally, the motivation goes further into making YouTube better for viewers. To

this end, an interactive platform will be created whereby users can view snippets of the

videos and get previews to help them establish if the videos contain topics they are

interested in. Hence, this initiative seeks to provide a more user-friendly experience for

use in the digital arena.

The other reason is the drive to be at the cutting edge of technology by adopting state-of-

the- art artificial intelligence, specifically LLMs. This model is aimed at enhancing the

ability of such models to interpret not only visual clips but also audio, text, and images

included in the video. The entire approach is consistent with a change in user expectations

and the prospective power of AI in content analysis.

Overall, the reason for developing the YouTube Video Summarizer project is to make

people interact favorably with online videos. It seeks to make content discovery easier for

the users, save them time, as well as boost their pleasure by proposing a device that

complies with users’ changing tastes and ever-changing online materials. The motivation

7

for the project lies in the view that technology should not only be about providing people

with a digital experience but also one that is easily accessible, effective, and joyful.

1.5 ORGANIZATION OF PROJECT REPORT

Chapter 1: Introduction

In this chapter, we get to know about the need to summarize lengthy YouTube

videos/Podcasts as content consumption is growing with time. With the advancement of

technology and the boom of the use of ChatGPT, we need effective tools for

summarizing our content as we do not have much time to spare. The aim is to save time

and get the most relevant information from the video/podcast.

Chapter 2: Literature Review

In this chapter, we discuss the various summarization techniques used in the past like

NLP techniques. We learn about the different types of summarizations the Machine

Learning models can perform, one being abstractive and the other being extractive. We

also discussed the growth of LLM and how various applications can be built using it.

Chapter 3: System Development

In this chapter, we discuss the various stages of the project and the necessary libraries

required for the development. We also discussed the methodology and the problems

faced during the development.

Chapter 4: Testing

This chapter includes the different tests performed and the different testing strategies that

have been used and will be used in the future.

Chapter 5: Results and Evaluation

In this chapter, we discuss the various results we obtained from implementing the

different models and different summarization techniques. We have used hugging face

and OpenAI for our implementation and then evaluated the results obtained from them.

Chapter 6: Conclusion and Future Scope

This is the last chapter and here we discuss the summary of the project along with its

limitations, along with suggesting improvements in the field of summarization using

LLM. This chapter also discusses the future scope of the project. It also gives a perspective

on LLM and its future scope and applications.

8

CHAPTER 2

LITERATURE SURVEY

2.1 OVERVIEW OF RELEVANT LITERATURE

2.1.1 INTRODUCTION

The collection of research papers explores various aspects of automatic text

summarization and the development of applications utilizing LLMs. A wide range of

strategies and challenges related to text and video summarizing are covered in the

literature study. One method uses NLTK and Spacy for summarizing articles and

YouTube transcripts, emphasizing the benefits of extractive summarization while

battling noisy text and inadequate abstractive summarization powers. Another article

highlights security problems and investigates the relevance of the LangChain framework

in quickly constructing LLM applications. Third research, which cites dataset size limits,

investigates learning to summarize using LLMs with the CNN/Daily Mail dataset and the

BART model. Furthermore, a YouTube transcript summarizer that makes use of Latent

Semantic Analysis and Cosine Similarity has difficulties in efficiently controlling word

count. Additionally, Spacy's NLP- based automated text summary works well for

producing targeted summaries, but it does not go into detail on its drawbacks. Progress

in abstractive grounded summarization of podcast transcripts is shown, while

acknowledging the challenges presented by voice recognition mistakes. Finally, an

abstractive summarizer for YouTube videos is suggested, recognizing the constraints of

efficiency and scalability, especially when dealing with huge datasets. When taken as a

whole, these studies provide insights into how summarizing approaches are changing and

the challenges they face.

9

Table 2.1: Literature Overview

S.No. Paper Title [Cite] Journal/ Conference (Year) Tools/ Techniques/ Dataset Results Limitations

1 Article and YouTube Transcript

Summarizer Using Spacy and NLTK

Module [Smith, J., & Johnson, A.

(2023)]

SSGM Journal of Science and

Engineering [2023]

The NLTK package is utilized for text

Processing.

The use of Spacy and NLTK modules

for text processing such as tokenization,

entity recognition and calculating word

frequency

Limited support for abstractive

summarization and challenge in handling

‘noisy text’.

2 Creating Large Language Model

Application Utilizing LangChain: A

Primer on Developing LLM Apps Fast

[O. Topsakal and T. C. Akinci 2023]

[ICAENS 2023] Idea was given to use the Langchain

framework to develop applications utilizing

large language models.

Insights into LangChain's usage,

fostering rapid application

development using LangChain for LLM

applications.

Security concerns in LLM application

development

3 On Learning to Summarize with Large

Language Models as References [Yixin

LiuAlexander R. Fabbri2023]

Submitted on 23 May 2023 at Cornell

University

lar/DailyMail dataset

Used Bart - Large CNN model

Used contrastive learning method based

on reward system utilizing LLMs for

summarization.

Test done on a small dataset which may

affect the efficacy of model

4 YouTube Transcript summarizer

[Sulochana Devi, Rahul Nadar 2022]

[IRJMETS 2022] Latent Semantic Analysis [LSA] Cosine

Similarity.

Automatic summarization using NLP

grounded algorithms aims to produce

short videotape

LSA can’t manage word count. Limits the

ability of NLP to understand data.

5 Implementation of NLP based

automatic text summarization using

spacy

[N. C. P. Prakash et al]

[IJHS 2022] Spacy Algorithm,

linguistic & Statistical Features

The use of Spacy algorithm results in

fewer iterations and more focused

Summary

Does not discuss the limitations or

performance of the Spacy and NLP model

used.

6 Towards Abstractive Grounded

Summarization of Podcast Transcripts

[K. Song, C. Li, X. Wang, D. Yu, and

F. Liu]

Association for Computational

Linguistics [2022]

Abstractive Summarization, Large Podcast

dataset

Improved Summarization Techniques in

terms of Automatic Human evaluation

Speech Recognition Errors are abundant

7 Abstractive Summarizer for YouTube

videos [S. Tamane et al.]

[ICAMIDA 2022] Hugging Face Transformer, REST-API for

Backend Request

Combining multiple approaches to

achieve ideal outcome.

It includes large amounts of data which

results in limitations of scalability and

efficiency.

8 Automatic Summarization of YouTube

video using TF-IDF. [R. Albeer, H. Al-

Shahad, H. Aleqabie, and N. Al-

Shakarchy]

[IJEECS 2022] Term Frequency - Inverse Document

Frequency [TF_IDF]

TF-IDF was evaluated using the Rouge

method on the CNN-daily-master

dataset.

TF - IDF may become slow and memory

consuming when dealing with extensive

datasets.

9 Natural Language Processing (NLP)

based Text Summarization - A Survey

[I. Awasthi, K. Gupta, and P Bhogal]

ICICT [2021] Abstractive methods, Extractive methods,

long short-term memory (LSTM) RNN

model.

Less repetitive and more concentrated

summaries.

Less repetitive and more concentrated

summaries.

10

Smith, J., & Johnson, A. [1] These days, many students and professionals find it

convenient to use summation tools that produce condensed summaries from long texts

thereby conserving time. Individuals can use these tools to elaborate and explain

complicated concepts clearly and generate summaries ranging in length depending on

their interests. Summarization is about coming up with an abridged form of a longer text

that carries the essential ideas excluding irrelevant data. Summarizers rely on a rule-

based approach or natural language processing algorithms to mark key sentences and

phrases. On the other hand, abstractive summarization is more complicated as it entails

producing a fresh sentence. Incorrectness may be found in the product (including

erroneous spelling or meaning). There are many ways errors can be detected such as

measuring the original text with rouge or bleu metrics in comparison with the summary.

The software packages are also applicable in summarizing files that might have been

stored on a computer like articles and research papers. The file’s text can be retrieved and

summarized, allowing one to save as a file.

O. Topsakal and T. C. Akinci [2] is about LLMs, and it emphasizes Langchain, a

popular open-source technology used for expediting the development of artificial

intelligence apps. Customizable pipelines with modular abstractions are some qualities

of LangChain built for custom LLM-based applications. Its speed of development can

be evidenced by real- world examples. A detailed description of LangChain’s structure

shows how it enables fast- paced development and innovation. To carry out map-reduce

processes, refine methods, as well as numerous data operations; that’s what it does. In

essence, LangChain is perceived as an important instrument in AI system construction

thanks to its data-friendly, flexible, and versatile characteristics. The article demonstrates

how to develop a speedy application via using LLMs with a focus on LangChain, an

open-source giant. Since it effectively manages multiple data sources, LangChain is very

important for LLM application projects. Real-life scenarios show how LangChain speeds

up the development of “LLM” applications by using a modular approach and variable

pipelines. The research continues with map reduce and refined approaches, which are

critically important in LLM systems. In addition, LangChain assists in the execution of

map-reduce operations where questions are processed concurrently with documents.

Yixin Liu Alexander R. Fabbri [3] investigates a new learning paradigm for text

summarization models treating LLMs as a reference ordeal, gold standards. In this

regard, the authors propose a contrastive learning algorithm with GPT Score and

11

GPTRank approaches and demonstrate experimentally. This research paper looks into a

new learning paradigm for text summarization models treating LLMs as a reference

ordeal, gold standards. In this regard, the authors propose a contrastive learning

algorithm with GPT Score and GPTRank approaches and demonstrate experimental the

present paper presents a newer way of learning for text summarization models through

an LLM as the reference or golden oracle.

Sulochana Devi, Rahul Nadar [4] suggests an automated summarization approach for

color YouTube videos based on NLP-grounded methods attempting to compose

summaries. Here, this algorithm summarizes YouTube’s videotape reiteration and

develops a videotaped abstract. They develop a web operation that takes input as a

Youtube videotape link and the desired summary duration to produce an abridged

Youtube video summary. This paper uses the Term Co-occurrence Matrix, which

describes in what sentences the data belong together, and LSA which takes important

components from the set. In general, this paper presents the idea of using NLP algorithms

to summarize YouTube videos and thus to provide an easy way of creating short

summaries from the user's point of view. A Term Co-occurrence Matrix and LSA help

to understand sentence relationships and obtain significant attributes from the dataset.

N. C. P. Prakash et al [5] stated an NLP-based Automatic Text Summarization using

the Spacy algorithm. There exists an endless amount of data available on the Internet,

hence it is impossible to read all this data. Moreover, transforming raw information into

valuable knowledge becomes extremely challenging in such a case. The paper focuses on

two major text summarization approaches which are extractive and abstract. Specifically,

it discusses the extractive method that uses NLP. In the extraction method, the statistical

and linguistic meanings of sentences are calculated. Lastly, the paper discusses how

spacy worked in their project.

K. Song, C. Li, X. Wang, D. Yu, and F. Liu [6] proposes a novel abstractive

summarization method for podcast transcripts, aiming to address challenges such as

factual inconsistencies, speech disfluencies, and recognition errors in summaries. The

approach learns to produce abstractive summaries while grounding summary segments

in specific regions of the transcript, allowing for full inspection of summary details. The

proposed method is evaluated on a large podcast dataset and shows promising results in

terms of improving summarization quality, both in automatic and human evaluation.

Grounded summaries bring clear benefits in locating inconsistent information between

12

the summary and transcript segments. The paper investigates podcast summarization to

produce textual summaries that help listeners understand why they might want to play

those podcasts. The summaries include spans of text tethered to the original audio,

enabling users to interpret system-generated abstracts in context. The utility of the

proposed approach is demonstrated through experiments on a benchmark dataset.

S. Tamane et al. [7] presents a user interface that utilizes NLP and Machine Learning

to generate summaries of YouTube videos. The goal is to address the challenge of finding

relevant content among the enormous number of videos uploaded daily. The

summarization model extracts video transcripts and generates concise summaries while

preserving important information. The paper focuses on abstractive summarization,

which involves analyzing the text and generating coherent summaries using paraphrasing

techniques. The authors compare abstractive and extractive summarization methods,

discussing the pros and cons of each approach. The implementation process is ongoing,

but the paper provides an overview of the structure and studies conducted. The proposed

system can be extended to other streaming services and support multiple languages for

the summarized text.

R. Albeer, H. Al-Shahad, H. Aleqabie, and N. Al-Shakarchy [8], The construction of

an automatic summarising system for YouTube video transcription text using the term

frequency-inverse document frequency (TF-IDF) method is the main objective of the

paper titled "Automatic summarization of YouTube video transcription text using term

frequency-inverse document frequency". To deliver essential information to consumers

who might not have time to watch lengthy films, the research attempts to extract crucial

keywords from the video transcription text and provide a summary. The suggested

solution uses the TF-IDF approach in conjunction with natural language processing

techniques to determine crucial keywords for the summary.

I. Awasthi, K. Gupta, and P Bhogal [9] In view of the internet's exponential data

growth, the article discusses the need for text summaries and presents automatic

summarising to transform unstructured data into meaningful understandings. It

highlights the extractive strategies that are preferred by academics studying NLP by

dividing text summarising techniques into two categories: extractive and abstractive. The

study looks at various extractive and abstractive methodologies for text summary to

provide less repetitive and more focused summaries. Additionally, by rewarding or

penalising an agent for producing the best summaries, the study examines how

13

reinforcement learning techniques might be used to text summarization.

KEY GAPS IN THE LITERATURE

The gap that was observed was that some researches were exhaustive in its evaluation or

comparison of the performance of the Spacy and NLTK modules for article and

YouTube transcript summarization. Moreover, discussion over possible limitations

encountered when using the HuggingSound library for speech recognition and audio

chunking were not mentioned.

Another gap that was noticed was the difficulty to critique in terms of its practicality as

the paper does not include any cases nor is it backed by empirical evidence on just how

fast the development of LLM-based applications using LangChain can be. A complete

evaluation or contrast of LangChain with other relevant frameworks or tools is not done

in the article, which limits our understanding of what makes this system unique or not.

The study does not address any potential problems or limitations of using LangChain

like compatibility issues or scalability problems with different platforms and code

assessing LLMs and Langchain in the development of AI applications may lead to bias

or ethnic problems like false or biased results. The study does not discuss these issues.

The proposed paradigm will work for the other summarization datasets or domains

cannot be told regarding this specific research paper. However, the papers do not go

beyond discussing the possible challenges that may be associated with employing LLMs

to function as reference or gold-standard oracle in text summarization. In the papers, the

experimental studies are only used for evaluating smaller summarization models that use

the suggested approach in comparison with a referential LLM. The articles don’t

benchmark the presented approach against other existing state-of-the-art summarization

models and techniques.

Although some papers highlight the evaluative criteria for the proposed summarization

algorithm, they fail to explicitly state the assessment metrics. Limited dataset

description: However, there is no information about the large size or diversity of the data

set on which the algorithm was trained and tested. Lack of comparison with existing

methods: However, the papers do not make any comparative analyses between its

proposed algorithm and the already existent summarization methods, hence making it

difficult to assess how effective it is compared to them.

14

Papers that primarily supports extractive summarization do not acknowledge the

problems with inferencing and in making sense of the setting. Dealing with lexical

ambiguity/polysemy words. Find it difficult to deal with domain-specific vocabulary.

Limited sentence compression capabilities. Extracted sentences may be redundant.

In papers where speech recognition systems are used the main issue with those are not

discussed like they may falter in accurately transcribing spoken content due to diverse

linguistic variations such as accents, dialects, and pronunciation differences.

Additionally, ambient noise, background sounds, and poor audio quality can further

degrade the accuracy of transcriptions. These inaccuracies in the transcriptions serve as

the foundation for abstractive summarization, influencing the quality of the generated

summaries. Abundant speech recognition errors can pose significant challenges in the

context of abstractive summarization. When dealing with transcriptions generated by

speech recognition systems, several factors contribute to the increased likelihood of

errors, impacting the subsequent summarization process.

The research paper that discusses the abstractive summarization methods in general have

certain limitations, such as the potential for generating inaccurate or misleading

summaries and the challenge of maintaining coherence and readability in the generated

summaries. The effectiveness of the abstractive summarization approach for YouTube

videos may depend on the quality and accuracy of the automatic transcription of the

videos, as well as the complexity and diversity of the content being summarized.

One drawback is that it ignores the semantic meaning of words and instead relies solely

on term frequency. Because TF-IDF favours words that appear frequently, it may miss

significant phrases. In addition, it has trouble understanding synonyms, viewing

concepts as separate entities. The summarising process may be impacted by the method's

sensitivity to document length. Furthermore, TF-IDF does not take word order into

account, which could result in summaries that are not coherent. TF-IDF may have trouble

allocating the right weights to new phrases, making handling them difficult.

The vanishing gradient problem causes RNNs to perform poorly on extended sequences,

which results in partial summarization in longer documents. These models may not fully

comprehend the global environment, and they are less useful for texts with intricate

organisational patterns because they have trouble representing hierarchical hierarchies.

Managing uncommon or out-of-vocabulary terminology can be difficult and lead to

15

errors. When the training dataset is small, overfitting may become problematic.The body

of research on summarising strategies exposes several shortcomings and inconsistencies

in different frameworks and approaches. The assessment of Spacy and NLTK by Smith

and Johnson is superficial and leaves out important points on the constraints imposed by

the Hugging Sound package. In a similar vein another research hinders a thorough

understanding of LangChain's uniqueness by failing to compare it with other frameworks

and providing no actual evidence of its usefulness.

Abstractive summarization is greatly impacted by speech recognition problems, which

can be caused by a variety of language differences, background noise, and low audio

quality. These variables can also lead to transcribing errors. The coherence of the TF-

IDF summarizing approach may be impacted by its tendency to ignore important

phrases, have trouble with synonyms, and disregard word order. The vanishing gradient

problem makes it difficult for RNNs to summarize lengthy documents. They also have

trouble managing terms that are not in the dictionary, modeling hierarchical structures,

and handling limited training datasets. All in all, the gaps draw attention to the necessity

of doing more thorough analyses, comparisons, and assessments of the practical

difficulties that arise in summarizing research.

16

CHAPTER 3

SYSTEM REQUIREMENT

3.1 REQUIREMENTS AND ANALYSIS

The design requirements for a YouTube / Podcast summarizer utilizing a LLM. Here is

an outline of the requirements and an analysis of the task. The exact LLM model which

we select, the scope of our project, and the features we included influenced the system

requirements for a YouTube/podcast summarizer. Here are a few broad things we kept

in mind:

1. Hardware:

GPU acceleration is very helpful for LLMs, particularly those built on transformer

architectures. Model training and inference can be significantly accelerated by having

a strong GPU (such as NVIDIA GPUs like the Tesla V100 or A100) or by having

access to cloud-based GPU services (such as AWS, Google Cloud, or Azure).

2. Software:

Since LLMs are frequently implemented using these frameworks, make sure they are

compatible with well-known deep learning frameworks like TensorFlow or PyTorch.

Selecting an LLM that has been trained and is appropriate for the task at hand.

Depending on what we need to summarize, models such as GPT-3, GPT-4, BERT

[18], or T5 might be useful.

3. RAM:

Memory managing the big models and datasets requires enough RAM. The

magnitude of the input data and the model will determine how different the

requirements are. Make sure to have adequate RAM so that data can be processed.

4. Storage:

We required enough storage space to hold training data, model checkpoints, and any

extra resources, depending on the size of dataset and the models.

17

5. Network:

If the summarizer pulls information from external sources (like YouTube or podcast

APIs), we need a dependable and quick internet connection.

6. Development Environment:

Assembling the tools required for deep learning, Python development, and any

libraries Sor packages needed for the project.

7. The Ability to Scale:

We intended to implement summarizer on a large scale thinking about building the

system with scalability in mind. Maintaining several instances of the summarizer may

require orchestration (using Kubernetes) and containerization (using tools like

Docker) [13].

3.1.1 Analysis:

Previous research has demonstrated that a large pre-trained language model like GPT-3,

Gemini Pro are highly adept at generating high-quality summaries in text summarization

tasks. However, it would probably have to be custom fine-tuned [14] specifically on long

conversational style transcripts if one needs Some of these challenges may include

scalability issues relating to ingestion and automation of speech-to-text for input data,

and limitations on the use of (long text, summary) for custom datasets creation because of

poor availability in the conversational domain. It is necessary to carefully assess

information retention and compactness. Such a system would make it easy to access brief

information from summarized language spoken content where pivotal points are

retained.

The YouTube Video Summarizer project involving AI in understanding and abstraction

of videos constitutes a great milestone towards enriching YouTube users’ experience of

content on YouTube. Similarly, it is like a smart agent that watches the video, giving

summaries from which we can base our decision on whether to view the whole video or

not. The system behind the scenes utilizes advanced computer programs that are able not

only to read the video but also detect the surrounding images. YouTube is a good

platform for this device as it can handle different kinds of videos, ranging from

educational to fun vlogs. Although useful, the project has some problems. It can fail to

interpret the meaning of an individual word and difficult compound sentences at times.

18

Also, it may not be able to get the mood or setting of a video while mainly trying to

extract relevant passages. The objective of this project is to streamline YouTube

viewership, enabling a quick analysis of whether videos are relevant to watch. Despite

this fact, it does what it can, and the team is constantly working on ways of further

improvement.

3.2 PROJECT DESIGN AND ARCHITECTURE

3.2.1 METHODOLOGY

1. Data Collection:

Accessing a wide range of YouTube videos and podcasts to train the model. The

dataset ought to include different themes and ways of talking. Transcribe the audio

material into text through speech-to-text technology suitable for the linguistic model.

We decided to use the YouTube transcript [8] API to load the subtitles of the videos.

2. Large Language Model:

Selecting among the contemporaneous sophisticated big language models like Google

Gemini and alternative models for summarization projects. Another choice was made

to use the Hugging Face LLM model as they are easily fine-tuned with prompt

engineering.

3. Summarization Algorithm:

Abstractive Summarization: Use an abstractive summarization [17] algorithm such

that the model can produce a high-quality summary using its own words.

Extractive Features: There are also optional extractive features [15],[18],[24] that

can be used to emphasize a few crucial sentences within the source material.

4. User Interface:

Creating an easy-to-use platform where users can insert YouTube video/podcast links

and get the summarized content. Offer alternative ways of presenting the summaries

e.g., in text.

5. Scalability:

Use of parallel processing technique to process many requests simultaneously. The

GPU requirements and the hardware requirements must be defined in manner that is

helpful for the developer.[19]

19

Fig 3.1: Flow Graph of The Project

Fig 3.2: Flow Graph with LLM

20

Fig 3.3: Flow Graph with YouTube Transcript And LLM

Fig 3.4: Flow Graph for Long YouTube Video/Podcast

21

3.2.2 DATA PREPARATION

The project consists of preparing the data which is been done by downloading the video

from a particular YouTube URL and then extracting its transcript after it was extracted

Here's the breakdown of the data preparation steps:

The download_transcript function is defined to download the video and extract its

transcript using youtube_transcript_api libraries.

Fig 3.5: The download_transcript function is defined to extract its transcript.

3.3 IMPLEMENTATION

The implementation of the YouTube Video Summarizer project LLMs like OpenAI's

GPT involves several key steps [21]. To begin, the project sets up the necessary

dependencies, including the installation of relevant Python libraries such as LangChain

for natural language processing and open-ai for accessing the GPT models. Having set

up a proper development environment, the project utilizes the YouTube-Transcript-API

to get video details such as names and transcriptions which are then used for

summarization at a fundamental level. In the project we are using the below mentioned

libraries:

1. Matplotlib.pyplot:

To create visualisations like plots, histograms, and charts, we need this package.

Matplotlib.pyplot is a tool used in video summarizer projects to visualise information

about the movies, including their length distribution, the frequency of specific

keywords in the transcripts, and the similarity between various summaries.

22

2. NumPy:

It is an effective Python library for numerical computation. It is utilised for several

activities in a video summarizer project, including mathematical calculations, feature

extraction, and data modification. For instance, it is employed in matrix operations

for text feature analysis or in the processing of numerical data taken from video

metadata.

3. Sklearn.metrics.pairwise.cosine_similarity:

This function from scikit-learn calculates the cosine similarity between pairs of

samples in two datasets. It is used to measure the similarity between different video

transcripts or between a reference summary and generated summaries. This can help

assess the quality of the summarization algorithm.

4. Transformers.pipeline:

Natural language processing models that have already been trained are accessible

through the transformer’s library. Text summarization is only one of the many NLP

tasks that can be utilised by these models for with ease thanks to the pipeline feature.

Transformers. Pipeline can be used in a video summarizer project to create transcript

summaries utilising cutting-edge NLP models such as BERT or GPT.

5. Youtube-Transcript-API:

With the help of this Python library, one can obtain the transcriptions, or captions,

for YouTube videos. With just a simple link on the page or website hosting the video,

visitors can easily access the text transcripts of YouTube videos thanks to this library.

This could be useful for a variety of things, such information extraction, video

analytics, and even subtitle generation.

6. sklearn.feature_extraction.text.TfidfVectorizer:

This scikit-learn component is used to create a matrix of TF-IDF features from a set

of raw documents. Before being fed into machine learning models for summarization

or similarity calculations, the text data retrieved from video transcripts is preprocessed

and vectorized using the TfidfVectorizer.

7. Seaborn:

Based on matplotlib, Seaborn is a library for statistical data visualisation. It offers a

sophisticated plotting tool for the creation of visually striking and educational graphs.

23

The seaborn can be used to assess the effectiveness of various summarising

techniques, examine relationships between video attributes and summary quality, and

visualise the distribution of summary lengths.

8. Time:

It can be used to measure the performance of different operations such as fetching

video transcripts, processing text data, or training machine learning models. For

example, anyone wants to track the time taken to retrieve transcripts from YouTube

or to summarize multiple videos.

3.3.1 IMPLEMENTATION USING GOOGLE GEMINI PRO:

We have built a Streamlit application that uses the transcripts of YouTube videos to

generate summaries. Importing the required libraries and setting up the Google

Generative AI library with environment variables' API keys are the first steps. After

asking users to enter the URL of a YouTube video, the application uses the YouTube

Transcript API to extract the transcript from the video. Next, using the transcript a

Generative AI model known as the "Gemini-pro" model is used to provide a summary

of the video material. Using TF-IDF vectorization, the application determines how

similar the original transcript and the generated summary are. For clarity, it presents the

similarity score together with a heatmap visualization. All things considered, the program

offers a productive means of condensing video material and illustrating the consistency

between the transcript and its synopsis.

24

Fig 3.6: Transcript is extracted using the YoutubeTranscript API.

Fig 3.7: The Gemini API is called, and it starts summarization.

Fig 3.8: Cosine Similarity function is used to calculate the similarity.

25

Fig 3.9: Heatmap is plotted between the transcript and summary.

3.3.2 IMPLEMENTATION USING HUGGINGFACE MODEL –

stevhliu/my_awesome_billsum_model

The user enters the URL of a YouTube video, this Python script extracts the transcript

and uses a Hugging Face pipeline to summarise the transcript into manageable pieces.

To determine how well the summary method encapsulated the main points of the film, it

computes the cosine similarity between the original transcript and the created summary.

It concludes by printing the amount of time required for the summarization process as

well as the transcript and summary similarity score, providing a useful tool for assessing

and analysing the summarization of video information.

Fig 3.10: Fetches the transcript of a YouTube video from a user-provided URL.

Then, it concatenates the transcript text into a single string.

26

Fig 3.11: Utilizes a Hugging Face summarization pipeline to summarize the transcript

of a YouTube video, splitting the text into chunks for processing.

Fig 3.12: Generates summaries for each chunk of the transcript using the previously

defined Hugging Face pipeline.

27

Fig 3.13: Calculates the cosine similarity between the transcript and the final summary

using TF-IDF vectorization and prints the similarity score.

Fig 3.14: Creates a heatmap to visualize the similarity score between the transcript and

summary.

3.3.2 .1 IMPLEMENTATION USING HUGGINGFACE MODEL –

Falconsai/text_summarization

The user enters the URL of a YouTube video, this Python script extracts the transcript

and uses a Hugging Face pipeline to summarise the transcript into manageable pieces.

To determine how well the summary method encapsulated the main points of the film, it

computes the cosine similarity between the original transcript and the created summary.

It concludes by printing the amount of time required for the summarization process as

well as the transcript and summary similarity score, providing a useful tool for assessing

and analysing the summarization of video information. It was observed that the similarity

score and the time taken for summarization was different for this model.

28

3.3.3 SUMMARIZATION OF TWO VIDEOS PARALLELY USING

HUGGING FACE MODEL

Fig 3.15: The important libraries were installed.

 Fig 3.16: A function is made to get the transcript of the videos and the transcript

is combined in a single string.

Fig 3.17: It summarizes the data using the model being used.

29

Fig 3.18: ThreadPoolExecutor to fetch transcripts in parallel for the provided

YouTube video URLs.

3.4 KEY CHALLENGES

There are various difficulties in developing a YouTube summarizer with hugging

face transformer or other language models. The following are the main obstacles:

1. Variability in Video Content:

YouTube videos come in a variety of subjects, genres, and tongues. It can be

difficult for models to handle the diversity of material since they may not be familiar

with domain-specific vocabulary or languages.

2. Multimodal Data:

Videos include audio-visual content as well. It is difficult to separate pertinent

information from several modalities and incorporate it into a cohesive synopsis.

Since language models usually process text, visual data might be overlooked.

3. Large-Scale Data Processing:

The duration, subject matter, and language of YouTube videos can differ greatly.

Large- scale video data processing and summarization need scalable infrastructure

and excellent algorithms to handle the volume of data.

30

4. Understanding Context:

Processing the transcript alone is not enough to grasp the context of a video. It

entails doing things that might be outside the scope of language models, such as

identifying essential concepts, comprehending the story flow, and distinguishing

visual aspects.

5. Taking Care of Loud Transcripts:

YouTube transcripts are not always accurate and sometimes contain grammatical

errors or run-on phrases. To manage such flaws in the input data, the summarizer

must be resilient.

6. Processing in Real Time:

An additional level of complication is introduced when summarizing a video in

real- time while it is being uploaded or broadcast. Processing at a fast pace is

necessary to keep up with the video content.

7. Bias and Sensitivity to Content:

It is possible for language models to unintentionally replicate biases found in their

training set. It can be difficult to make sure the summarizer generates fair and

considerate summaries, particularly when dealing with content that could be divisive

or contentious.

8. Metrics for Evaluation:

A summary's quality is a matter of opinion. It can be challenging to create strong

assessment measures that are consistent with human judgment. While frequently

employed, metrics like ROUGE – 1, ROUGE- N [10],[11], could miss the subtleties

of a well-written summary.

9. A Legal and Ethical Perspective:

It is important to adhere to ethical guidelines and copyright regulations while

summarizing content from YouTube videos. It is imperative to ensure adherence to

YouTube's copyright policy and terms of service.

31

10. Scalability:

Scalability is a hurdle when handling a large quantity of movies and processing

them effectively. Sturdy infrastructure is needed to deploy a YouTube summarizer

at scale. The major issue that we came across was the unavailability and the noisy

transcript. The lack of transcripts, which might impede model creation and training,

is one of the main issues. Another barrier that we still face is the Google Gemini pro

key restriction on the number of tokens it can access.

The most used summarization model for is the BART model [12] hence in our project

we decided to use free HuggingFace models to solve these issues, models like

my_awesome_billsum_model and Falcons/text summarization were used. These models

proved to be invaluable tools for comprehending the subtleties of transformers and

associated parts.

We still undergo persistent issues, such as Google Colab's limited GPU

availability. Although the platform has been useful in effectively summarizing some

videos, questions have been raised over its resilience. The 12GB RAM limit that Google

Colab offers is considered insufficient for any LLM Model calculation, particularly

given that LLM computations are known to be difficult and lengthy.

In conclusion, we are still dealing with problems about the accessibility of transcripts,

the limitations of Google Gemini pro keys, and the limitations of GPU resources in

Google Colab. Despite these obstacles, we have tried using free Hugging Face models

to learn about transformer models and associated parts.

32

CHAPTER 4

TESTING

In the testing strategy for the YouTube video summarizer project, a systematic and

thorough approach is adopted to guarantee the effectiveness and dependability of the AI-

driven system. The process commences with unit testing, meticulously evaluating the

correctness of individual components such as video downloading, transcript extraction,

and summarization algorithms. This phase ensures that each module operates as intended

in isolation.

Following unit testing, integration testing is executed to inspect the harmonious

collaboration of these components, uncovering any unforeseen challenges that may arise

when different modules interact. Functional testing is then employed to verify that the

system fulfills its specified requirements, generating precise and meaningful summaries

across a spectrum of videos.

The testing process extends to edge cases, where extreme or unexpected inputs are

applied to gauge how well the system handles unconventional scenarios. Performance

testing is integral to assessing the efficiency of the summarization process under various

conditions, encompassing videos of different lengths and sizes.

Usability testing is introduced to evaluate the user interface and overall user experience,

ensuring that the system is intuitive and user-friendly. Robustness testing examines the

system's resilience to errors and unexpected inputs, while scalability testing gauges its

capacity to handle increased load.

The incorporation of security testing aims to identify and address potential

vulnerabilities, safeguarding user data and fortifying the system against common security

threats. The final step involves user acceptance testing, where end-users engage with the

system in a real- world setting, providing valuable feedback for further refinement and

optimization.

This comprehensive testing strategy aims to ascertain that the YouTube video

summarizer f unction’s reliably and consistently, meeting user expectations and upholding

the integrity of the AI-driven summarization process. Through this systematic approach,

33

potential issues are identified and addressed, ensuring the project's overall success and

user satisfaction.

TOOLS USED IN THE PROJECT

4.1.1 PROGRAMMING LANGUAGE:

• Python: This is what makes Python a popular high-level general-purpose

programming language that has very nice syntax and a large collection of

modules (standard library) in it. This approach allows for legible code as seen by

its clean syntax with well-indented code blocks being made accessible even to

rookies. Python programming language is dynamically typed and interpreted,

allowing any variables to be assigned without any prior type declaration, and the

code is progressively executed one line after another. It is well known that the

language has one of the biggest standards in the computer science area covering

various functionalities like input output, regular expressions, networking, etc.

thereby taking out the burden of the programmers creating those from scratch. It

also supports many programming styles like object-oriented, procedural, and

function languages, thereby offering flexibility in implementing modules or

components via class and object. The automatic garbage collection of Python’s

memory simplifies memory allocation and ultimately enhances development

efficiency. Furthermore, unlike many other programming languages, python is

independent of platforms and can be deployed on a variety of operating systems.

The vast array of ready-made third-party libraries and frameworks available

means that it supports pretty much everything one could think of, starting from

web development up to machine learning, artificial intelligence, automation, and

so on. The fact that it has a large and vibrant community, which makes it an

impressive array of online resources, forums as well and tutorials also comes into

support for developers. Given that Python is highly interoperable with various

languages and technologies, it has become the most preferred programming

language in numerous areas. Considering everything, Python’s readability,

flexibility, as well as its massive community make it a renowned and popularly

loved language in various fields in general.

34

4.1.2 AI LIBRARIES/FRAMEWORKS

1. Time:

Python's time library offers routines for handling time-related tasks. It enables

users to synchronise events in Python programmes, measure durations, and

retrieve timestamps. The time library can be used for developing real-time clock

applications or scheduling systems, as well as for performance monitoring,

timeout implementation, rate restriction in API interactions, and other purposes.

It is an adaptable tool for managing time-related tasks in a variety of fields, such

as scientific computing, system management, and software development.

2. Matplotlib.pyplot:

It is a feature-rich Python plotting package that lets users make a broad range of

static, interactive, and publication-quality figures. For creating plots, scatter plots,

bar charts, line plots, histograms, and more, it offers a high-level interface.

Offering a wide range of customisation choices and compatibility for multiple

plot types, annotations, and colour maps. It is frequently used in domains like data

science, scientific research, engineering, finance, and academia for activities

involving data exploration, analysis, and visualisation. It is a flexible tool for

producing visualisations for reports, presentations, and interactive applications

because it also provides smooth interface with web apps, GUI frameworks, and

Jupyter notebooks.

3. Transformers (Hugging Face):

The famous open-source resource, Hugging Face’s Transformers library

provides various options for pre-trained NLP models which include transformer-

based models like BERT, GPT, and many more. We required such a library for

tasks like text summarization to exploit pre-trained transformer architectures.

This package made it easier for us to integrate strong language models into our

project.

4. YouTube- Transcript-API:

Retrievable YouTube video transcription, also known as captions, is obtained

using a Python package identified as YouTube-transcript-API. It helps to retrieve

text- based video transcripts via a programmatic fashion. This may be useful as

a project if the audio needed from some YouTube spoken videos that is to be

included in it. Having gotten the transcripts, the process of summarisation begins.

35

5. NumPy:

Large multidimensional arrays and matrices are supported by NumPy, a core

library for numerical computing in Python, which also offers a set of mathematical

methods to effectively work with big arrays. Array manipulation, mathematical

operations, linear algebraic routines, Fourier transforms, and random number

generation are some of its primary characteristics. NumPy's speed, memory

efficiency, and user- friendliness, it is extensively utilised in scientific

computing, data analysis, machine learning, and engineering applications.

Thanks to its array-oriented computing capabilities, users may apply algorithms

for tasks like data pretreatment, signal processing, optimisation, and simulation,

as well as carry out intricate numerical computations and work with sizable

datasets. Furthermore, NumPy forms the basis of numerous other scientific

computing and data analysis tools inside the Python ecosystem.

6. Seaborn:

It is based on matplotlib, Seaborn is a Python visualisation package that offers a

high- level interface for making visually appealing and educational statistical

visuals. Plotting options include scatter, line, bar, histogram, and heatmap plots;

statistical estimation and data aggregation are also supported natively. Among

Seaborn's primary characteristics are its smooth interaction with pandas’ data

structures, its ability to handle data aggregation and binning automatically, and

its wide range of customisation choices for plot aesthetic control. It is frequently

utilised in domains including data science, economics, biology, and social

sciences for statistical visualisation, presentation-quality visuals, and exploratory

data analysis. Furthermore, Seaborn makes complicated visualisation jobs easier

by offering default settings and user-friendly APIs for producing aesthetically

pleasing plots with less coding.

7. Cosine_similarity:

The scikit-learn library contains a function called cosine_similarity that is used

to calculate the cosine similarity between pairs of samples, which are usually

represented as vectors. It goes from -1 (totally unlike) to 1 (exactly similar),

measuring the cosine of the angle between two vectors. Information retrieval,

recommendation systems, text mining, and clustering are among the fields in

which cosine similarity is applied. In many different fields, including

36

collaborative filtering, document classification, natural language processing, and

document comparison, it is frequently utilised to compare documents, determine

the degree of similarity across text documents or features, and locate related

objects. Furthermore, cosine similarity is used in machine learning applications

such as nearest neighbour methods for similarity-based classification or

regression and clustering algorithms (e.g., k- means).

8. TfidfVectorizer:

A part of the scikit-learn library called TfidfVectorizer is used to turn a set of

unprocessed text documents into a matrix of TF-IDF (Term Frequency-Inverse

Document Frequency) characteristics. It calculates each document's TF-IDF

representation, where each feature denotes a term's significance inside the

document in relation to the corpus. TfidfVectorizer is used for document

classification, information retrieval, and text mining. Preprocessing text data for

machine learning tasks like sentiment analysis, document clustering, and text

categorization is a typical usage for it. Furthermore, TfidfVectorizer makes it

possible to convert textual data into a numerical format that can be used as input

into machine learning algorithms. By capturing the significance of keywords and

reducing the impact of frequent phrases, it enhances model performance.

4.1.3 GOOGLE COLAB AS IDE -

For Python projects, Google Colab, also known as Collaboratory, is a dynamic, cloud-

based Integrated Development Environment (IDE). Colab's all-cloud operation removes

the requirement for local installations, giving customers convenient access to

computational resources free from hardware restrictions. One of its most notable features

is that it offers free usage of GPUs and TPUs, which are very helpful for applications

related to deep learning and machine learning. Because of Colab's easy integration with

Google Drive, users can share and store their project notebooks with ease. The platform

facilitates an interactive and iterative development process by supporting Jupyter

Notebooks, which enable users to integrate code, visualizations, and narrative text in a

single document. Pre- installed with popular Python libraries and frameworks such as

NumPy, Pandas, and TensorFlow, Colab streamlines setup and ensures users have access

to robust tools for data analysis and machine learning. With real-time collaboration

capabilities, multiple users can work on the same notebook simultaneously, making it

37

conducive for team projects and research collaborations. Access to external data

sources, interactive visualizations, Markdown support for documentation, and simplified

sharing of code snippets further enhance Colab's appeal. In essence, Google Colab

provides a versatile, collaborative, and accessible environment for Python development,

making it particularly well-suited for projects in data science, machine learning, and

research.

4.1.4 VS CODE AS IDE -

Microsoft created the well-known integrated programming environment (IDE) Visual

Studio Code (VS Code), which is free and open source. With support for features like

syntax highlighting, code completion, debugging, version control, and extensions, it

provides a lightweight and adaptable environment for scripting in a variety of

programming languages. With VS Code, developers can customise their coding

experience and increase productivity thanks to its wide ecosystem of extensions,

customisable layout, and user- friendly interface. Due to its widespread usage in web

development, software engineering, data science, and other programming jobs, it is a very

adaptable and potent tool for contemporary workflows in software development.

38

4.2 TEST CASES AND OUTCOMES:

In this section test cases are used to access the system and the anticipated results are

discussed below.

Test Case 1:

Objective: Check if transcript is extracted.

Expected Output: Transcript should be extracted.

Result: In this test case we check if the transcript is downloaded when the link is input

by the user. The test result observed indicates that YouTube transcript is being loaded

when the user is giving the input.

Fig 4.1: Transcript is downloaded.

Test Case 2:

Objective: To check the behavior of the application when incorrect URL is input.

Expected Output: Should throw an error.

Result: In this test case we check if the model could detect if the URL added by the user

is valid. The test result observed indicates that if an incorrect URL is added then the app

will display an error.

Fig 4.2: Output when incorrect URL is input.

39

Test Case 3:

Objective: To test the behavior of the application if the user doesn’t input any URL.

Expected Output: Error should be thrown in the app.

Result: In this test case we check if the app can detect if the URL was added by the user.

The test result observed indicates that if no URL is added then the app will display an

error.

Fig 4.3: Output when no URL is input.

.

40

CHAPTER 5

RESULTS AND EVALUATION

5.1 RESULTS

After implementing summarization techniques with the help of different LLMs like

Google Gemini Pro, HuggingFace models we observed the following results.

A. Result of summarization performed by the Google Gemini Pro API-

In the result the similarity score, time taken for summarization and a heatmap were

plotted.

Fig 5.1: User must enter the link of video which is to be summarized.

41

Fig 5.2: Generated summary of the YouTube video.

Fig 5.3: Similarity score between Transcript and generated Summary.

42

B. Result of summarization performed by the HuggingFace Model-

Falconsai/text summarization.

In the above implementation YouTube video podcast is downloaded and its transcript is

fetched using YoutubeTranscriptApi then it is summarized using the Hugging Face

Pipeline. The model used was “Falcons-ai/text_summarization”. The same parameters

were covered, that is time taken to summarize, the similarity score and heatmap.

Fig 5.4: Similarity score between Transcript and generated Summary.

43

C. Result of summarization performed by the HuggingFace Model

- Stevhliu/my_awesome_billsum_model.

A different HuggingFace model was used to summarize the YouTube video and the

same parameters that were covered for the aforementioned models.

Fig 5.5: Similarity score between Transcript and generated Summary.

44

D. Result of summarization of two YouTube videos simultaneously

The model used here was Facebook/bart-large-cnn and it was given the task of

summarizing two videos simultaneously. One was a shorter YouTube video, and the

other was a longer YouTube podcast. It was successfully able to summarize both the

videos.

Fig 5.6: Result of multiple video summarization

45

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

Developing a YouTube/Podcast Summarizer using AI. The thorough examination looks

at Python code created with the OpenAI Hugging Face pipeline in mind for summarising

YouTube videos. With the help of libraries like transformers and Youtube

Transcript_API. Important discoveries include the assessment of the original code's

temporal efficiency and the incorporation of many tools, such as Gemini Pro API

HuggingFace models namely “Stevhliu/my_awesome_billsum_model” and

“Falconsai/text summarization”. We observed that the most efficient results were given

by the Google Gemini Pro Model in terms of time taken to summarize and similarity

score. The other models were relatively less efficient and lacked summarization ability.

The revised implementation includes improvements and makes use of Google Gemini

Pro to provide better outcomes. With a special post-processing step, it optimizes

transcript extraction, video processing, and summary for improved readability. Time

efficiency measures and fine-tuning parameters are used, which add to a thorough

analysis of the code's performance.

To sum up, both methods effectively automate the summary of YouTube videos,

showcasing the efficient integration of models and libraries. The metric of time

efficiency offers significant insights that direct continuous improvement endeavors. It is

encouraged to get in touch with developers and maintainers with questions or for help.

Limitations

In our project, we leverage fixed summarization models such as Google Gemini Pro and

HuggingFace models to distill information from video content. While these models

generally perform well, their effectiveness hinges on the nature of the video content

itself. To optimize summarization outcomes, it's imperative to explore various forms of

summarization and select the most suitable method for the specific application at hand.

This entails considering factors like the complexity and diversity of the content. Our

46

project employs a chunking approach to process video transcripts, dividing them into

smaller parts or phrases for summarization. However, this method runs the risk of

producing fragmented summaries, especially when crucial information spans across

multiple chunks. Fine-tuning parameters such as chunk size and overlap can enhance

coherence, but it's essential to maintain a holistic perspective to ensure no critical

information is lost in the process.

Summarization parameters such as max_length, min_length, length_penalty,

num_beams, and early_stopping play a pivotal role in shaping the quality and relevance

of the produced summaries. These values need to be carefully adjusted according to the

unique characteristics of the video content. Experimenting with different parameter

configurations can help optimize summarization outcomes and meet specific

requirements effectively.

An underlying assumption of our project is that the video content is in English.

However, this assumption may prove misleading if the video contains content in other

languages not supported by the summarization model. To address this limitation,

integrating a language detector and utilizing language-specific models could enhance

the project's language processing capabilities and ensure accurate summarization across

diverse linguistic contexts.

The project relies on external APIs like the YouTube API and Hugging Face Model Hub

for data retrieval and summarization. However, maintaining proper authentication and

monitoring changes in these APIs poses a challenge. It's crucial to stay vigilant and

adapt to any modifications that may affect the validity or functionality of the project's

codebase. When dealing with lengthy videos, particularly those where only certain

segments are relevant, relying solely on Hugging Face models to download and

transcribe the entire video may not be the most efficient approach. Instead, alternative

methods such as extracting transcripts directly from the video without downloading it

have been implemented to streamline the summarization process and conserve

resources.

47

6.2 FUTURE SCOPE

Several improvements are planned for further versions to improve the summarizer's

usability and flexibility. Firstly, users could have the freedom to select from a wide

range of Hugging Face summary models, customising their choices to fit their tastes or

particular use cases. This modification could greatly increase the summarizer's

adaptability. Secondly, although the English content in the present edition works well,

there are plans to provide models optimised for other languages. Furthermore,

investigating language identification algorithms may increase the tool's suitability in

various linguistic circumstances. Among the most important things to do in the future

is to strengthen error management systems. The summarizer may be made more

dependable and robust by improving the error-handling procedures, particularly when

video URLs stop working or accessibility problems arise with APIs. The model also

gives different results repeatedly as it requires more training which won’t be sufficient

just by instruction tuning and prompt tuning. For more efficient results fine tuning is

required which requires high GPU usage. Ultimately, expanding adaptive input

management skills is essential to support a wider range of applications. It would be

more flexible and useful if the script could handle different podcast or video URLs

on the fly. This would allow it to serve a larger range of users with different

summarising requirements. These upcoming improvements should improve the

summarizer's usability and functionality, guaranteeing that it will remain relevant

and useful for jobs involving the summation of text and video.

48

REFERENCES

[1] O. Topsakal and T. C. Akinci, “Creating Large Language Model Applications

Utilizing LangChain: A Primer on Developing LLM Apps Fast”, ICAENS, vol. 1,

no. 1, pp. 1050–1056, Jul. 2023.

[2] Ms Bhandare, Aishwarya Chigare, Utkarsha Patil, Shweta Sangle. "YouTube

Transcript Summarizer." International Research Journal of Modernization in

Engineering, Technology and Science, vol. 04, no. 03, March 2022.

[3] Reshma Shaik, Saloni Bargat, and Prof. Shilpa Ghode, “Article and YouTube

Transcript Summarizer Using Spacy and NLTK Module”, ssgmjse, vol. 1, no. 1, pp.

126–131, Jun. 2023.

[4] R. A. Albeer, H. F. Al-Shahad, H. J. Aleqabie, and N. D. Al-Shakarchy, “Automatic

summarization of YouTube video transcription text using term frequency-inverse

document frequency,” Indonesian Journal of Electrical Engineering and Computer

Science, vol. 26, no. 3, pp1512-1519, Jun. 2022.

[5] H. Gupta and M. Patel, "Method Of Text Summarization Using Lsa And Sentence

Based Topic Modelling With Bert," 2021 International Conference on Artificial

Intelligence and Smart Systems (ICAIS), Coimbatore, India, 2021, pp. 511-517,

[6] Y. Liu, A. R. Fabbri, P. Liu, D. Radev, and A. Cohan, “On Learning to Summarize

with Large Language Models as References,” arXiv (Cornell University), doi:

10.48550/arxiv.2305.14239.

[7] S. Devi, R. Nadar, T. Nichat, and A. Lucas, “Abstractive summarizer for YouTube

videos,” in Advances in computer science research, 2023, pp. 431–438.

[8] K. Song, C. Li, X. Wang, D. Yu, and F. Liu, “Towards abstractive grounded

summarization of podcast transcripts,” Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), Jan. 2022.

[9] Awasthi, K. Gupta, P. S. Bhogal, S. S. Anand and P. K. Soni, "Natural Language

Processing (NLP) based Text Summarization - A Survey," 2021 6th International

49

Conference on Inventive Computation Technologies (ICICT), Coimbatore, India,

2021, pp. 1310-1317, doi: 10.1109/ICICT50816.2021.9358703.

[10] S. Gehrmann, Y. Deng, and A. Rush, "Bottom-up abstractive summarization," in

 Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing (EMNLP)*, Brussels, Belgium, 2018, pp. 4098–4109.

[11] T. Falke, L. F. R. Ribeiro, P. A. Utama, I. Dagan, and I. Gurevych, "Ranking

generated summaries by correctness: C.-Y. Lin, "ROUGE: A package for automatic

evaluation of summaries," in *Text Summarization Branches Out*, Barcelona,

Spain, 2004, pp. 74–81.

[12] P. Manakul and M. Gales, “CUED_SPEECH AT TREC 2020 PODCAST

SUMMARISATION TRACK.” Accessed: May 16, 2024.

[13] C. Zhu, Y. Liu, J. Mei, and M. Zeng, “MediaSum: A Large-scale Media Interview

Dataset for Dialogue Summarization,” arXiv (Cornell University), Jan. 2021.

[14] K. Merchant and Y. Pande, “NLP Based Latent Semantic Analysis for Legal Text

Summarization,” 2018 International Conference on Advances in Computing,

Communications, and Informatics (ICACCI), Sep. 2018,

[15] R. Khan, Y. Qian, and S. Naeem, “Information Engineering and Electronic

Business,” Information Engineering and Electronic Business, vol. 3, pp. 33–44,

2019.

[16] P. Verma and A. Verma, “Accountability of NLP Tools in Text Summarization for

Indian Languages,” Journal of scientific research, vol. 64, no. 01, pp. 258–263, 2020.

[17] Tippaya Thinsungnoena et al 2015, “The Clustering Validity with Silhouette and

Sum of Squared Errors”. The 3rd International Conference on Industrial

Application Engineering (ICIAE2015).

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,” Proceedings of the 2019

Conference of the North, vol. 1, 2019.

[19] W. Fu and P. O. Perry, “Estimating the Number of Clusters Using Cross-Validation,”

50

Journal of Computational and Graphical Statistics, vol. 29, no. 1, pp. 162–173, Sep.

2019.

[20] Y. Liu, A. R. Fabbri, P. Liu, D. Radev, and A. Cohan, “On Learning to Summarize

with Large Language Models as References,” arXiv (Cornell University), doi:

10.48550/arxiv.2305.14239.

[21] D. Trautmann, A. Petrova, and F. Schilder, “Legal prompt engineering for

multilingual legal judgement prediction,” CoRR, vol. abs/2212.02199, 2022

[22] W. X. Zhao et al., “A Survey of Large Language Models,” arXiv:2303.18223 [cs],

Mar. 2023.

[23] Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language

Understanding by Generative Pre-Training,” 2018.

[24] S. S. Naik and M.NGaonkar, "Extractive text summarization by feature-based

sentence extraction using rule-based concept," 2017 2nd IEEE International

Conference on Recent Trends in Electronics, Information & Communication

Technology (RTEICT), Bangalore, India, 2017.

[25] A. Blair-Stanek, N. Holzenberger, and B. V. Durme, “Can GPT-3 perform

statutory reasoning?” CoRR, vol. abs/2302.06100, 2023.

51

APPENDIX

	4358920625a9188bc285ea068257afc9c224becbb5a0f80c2cd0cda1686dbe7b.pdf
	4358920625a9188bc285ea068257afc9c224becbb5a0f80c2cd0cda1686dbe7b.pdf
	4358920625a9188bc285ea068257afc9c224becbb5a0f80c2cd0cda1686dbe7b.pdf
	4358920625a9188bc285ea068257afc9c224becbb5a0f80c2cd0cda1686dbe7b.pdf

