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ABSTRACT 

 
 

The boom of video content in today’s age of information overload places increasing demands 

on end-users to digest more and better-quality information than ever before. However, this 

is a challenge that calls for a new tactic—using Artificial Intelligence (AI) to automate video 

summarization in this project. YouTube video summarizer utilizes Natural Language 

Processing (NLP) and deep learning approaches to comprehend, condense, and identify the 

main aspects of a video. 

This is a project of a YouTube video summary leveraging the Large Language Model (LLM) 

for language comprehension and content abstraction. The summarizer uses the abilities of 

LLMs like Google Gemini Pro and HuggingFace models. It extracts cognitive insights from 

text-to-text transcribing of videos by integrating linguistic subtleties into environmental 

context. 

The methodology involves input retrieval, processing, and incorporation of LLMs in the 

summary generator. LLM is enhanced language understanding models that generate 

summaries for videos in a holistic manner. 

The evaluation demonstrates that the proposed YouTube video summarizer is quite 

successful and an effective tool for improving accessibility in video-sharing systems and user 

experiences. The project assesses the advantages and disadvantages of the model, which will 

lay the foundation for future studies and improvement. 

This provides another input into the discussion of automated video summaries assisting 

content providers, viewers, and software manufacturers. With the changing face of video 

technology, the development of artificial intelligence within video summarization plays an 

important role in negotiating the vast ocean of internet video data.
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CHAPTER 1  

INTRODUCTION 

1.1 INTRODUCTION 

 
One of the most prominent digital worlds is YouTube where we can get educational, 

entertaining storylines or other fascinating video clips. Though that may constitute 

success in democracy by YouTube itself, it also presents a further problem for the 

audience who find it difficult to separate beneficial information by wading through seas 

of videos. 

Nonetheless currently, in the realm of the internet flooded with videos, YouTube is a 

treasure chest with information, entertainment, and wisdom. The massive archive of 

videos created through the democratization of content generation has been possible due to 

millions of people uploading their stories, skills, and ideas onto the web. However, this 

comes with another hurdle to users, how will they find usable and useful items in such a 

big pool of content? 

Recognizing this challenge, our project endeavors to introduce a transformative solution: 

Weaving the sophistication of a YouTube video summarizer together with the 

sophistication of AI fabric. The key objective here is to distill it to the essence, in 

summary form, which are the highest hopes for improvement of the user experience. 

Further, it helps solve the issue of overload with information, as well as facilitating the 

decision-making process of users regarding what should be checked out. 

As the new paradigm of video media becomes the main means, there is a demand for 

innovative solutions that enable new ways of watching videos. This project addresses 

this need by introducing a cutting-edge solution: A Smart YouTube video summarizer 

with AI. The summary generated tries to alter viewers’ habits of watching, finding, or 

using videos online. 

The motivation for this project lies in the recognition of the increasing information 

overload faced by users at websites like YouTube. They are also limited by lack of time 

and information overload in trying to go through many lengths of video clips to get some 

important parts that they want to digest. The issue under consideration concerns the 
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design of a YouTube Video Summarizer that aims to improve the ease of viewing and 

interacting with online videos. This is important for the successful operation of this 

project. It could change the way we communicate with users for YouTube and related 

media. To make it simpler for end-users, a summarizer has applied the newest NLP 

advances such as advanced natural language models and artificial intelligence to produce 

a summary of short but relevant videos. On the other hand, apart from facilitating fast 

content intake, it provides power for people to choose   if such videos can be viewed 

briefly or in detail. LLM models and AI will therefore be whittler in making the 

Summarizer. Essentially, whenever we want to tell what exactly the scene entails, it is 

necessary to observe image and audio effects together with major happenings taking 

place when the characters talk. This problem is being solved, thanks to the development 

of LLM which makes it possible for computers to decipher these phrases as if humans 

themselves were saying them. 

Similarly, large language models can be viewed as a group of superheroes for reading 

text. Consequently, they excel in understanding what an individual word means and its 

coherence to other words. To this end, we will be able to understand what they are 

speaking about when viewing their video. However, YouTube and other media have 

thousands of channels through which we can play virtually any video imaginable – from 

informal to formal educational videos. Thus, since the range is quite wide, the LLMs are 

very useful due to their flexibility. This kind of video summarizer would suit any content, 

which would employ the casual voice of a vlogger or the more formal tone of an 

instructional video. 

Video Summarizer does not choose any words and phrases randomly, in this case it uses 

LLMs because they understand the language of this specific video. For our summaries, 

our application is going to extract the transcript of the video and summarize it. It is like 

there’s a computer that understands what is being presented in the video. Therefore, in 

short, LLMs function like language brains making our initiative. This helps ensure that 

our summarizer does not only look at the contents of videos, but it also understands what 

each video means. Provides computers with a type of superpower to identify the most 

important parts of a video out of several in just a few seconds. The main principle of this 

project involves the fusion of large language models, such as Google Gemini Pro and 

HuggingFace, enabling detailed analysis of videos’ visuals and speech. Some degree of 

revolution is involved when using LLMs for video summarization as such algorithms 
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understand the language well and consider context and content. It has been more than 

mere summarization; rather building a versatile web tool with today’s fluidity involved 

in clips. The goal was to develop a productive method for developing substantial 

synopses on emerging domains of User-Generated Content that can learn by itself. 

This project has targeted revolutionizing internet video consumption offering easy-to-

use interfaces allowing users to navigate through an ocean of information they find 

online, and finally, opening new avenues for future technology. 

 
1.2 PROBLEM STATEMENT 

 
In the vast world of online videos, especially on platforms like YouTube, there's a big 

problem: insufficiency of time due to an overload of content. People are always interested 

in seeing entertaining items, something unusual, or just having some amusement. 

However, after a while of watching all these videos may become tiresome. This is the 

reason why we developed YouTube Video Summarizer. 

However, the biggest issue is that users encounter numerous information problems. 

Thousands of video clips can be found that address practically every imaginable topic. 

Therefore, one cannot just figure out which one among a million videos is worth 

watching the first minute he watches it. Some individuals may be looking for certain 

things in a long video clip / some people cannot watch the whole movie. The 

conventional techniques of using manual tags or classes. Nevertheless, the massive 

volume of freshly generated information today has rendered these methods obsolete 

beyond the point of reparation. This means users are not able to find things they want by 

simple routes. 

However, the plethora of available choices overburdens the end-users while the 

conventional means of content filtering, such as tagging, classification, and search 

engines fail to tackle the emergence of all these videos covering assorted themes. 

Information explosion means, in some respects, cases when a person does not manage 

to find necessary and useful content, they seek it. 

Users also have time constraints that make it impossible for them to watch every video 

just to know whether it will be useful to them. This has created a demand for a tool that 

can compress a video into a condensed and useful summary such that the end user can 

choose those videos worth exploring. 
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Our objective in the course is to find a solution to the challenge by creating a self-

generating summarizer for YouTube videos. Briefly, we hope to help users decide in the 

first couple of seconds or minutes whether this clip is useful for them. This procedure 

does not necessarily cater only to the audience but also gives way for television programs 

to adapt to the changing video arena. 

As technology gets advanced, people’s expectations increase as well. People demand 

more intelligent instruments that can be ahead of them and provide decisions quickly. 

The goal our YouTube Video Summarizer project aspires to meet is to narrow the gap 

that continues to widen between tons of videos available, while viewers are craving more 

engaging experiences. Now, our challenge is to summarize online videos that will make 

online videos more accessible and fun. 

 

1.3 OBJECTIVES 

 
With this YouTube Video Summarizer project, we hope to take advantage of the 

potential that AI gives and improve the user’s experience as well as the time spent 

watching videos on YouTube. The project seeks to address the following key objectives: 

 

1. Efficient Content Consumption: 

Provide a quick and simple method of user consumption of YouTube videos. Offer 

meaningful, concise, and summaries with the main goal of addressing “overload” 

information, which viewers will use to choose what videos to watch. 

2. Adaptability to Diverse Content: 

Create a strategy that handles videos found on YouTube such as educational 

materials, entertainment, tutorials, and so forth. Ensure that the YouTube video 

summarizer is adaptable and can comprehend and summarize material in various 

disciplines and dialects. 

3. User Empowerment: 

Providing users with an effective tool that allows them to find out its applicability 

within a short period before they watch the entire video. Simplified movement 

through YouTube’s vast video database to provide an enhanced holistic use 

experience. 
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4. Integration of Advanced AI Models: 

Utilize up-to-date AI models, particularly LLMs, for advanced video summarization 

practices. What are some ways that such models could understand the context and 

come up with appropriate summaries given the dynamism of user-driven material? 

5. Continuous Learning and Improvement: 

Create a guide for iterating and enhancing the summarization model as time passes 

by. Devise ways through which the system can respond to emerging trends, changes 

in users’ interests, and the evolving character of YouTube content. 

6. Contribution to the AI-Driven Content Landscape: 

Make a valuable contribution to the wider discussion around AI-generated curation 

and summary. Consider how new AI technologies can improve access and usefulness 

of web-based videos. Primarily the YouTube video summarizer project investigates 

reworking how a person interacts with YouTube Videos. The use of a summary 

enables  easy accessibility to the core information in videos. 

 
1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT 

WORK 

 
This YouTube Video Summarizer project is significant in that it aims to change the way 

users view and consume content on the famous YouTube platform. The influence of this 

tool is multidimensional. It can affect user experience as well as the issue regarding the 

integration of AI in content curation. 

The project involves an effort geared towards improving content utilization through the 

improvement of consumption efficiency. The old system that involves manually listing 

videos as well as relying on search engines fails to grant viewers an at-a-glance preview 

of all available material. The project will use state-of-the-art AI models such as LLMs 

to analyze not only the visual but also language aspects of videos, enabling detailed 

perspective. It makes summarization easier and provides a versatile tool that adjusts to 

the varied subject matter in the platform. 

In addition, the YouTube Video Summarizer highlights the transformative power of 

LLMs for video summarization. These models can be integrated into the project to enable 

the system to understand the spoken or written word in a video, moving past the usual 
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visual signs. Such in-depth comprehension allows the creation of outlines with not only 

pictures’ meaning but also linguistic details transmitted by speech. This way the project 

helps advance  AI applications for multimedia content analysis and description. 

Finally, the success of the YouTube Video Summarizer project is based on its potential 

to reshape YouTube usage by introducing a tool that simplifies both consumerism and 

entertainment. The project aims to deal with issues such as information overload, 

advanced artificial intelligence modeling, and contribution to the wider discussions 

concerning AI and content curation. 

This realization that users have a shared problem with copious amounts of web material, 

especially on websites such as YouTube motivated the YouTube Video Summarizer 

project. With the overwhelming growth of the digital world with thousands of videos on a 

wide range of topics, audiences are typically faced with one big challenge: how to search 

for videos that suit their interests and requirements in a fast way? 

Indeed, the main purpose behind that is to respond to the term “information overload”. 

Millions of videos are uploaded every day, and it is hard to find from all these movies 

those that may be useful, meaningful, or interesting. It is difficult to decide what to watch 

due to such huge amounts of choices that users must scroll through and become frustrated 

by, leading to a waste of their time. 

Additionally, the motivation goes further into making YouTube better for viewers. To 

this end, an interactive platform will be created whereby users can view snippets of the 

videos and get previews to help them establish if the videos contain topics they are 

interested in. Hence, this initiative seeks to provide a more user-friendly experience for 

use in the digital arena. 

The other reason is the drive to be at the cutting edge of technology by adopting state-of-

the- art artificial intelligence, specifically LLMs. This model is aimed at enhancing the 

ability of such models to interpret not only visual clips but also audio, text, and images 

included in the video. The entire approach is consistent with a change in user expectations 

and the prospective power of AI in content analysis. 

Overall, the reason for developing the YouTube Video Summarizer project is to make 

people interact favorably with online videos. It seeks to make content discovery easier for 

the users, save them time, as well as boost their pleasure by proposing a device that 

complies with users’ changing tastes and ever-changing online materials. The motivation 
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for the project lies in the view that technology should not only be about providing people 

with a digital experience but also one that is easily accessible, effective, and joyful. 

 

1.5 ORGANIZATION OF PROJECT REPORT 

 
Chapter 1: Introduction 

In this chapter, we get to know about the need to summarize lengthy YouTube 

videos/Podcasts as content consumption is growing with time. With the advancement of 

technology and the boom of the use of ChatGPT, we need effective tools for 

summarizing our content as we do not have much time to spare. The aim is to save time 

and get the most relevant information from the video/podcast. 

Chapter 2: Literature Review 

In this chapter, we discuss the various summarization techniques used in the past like 

NLP techniques. We learn about the different types of summarizations the Machine 

Learning models can perform, one being abstractive and the other being extractive. We 

also discussed the growth of LLM and how various applications can be built using it. 

Chapter 3: System Development 

In this chapter, we discuss the various stages of the project and the necessary libraries 

required for the development. We also discussed the methodology and the problems 

faced during the development. 

Chapter 4: Testing 

This chapter includes the different tests performed and the different testing strategies that  

have been used and will be used in the future. 

Chapter 5: Results and Evaluation 

In this chapter, we discuss the various results we obtained from implementing the 

different  models and different summarization techniques. We have used hugging face 

and OpenAI for our implementation and then evaluated the results obtained from them. 

Chapter 6: Conclusion and Future Scope 

This is the last chapter and here we discuss the summary of the project along with its 

limitations, along with suggesting improvements in the field of summarization using 

LLM. This chapter also discusses the future scope of the project. It also gives a perspective 

on LLM      and its future scope and applications. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 OVERVIEW OF RELEVANT LITERATURE 

 
2.1.1 INTRODUCTION 

 
The collection of research papers explores various aspects of automatic text 

summarization and the development of applications utilizing LLMs. A wide range of 

strategies and challenges related to text and video summarizing are covered in the 

literature study. One method uses NLTK and Spacy for summarizing articles and 

YouTube transcripts, emphasizing the benefits of extractive summarization while 

battling noisy text and inadequate abstractive summarization powers. Another article 

highlights security problems and investigates the relevance of the LangChain framework 

in quickly constructing LLM applications. Third research, which cites dataset size limits, 

investigates learning to summarize using LLMs with the CNN/Daily Mail dataset and the 

BART model. Furthermore, a YouTube transcript summarizer that makes use of Latent 

Semantic Analysis and Cosine Similarity has difficulties in efficiently controlling word 

count. Additionally, Spacy's NLP- based automated text summary works well for 

producing targeted summaries, but it does not go into detail on its drawbacks. Progress 

in abstractive grounded summarization of podcast transcripts is shown, while 

acknowledging the challenges presented by voice recognition mistakes. Finally, an 

abstractive summarizer for YouTube videos is suggested, recognizing the constraints of 

efficiency and scalability, especially when dealing with huge datasets. When taken as a 

whole, these studies provide insights into how summarizing approaches are changing and 

the challenges they face. 
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Table 2.1: Literature Overview 

S.No. Paper Title [Cite] Journal/ Conference (Year) Tools/ Techniques/ Dataset Results Limitations 

1 Article and YouTube Transcript 

Summarizer Using Spacy and NLTK 

Module [Smith, J., & Johnson, A. 

(2023)] 

SSGM Journal of Science and 

Engineering [2023] 

The NLTK package is utilized for text 

Processing. 

The use of Spacy and NLTK modules 

for text processing such as tokenization, 

entity recognition and calculating word 

frequency 

Limited support for abstractive 

summarization and challenge in handling 

‘noisy text’. 

2 Creating Large Language Model 

Application Utilizing LangChain: A 

Primer on Developing LLM Apps Fast 

[O. Topsakal and T. C. Akinci 2023] 

[ICAENS 2023] Idea was given to use the Langchain 

framework to develop applications utilizing 

large language models. 

Insights into LangChain's usage, 

fostering rapid application 

development using LangChain for LLM 

applications. 

Security concerns in LLM application 

development 

3 On Learning to Summarize with Large 

Language Models as References [Yixin 

LiuAlexander R. Fabbri2023] 

Submitted on 23 May 2023 at Cornell 

University 

lar/DailyMail dataset 

Used Bart - Large CNN model 

Used contrastive learning method based 

on reward system utilizing LLMs for 

summarization. 

Test done on a small dataset which may 

affect the efficacy of model 

4    YouTube Transcript summarizer 

[Sulochana Devi, Rahul Nadar 2022] 

[IRJMETS 2022] Latent Semantic Analysis [LSA] Cosine 

Similarity. 

Automatic summarization using NLP 

grounded algorithms aims to produce 

short videotape 

LSA can’t manage word count. Limits the 

ability of NLP to understand data. 

5  Implementation of NLP based 

automatic text summarization using 

spacy 

[N. C. P. Prakash et al] 

[IJHS 2022] Spacy Algorithm, 

linguistic & Statistical Features 

The use of Spacy algorithm results in 

fewer iterations and more focused 

Summary 

Does not discuss the limitations or 

performance of the Spacy and NLP model 

used. 

6  Towards Abstractive Grounded 

Summarization of Podcast Transcripts 

[ K. Song, C. Li, X. Wang, D. Yu, and 

F. Liu] 

Association for Computational 

Linguistics [2022] 

Abstractive Summarization, Large Podcast 

dataset 

Improved Summarization Techniques in 

terms of Automatic Human evaluation 

Speech Recognition Errors are abundant 

7 Abstractive Summarizer for YouTube 

videos [ S. Tamane et al.] 

[ICAMIDA 2022] Hugging Face Transformer, REST-API for 

Backend Request 

Combining multiple approaches to 

achieve ideal outcome. 

It includes large amounts of data which 

results in limitations of scalability and 

efficiency. 

8 Automatic Summarization of YouTube 

video using TF-IDF. [R. Albeer, H. Al- 

Shahad, H. Aleqabie, and N. Al-

Shakarchy] 

[IJEECS 2022] Term Frequency - Inverse Document 

Frequency [TF_IDF] 

TF-IDF was evaluated using the Rouge 

method on the CNN-daily-master 

dataset. 

TF - IDF may become slow and memory 

consuming when dealing with extensive 

datasets. 

9 Natural Language Processing (NLP) 

based Text Summarization - A Survey 

[I. Awasthi, K. Gupta, and P Bhogal] 

ICICT [2021] Abstractive methods, Extractive methods, 

long short-term memory (LSTM) RNN 

model. 

Less repetitive and more concentrated 

summaries. 

Less repetitive and more concentrated 

summaries. 
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Smith, J., & Johnson, A. [1] These days, many students and professionals find it 

convenient to use summation tools that produce condensed summaries from long texts 

thereby conserving time. Individuals can use these tools to elaborate and explain 

complicated concepts clearly and generate summaries ranging in length depending on 

their interests. Summarization is about coming up with an abridged form of a longer text 

that carries the essential ideas excluding irrelevant data. Summarizers rely on a rule-

based approach or natural language processing algorithms to mark key sentences and 

phrases. On the other hand, abstractive summarization is more complicated as it entails 

producing a fresh sentence. Incorrectness may be found in the product (including 

erroneous spelling or meaning). There are many ways errors can be detected such as 

measuring the original text with rouge or bleu metrics in comparison with the summary. 

The software packages are also applicable in summarizing files that might have been 

stored on a computer like articles and research papers. The file’s text can be retrieved and 

summarized, allowing one to save as a file. 

O. Topsakal and T. C. Akinci [2] is about LLMs, and it emphasizes Langchain, a 

popular open-source technology used for expediting the development of artificial 

intelligence apps. Customizable pipelines with modular abstractions are some qualities 

of LangChain built for custom LLM-based applications. Its speed of development can 

be evidenced by real- world examples. A detailed description of LangChain’s structure 

shows how it enables fast- paced development and innovation. To carry out map-reduce 

processes, refine methods, as well as numerous data operations; that’s what it does. In 

essence, LangChain is perceived as an important instrument in AI system construction 

thanks to its data-friendly, flexible, and versatile characteristics. The article demonstrates 

how to develop a speedy application via using LLMs with a focus on LangChain, an 

open-source giant. Since it effectively manages multiple data sources, LangChain is very 

important for LLM application projects. Real-life scenarios show how LangChain speeds 

up the development of “LLM” applications by using a modular approach and variable 

pipelines. The research continues with map reduce and refined approaches, which are 

critically important in LLM systems. In addition, LangChain assists in the execution of 

map-reduce operations where questions are processed concurrently with documents. 

Yixin Liu Alexander R. Fabbri [3] investigates a new learning paradigm for text 

summarization models treating LLMs as a reference ordeal, gold standards. In this 

regard, the authors propose a contrastive learning algorithm with GPT Score and 
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GPTRank approaches and demonstrate experimentally. This research paper looks into a 

new learning paradigm for text summarization models treating LLMs as a reference 

ordeal, gold standards. In this regard, the authors propose a contrastive learning 

algorithm with GPT Score and GPTRank approaches and demonstrate experimental the 

present paper presents a newer way of learning for text summarization models through 

an LLM as the reference or golden oracle. 

Sulochana Devi, Rahul Nadar [4] suggests an automated summarization approach for 

color YouTube videos based on NLP-grounded methods attempting to compose 

summaries. Here, this algorithm summarizes YouTube’s videotape reiteration and 

develops a videotaped abstract. They develop a web operation that takes input as a 

Youtube videotape link and the desired summary duration to produce an abridged 

Youtube video summary. This paper uses the Term Co-occurrence Matrix, which 

describes in what sentences the data belong together, and LSA which takes important 

components from the set. In general, this paper presents the idea of using NLP algorithms 

to summarize YouTube videos and thus to provide an easy way of creating short 

summaries from the user's point of view. A Term Co-occurrence Matrix and LSA help 

to understand sentence relationships and obtain significant attributes from the dataset. 

N. C. P. Prakash et al [5] stated an NLP-based Automatic Text Summarization using 

the Spacy algorithm. There exists an endless amount of data available on the Internet, 

hence it is impossible to read all this data. Moreover, transforming raw information into 

valuable knowledge becomes extremely challenging in such a case. The paper focuses on 

two major text summarization approaches which are extractive and abstract. Specifically, 

it discusses the extractive method that uses NLP. In the extraction method, the statistical 

and linguistic meanings of sentences are calculated. Lastly, the paper discusses how 

spacy worked in their project. 

K. Song, C. Li, X. Wang, D. Yu, and F. Liu [6] proposes a novel abstractive 

summarization method for podcast transcripts, aiming to address challenges such as 

factual inconsistencies, speech disfluencies, and recognition errors in summaries. The 

approach learns to produce abstractive summaries while grounding summary segments 

in specific regions of the transcript, allowing for full inspection of summary details. The 

proposed method is evaluated on a large podcast dataset and shows promising results in 

terms of improving summarization quality, both in automatic and human evaluation. 

Grounded summaries bring clear benefits in locating inconsistent information between 
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the summary and transcript segments. The paper investigates podcast summarization to 

produce textual summaries that help listeners understand why they might want to play 

those podcasts. The summaries include spans of text tethered to the original audio, 

enabling users to interpret system-generated abstracts in context. The utility of the 

proposed approach is demonstrated through experiments on a benchmark dataset. 

S. Tamane et al. [7] presents a user interface that utilizes NLP and Machine Learning 

to generate summaries of YouTube videos. The goal is to address the challenge of finding 

relevant content among the enormous number of videos uploaded daily. The 

summarization model extracts video transcripts and generates concise summaries while 

preserving important information. The paper focuses on abstractive summarization, 

which involves analyzing the text and generating coherent summaries using paraphrasing 

techniques. The authors compare abstractive and extractive summarization methods, 

discussing the pros and cons of each approach. The implementation process is ongoing, 

but the paper provides an overview of the structure and studies conducted. The proposed 

system can be extended to other streaming services and support multiple languages for 

the summarized text. 

R. Albeer, H. Al-Shahad, H. Aleqabie, and N. Al-Shakarchy [8], The construction of 

an automatic summarising system for YouTube video transcription text using the term 

frequency-inverse document frequency (TF-IDF) method is the main objective of the 

paper titled "Automatic summarization of YouTube video transcription text using term 

frequency-inverse document frequency". To deliver essential information to consumers 

who might not have time to watch lengthy films, the research attempts to extract crucial 

keywords from the video transcription text and provide a summary. The suggested 

solution uses the TF-IDF approach in conjunction with natural language processing 

techniques to determine crucial keywords for the summary. 

I. Awasthi, K. Gupta, and P Bhogal [9] In view of the internet's exponential data 

growth, the article discusses the need for text summaries and presents automatic 

summarising to transform unstructured data into meaningful understandings. It 

highlights the extractive strategies that are preferred by academics studying NLP by 

dividing text summarising techniques into two categories: extractive and abstractive. The 

study looks at various extractive and abstractive methodologies for text summary to 

provide less repetitive and more focused summaries. Additionally, by rewarding or 

penalising an agent for producing the best summaries, the study examines how 
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reinforcement learning techniques might be used to text summarization. 

KEY GAPS IN THE LITERATURE 

The gap that was observed was that some researches were exhaustive in its evaluation or 

comparison of the performance of the Spacy and NLTK modules for article and 

YouTube transcript summarization. Moreover, discussion over possible limitations 

encountered when using the HuggingSound library for speech recognition and audio 

chunking were not mentioned. 

Another gap that was noticed was the difficulty to critique in terms of its practicality as 

the paper does not include any cases nor is it backed by empirical evidence on just how 

fast the development of LLM-based applications using LangChain can be. A complete 

evaluation or contrast of LangChain with other relevant frameworks or tools is not done 

in the article, which limits our understanding of what makes this system unique or not. 

The study does not address any potential problems or limitations of using LangChain 

like compatibility issues or scalability problems with different platforms and code 

assessing LLMs and Langchain in the development of AI applications may lead to bias 

or ethnic problems like false or biased results. The study does not discuss these issues. 

The proposed paradigm will work for the other summarization datasets or domains 

cannot be told regarding this specific research paper. However, the papers do not go 

beyond discussing the possible challenges that may be associated with employing LLMs 

to function as reference or gold-standard oracle in text summarization. In the papers, the 

experimental studies are only used for evaluating smaller summarization models that use 

the suggested approach in comparison with a referential LLM. The articles don’t 

benchmark the presented approach against other existing state-of-the-art summarization 

models and techniques. 

Although some papers highlight the evaluative criteria for the proposed summarization 

algorithm, they fail to explicitly state the assessment metrics. Limited dataset 

description: However, there is no information about the large size or diversity of the data 

set on which the algorithm was trained and tested. Lack of comparison with existing 

methods: However, the papers do not make any comparative analyses between its 

proposed algorithm and the already existent summarization methods, hence making it 

difficult to assess how effective it is compared to them. 



14  

Papers that primarily supports extractive summarization do not acknowledge the 

problems with inferencing and in making sense of the setting. Dealing with lexical 

ambiguity/polysemy words. Find it difficult to deal with domain-specific vocabulary. 

Limited sentence compression capabilities. Extracted sentences may be redundant. 

In papers where speech recognition systems are used the main issue with those are not 

discussed like they may falter in accurately transcribing spoken content due to diverse 

linguistic variations such as accents, dialects, and pronunciation differences. 

Additionally, ambient noise, background sounds, and poor audio quality can further 

degrade the accuracy of transcriptions. These inaccuracies in the transcriptions serve as 

the foundation for abstractive summarization, influencing the quality of the generated 

summaries. Abundant speech recognition errors can pose significant challenges in the 

context of abstractive summarization. When dealing with transcriptions generated by 

speech recognition systems, several factors contribute to the increased likelihood of 

errors, impacting the subsequent summarization process. 

The research paper that discusses the abstractive summarization methods in general have 

certain limitations, such as the potential for generating inaccurate or misleading 

summaries and the challenge of maintaining coherence and readability in the generated 

summaries. The effectiveness of the abstractive summarization approach for YouTube 

videos may depend on the quality and accuracy of the automatic transcription of the 

videos, as well as the complexity and diversity of the content being summarized. 

One drawback is that it ignores the semantic meaning of words and instead relies solely 

on term frequency. Because TF-IDF favours words that appear frequently, it may miss 

significant phrases. In addition, it has trouble understanding synonyms, viewing 

concepts as separate entities. The summarising process may be impacted by the method's 

sensitivity to document length. Furthermore, TF-IDF does not take word order into 

account, which could result in summaries that are not coherent. TF-IDF may have trouble 

allocating the right weights to new phrases, making handling them difficult. 

The vanishing gradient problem causes RNNs to perform poorly on extended sequences, 

which results in partial summarization in longer documents. These models may not fully 

comprehend the global environment, and they are less useful for texts with intricate 

organisational patterns because they have trouble representing hierarchical hierarchies. 

Managing uncommon or out-of-vocabulary terminology can be difficult and lead to 
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errors. When the training dataset is small, overfitting may become problematic.The body 

of research on summarising strategies exposes several shortcomings and inconsistencies 

in different frameworks and approaches. The assessment of Spacy and NLTK by Smith 

and Johnson is superficial and leaves out important points on the constraints imposed by 

the Hugging Sound package. In a similar vein another research hinders a thorough 

understanding of LangChain's uniqueness by failing to compare it with other frameworks 

and providing no actual evidence of its usefulness. 

Abstractive summarization is greatly impacted by speech recognition problems, which 

can be caused by a variety of language differences, background noise, and low audio 

quality. These variables can also lead to transcribing errors. The coherence of the TF-

IDF summarizing approach may be impacted by its tendency to ignore important 

phrases, have trouble with synonyms, and disregard word order. The vanishing gradient 

problem makes it difficult for RNNs to summarize lengthy documents. They also have 

trouble managing terms that are not in the dictionary, modeling hierarchical structures, 

and handling limited training datasets. All in all, the gaps draw attention to the necessity 

of doing more thorough analyses, comparisons, and assessments of the practical 

difficulties that arise in summarizing research. 
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CHAPTER 3 

SYSTEM REQUIREMENT 

3.1 REQUIREMENTS AND ANALYSIS 

 
The design requirements for a YouTube / Podcast summarizer utilizing a LLM. Here is 

an outline of the requirements and an analysis of the task. The exact LLM model which 

we select, the scope of our project, and the features we included influenced the system 

requirements for a YouTube/podcast summarizer. Here are a few broad things we kept 

in mind: 

 

1.  Hardware: 

GPU acceleration is very helpful for LLMs, particularly those built on transformer 

architectures. Model training and inference can be significantly accelerated by having 

a strong GPU (such as NVIDIA GPUs like the Tesla V100 or A100) or by having 

access to cloud-based GPU services (such as AWS, Google Cloud, or Azure). 

 

2.  Software: 

Since LLMs are frequently implemented using these frameworks, make sure they are 

compatible with well-known deep learning frameworks like TensorFlow or PyTorch. 

Selecting an LLM that has been trained and is appropriate for the task at hand. 

Depending on what we need to summarize, models such as GPT-3, GPT-4, BERT 

[18], or T5 might be useful. 

 

3.  RAM: 

Memory managing the big models and datasets requires enough RAM. The 

magnitude of the input data and the model will determine how different the 

requirements are. Make sure to have adequate RAM so that data can be processed. 

 

4.  Storage: 

We required enough storage space to hold training data, model checkpoints, and any 

extra resources, depending on the size of dataset and the models. 
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5.  Network: 

If the summarizer pulls information from external sources (like YouTube or podcast 

APIs), we need a dependable and quick internet connection. 

 

6.  Development Environment: 

Assembling the tools required for deep learning, Python development, and any 

libraries Sor packages needed for the project. 

 

7.  The Ability to Scale: 

We intended to implement summarizer on a large scale thinking about building the 

system with scalability in mind. Maintaining several instances of the summarizer may 

require orchestration (using Kubernetes) and containerization (using tools like 

Docker) [13]. 

 
3.1.1 Analysis: 
 

Previous research has demonstrated that a large pre-trained language model like GPT-3, 

Gemini Pro are highly adept at generating high-quality summaries in text summarization 

tasks. However, it would probably have to be custom fine-tuned [14] specifically on long 

conversational style transcripts if one needs Some of these challenges may include 

scalability issues relating to ingestion and automation of speech-to-text for input data, 

and limitations on the use of (long text, summary) for custom datasets creation because of 

poor availability in the conversational domain. It is necessary to carefully assess 

information retention and compactness. Such a system would make it easy to access brief 

information from summarized language spoken content where pivotal points are 

retained. 

The YouTube Video Summarizer project involving AI in understanding and abstraction 

of      videos constitutes a great milestone towards enriching YouTube users’ experience of 

content on YouTube. Similarly, it is like a smart agent that watches the video, giving 

summaries from which we can base our decision on whether to view the whole video or 

not. The system behind the scenes utilizes advanced computer programs that are able not 

only to read the video but also detect the surrounding images. YouTube is a good 

platform for this device as it can handle different kinds of videos, ranging from 

educational to fun vlogs. Although useful, the project has some problems. It can fail to 

interpret the meaning      of an individual word and difficult compound sentences at times. 
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Also, it may not be able to get the mood or setting of a video while mainly trying to 

extract relevant passages. The objective of this project is to streamline YouTube 

viewership, enabling a quick analysis of    whether videos are relevant to watch. Despite 

this fact, it does what it can, and the team is  constantly working on ways of further 

improvement. 

 

3.2 PROJECT DESIGN AND ARCHITECTURE 

 
3.2.1 METHODOLOGY 

 
1.  Data Collection: 

Accessing a wide range of YouTube videos and podcasts to train the model. The 

dataset ought to include different themes and ways of talking. Transcribe the audio 

material into text through speech-to-text technology suitable for the linguistic model. 

We decided to use the YouTube transcript [8] API to load the subtitles of the videos. 

2.  Large Language Model: 

Selecting among the contemporaneous sophisticated big language models like Google 

Gemini and alternative models for summarization projects. Another choice was made 

to use the Hugging Face LLM model as they are easily fine-tuned with prompt 

engineering. 

3.  Summarization Algorithm: 

Abstractive Summarization: Use an abstractive summarization [17] algorithm such 

that the model can produce a high-quality summary using its own words. 

Extractive Features: There are also optional extractive features [15],[18],[24] that 

can be used to emphasize a few crucial sentences within the source material. 

4.  User Interface: 

Creating an easy-to-use platform where users can insert YouTube video/podcast links 

and get the summarized content. Offer alternative ways of presenting the summaries 

e.g., in text. 

5.  Scalability: 

Use of parallel processing technique to process many requests simultaneously. The 

GPU requirements and the hardware requirements must be defined in manner that is 

helpful for the developer.[19] 
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Fig 3.1: Flow Graph of The Project 
 
 

 

 

 

 

 

Fig 3.2: Flow Graph with LLM 
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Fig 3.3: Flow Graph with YouTube Transcript And LLM 
 

 

 

 

 

 

 

 
 

 
Fig 3.4: Flow Graph for Long YouTube Video/Podcast 
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3.2.2 DATA PREPARATION 

 
The project consists of preparing the data which is been done by downloading the video 

from a particular YouTube URL and then extracting its transcript after it was extracted 

Here's the breakdown of the data preparation steps: 

The download_transcript function is defined to download the video and extract its 

transcript using youtube_transcript_api libraries. 

 

Fig 3.5: The download_transcript function is defined to extract its transcript. 

 

 
3.3 IMPLEMENTATION 

The implementation of the YouTube Video Summarizer project LLMs like OpenAI's 

GPT involves several key steps [21]. To begin, the project sets up the necessary 

dependencies, including the installation of relevant Python libraries such as LangChain 

for natural language processing and open-ai for accessing the GPT models. Having set 

up a proper development environment, the project utilizes the YouTube-Transcript-API 

to get video details such as names and transcriptions which are then used for 

summarization at a fundamental level. In the project we are using the below mentioned 

libraries: 

 

1. Matplotlib.pyplot: 

To create visualisations like plots, histograms, and charts, we need this package. 

Matplotlib.pyplot is a tool used in video summarizer projects to visualise information 

about the movies, including their length distribution, the frequency of specific 

keywords in the transcripts, and the similarity between various summaries. 
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2. NumPy: 

It is an effective Python library for numerical computation. It is utilised for several 

activities in a video summarizer project, including mathematical calculations, feature 

extraction, and data modification. For instance, it is employed in matrix operations 

for text feature analysis or in the processing of numerical data taken from video 

metadata. 

 

3. Sklearn.metrics.pairwise.cosine_similarity: 

This function from scikit-learn calculates the cosine similarity between pairs of 

samples in two datasets. It is used to measure the similarity between different video 

transcripts or between a reference summary and generated summaries. This can help 

assess the quality of the summarization algorithm. 

 

4. Transformers.pipeline: 

Natural language processing models that have already been trained are accessible 

through the transformer’s library. Text summarization is only one of the many NLP 

tasks that can be utilised by these models for with ease thanks to the pipeline feature. 

Transformers. Pipeline can be used in a video summarizer project to create transcript 

summaries utilising cutting-edge NLP models such as BERT or GPT. 

 

5. Youtube-Transcript-API: 

With the help of this Python library, one can obtain the transcriptions, or captions, 

for YouTube videos. With just a simple link on the page or website hosting the video, 

visitors can easily access the text transcripts of YouTube videos thanks to this library. 

This could be useful for a variety of things, such information extraction, video 

analytics, and even subtitle generation. 

 

6. sklearn.feature_extraction.text.TfidfVectorizer: 

This scikit-learn component is used to create a matrix of TF-IDF features from a set 

of raw documents. Before being fed into machine learning models for summarization 

or similarity calculations, the text data retrieved from video transcripts is preprocessed 

and vectorized using the TfidfVectorizer. 

 

7. Seaborn: 

Based on matplotlib, Seaborn is a library for statistical data visualisation. It offers a 

sophisticated plotting tool for the creation of visually striking and educational graphs. 
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The seaborn can be used to assess the effectiveness of various summarising 

techniques, examine relationships between video attributes and summary quality, and 

visualise the distribution of summary lengths. 

 

8. Time: 

It can be used to measure the performance of different operations such as fetching 

video transcripts, processing text data, or training machine learning models. For 

example, anyone wants to track the time taken to retrieve transcripts from YouTube 

or to summarize multiple videos. 

 
3.3.1 IMPLEMENTATION USING GOOGLE GEMINI PRO: 

 
We have built a Streamlit application that uses the transcripts of YouTube videos to 

generate summaries. Importing the required libraries and setting up the Google 

Generative AI library with environment variables' API keys are the first steps. After 

asking users to enter the URL of a YouTube video, the application uses the YouTube 

Transcript API to extract the transcript from the video. Next, using the transcript a 

Generative AI model known as the "Gemini-pro" model is used to provide a summary 

of the video material. Using TF-IDF vectorization, the application determines how 

similar the original transcript and the generated summary are. For clarity, it presents the 

similarity score together with a heatmap visualization. All things considered, the program 

offers a productive means of condensing video material and illustrating the consistency 

between the transcript and its synopsis. 
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Fig 3.6: Transcript is extracted using the YoutubeTranscript API. 
 

 

Fig 3.7: The Gemini API is called, and it starts summarization. 
 

 

Fig 3.8: Cosine Similarity function is used to calculate the similarity. 
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Fig 3.9: Heatmap is plotted between the transcript and summary. 

3.3.2 IMPLEMENTATION USING HUGGINGFACE MODEL – 

stevhliu/my_awesome_billsum_model 

The user enters the URL of a YouTube video, this Python script extracts the transcript 

and uses a Hugging Face pipeline to summarise the transcript into manageable pieces. 

To determine how well the summary method encapsulated the main points of the film, it 

computes the cosine similarity between the original transcript and the created summary. 

It concludes by printing the amount of time required for the summarization process as 

well as the transcript and summary similarity score, providing a useful tool for assessing 

and analysing the summarization of video information. 

 

Fig 3.10: Fetches the transcript of a YouTube video from a user-provided URL.  

Then, it        concatenates the transcript text into a single string.
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Fig 3.11: Utilizes a Hugging Face summarization pipeline to summarize the transcript 

of a YouTube video, splitting the text into chunks for processing. 

 

 
 

Fig 3.12: Generates summaries for each chunk of the transcript using the previously 

defined Hugging Face pipeline. 
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Fig 3.13: Calculates the cosine similarity between the transcript and the final summary 

using TF-IDF vectorization and prints the similarity score. 

 

 
 

Fig 3.14: Creates a heatmap to visualize the similarity score between the transcript and 

summary. 

 

3.3.2 .1 IMPLEMENTATION USING HUGGINGFACE MODEL – 

Falconsai/text_summarization 

The user enters the URL of a YouTube video, this Python script extracts the transcript 

and uses a Hugging Face pipeline to summarise the transcript into manageable pieces. 

To determine how well the summary method encapsulated the main points of the film, it 

computes the cosine similarity between the original transcript and the created summary. 

It concludes by printing the amount of time required for the summarization process as 

well as the transcript and summary similarity score, providing a useful tool for assessing 

and analysing the summarization of video information. It was observed that the similarity 

score and the time taken for summarization was different for this model. 
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3.3.3 SUMMARIZATION OF TWO VIDEOS PARALLELY USING 

HUGGING FACE MODEL 

 

Fig 3.15: The important libraries were installed. 
 

 

 

    Fig 3.16: A function is made to get the transcript of the videos and the transcript  

is combined in a single string. 

 

 
 

Fig 3.17: It summarizes the data using the model being used. 
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Fig 3.18: ThreadPoolExecutor to fetch transcripts in parallel for the provided  

YouTube   video URLs. 

 
 

3.4 KEY CHALLENGES 

 
There are various difficulties in developing a YouTube summarizer with hugging 

face transformer or other language models. The following are the main obstacles: 

 

1. Variability in Video Content: 
 

YouTube videos come in a variety of subjects, genres, and tongues. It can be 

difficult for models to handle the diversity of material since they may not be familiar 

with domain-specific vocabulary or languages. 

 

2. Multimodal Data: 

Videos include audio-visual content as well. It is difficult to separate pertinent 

information from several modalities and incorporate it into a cohesive synopsis. 

Since language models usually process text, visual data might be overlooked. 

 

3. Large-Scale Data Processing: 

The duration, subject matter, and language of YouTube videos can differ greatly. 

Large- scale video data processing and summarization need scalable infrastructure 

and excellent algorithms to handle the volume of data. 
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4. Understanding Context: 

Processing the transcript alone is not enough to grasp the context of a video. It 

entails doing things that might be outside the scope of language models, such as 

identifying essential concepts, comprehending the story flow, and distinguishing 

visual aspects. 

 

5. Taking Care of Loud Transcripts: 

YouTube transcripts are not always accurate and sometimes contain grammatical 

errors or run-on phrases. To manage such flaws in the input data, the summarizer 

must be resilient. 

 

6. Processing in Real Time: 

An additional level of complication is introduced when summarizing a video in 

real- time while it is being uploaded or broadcast. Processing at a fast pace is 

necessary to keep up with the video content. 

 

7. Bias and Sensitivity to Content: 

It is possible for language models to unintentionally replicate biases found in their 

training set. It can be difficult to make sure the summarizer generates fair and 

considerate summaries, particularly when dealing with content that could be divisive 

or contentious. 

 

8. Metrics for Evaluation: 

A summary's quality is a matter of opinion. It can be challenging to create strong 

assessment measures that are consistent with human judgment. While frequently 

employed, metrics like ROUGE – 1, ROUGE- N [10],[11], could miss the subtleties 

of a well-written summary. 

 

9. A Legal and Ethical Perspective: 

It is important to adhere to ethical guidelines and copyright regulations while 

summarizing content from YouTube videos. It is imperative to ensure adherence to 

YouTube's copyright policy and terms of service. 
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10. Scalability: 

Scalability is a hurdle when handling a large quantity of movies and processing 

them effectively. Sturdy infrastructure is needed to deploy a YouTube summarizer 

at scale. The major issue that we came across was the unavailability and the noisy 

transcript. The lack of transcripts, which might impede model creation and training, 

is one of the main issues. Another barrier that we still face is the Google Gemini pro 

key restriction on the number of tokens it can access. 

The most used summarization model for is the BART model [12] hence in our project 

we decided to use free HuggingFace models to solve these issues, models like 

my_awesome_billsum_model and Falcons/text summarization were used. These models 

proved to be invaluable tools for comprehending the subtleties of transformers and 

associated parts. 

We still undergo persistent issues, such as Google Colab's   limited   GPU  

availability. Although the platform has been useful in effectively summarizing some 

videos, questions have been raised over its resilience. The 12GB RAM limit that Google 

Colab offers is considered insufficient for any LLM Model calculation, particularly 

given that LLM computations are known to be difficult and lengthy. 

In conclusion, we are still dealing with problems about the accessibility of transcripts, 

the limitations of Google Gemini pro keys, and the limitations of GPU resources in 

Google Colab. Despite these obstacles, we have tried using free Hugging Face models 

to learn about transformer models and associated parts. 



32  

CHAPTER 4  

TESTING 

In the testing strategy for the YouTube video summarizer project, a systematic and 

thorough approach is adopted to guarantee the effectiveness and dependability of the AI- 

driven system. The process commences with unit testing, meticulously evaluating the 

correctness of individual components such as video downloading, transcript extraction, 

and summarization algorithms. This phase ensures that each module operates as intended 

in isolation. 

Following unit testing, integration testing is executed to inspect the harmonious 

collaboration of these components, uncovering any unforeseen challenges that may arise 

when different modules interact. Functional testing is then employed to verify that the 

system fulfills its specified requirements, generating precise and meaningful summaries 

across a spectrum of videos. 

The testing process extends to edge cases, where extreme or unexpected inputs are 

applied to gauge how well the system handles unconventional scenarios. Performance 

testing is integral to assessing the efficiency of the summarization process under various 

conditions, encompassing videos of different lengths and sizes. 

Usability testing is introduced to evaluate the user interface and overall user experience, 

ensuring that the system is intuitive and user-friendly. Robustness testing examines the 

system's resilience to errors and unexpected inputs, while scalability testing gauges its 

capacity to handle increased load. 

The incorporation of security testing aims to identify and address potential 

vulnerabilities, safeguarding user data and fortifying the system against common security 

threats. The final step involves user acceptance testing, where end-users engage with the 

system in a real- world setting, providing valuable feedback for further refinement and 

optimization. 

This comprehensive testing strategy aims to ascertain that the YouTube video 

summarizer            f   unction’s reliably and consistently, meeting user expectations and upholding 

the integrity of the AI-driven summarization process. Through this systematic approach, 
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potential issues are identified and addressed, ensuring the project's overall success and 

user satisfaction. 

TOOLS USED IN THE PROJECT 

 
4.1.1 PROGRAMMING LANGUAGE: 

 
• Python: This is what makes Python a popular high-level general-purpose 

programming language that has very nice syntax and a large collection of 

modules (standard library) in it. This approach allows for legible code as seen by 

its clean syntax with well-indented code blocks being made accessible even to 

rookies. Python programming language is dynamically typed and interpreted, 

allowing any variables to be assigned without any prior type declaration, and the 

code is progressively executed one line after another. It is well known that the 

language has one of the biggest standards in the computer science area covering 

various functionalities like input output, regular expressions, networking, etc. 

thereby taking out the burden of the programmers creating those from scratch. It 

also supports many programming styles like object-oriented, procedural, and 

function languages, thereby offering flexibility in implementing modules or 

components via class and object. The automatic garbage collection of Python’s 

memory simplifies memory allocation and ultimately enhances development 

efficiency. Furthermore, unlike many other programming languages, python is 

independent of platforms and can be deployed on a variety of operating systems. 

The vast array of ready-made third-party libraries and frameworks available 

means that it supports pretty much everything one could think of, starting from 

web development up to machine learning, artificial intelligence, automation, and 

so on. The fact that it has a large and vibrant community, which makes it an 

impressive array of online resources, forums as well and tutorials also comes into 

support for developers. Given that Python is highly interoperable with various 

languages and technologies, it has become the most preferred programming 

language in numerous areas. Considering everything, Python’s readability, 

flexibility, as well as its massive community make it a renowned and popularly 

loved language in various fields in general. 
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4.1.2 AI LIBRARIES/FRAMEWORKS 

1. Time: 

Python's time library offers routines for handling time-related tasks. It enables 

users to synchronise events in Python programmes, measure durations, and 

retrieve timestamps. The time library can be used for developing real-time clock 

applications or scheduling systems, as well as for performance monitoring, 

timeout implementation, rate restriction in API interactions, and other purposes. 

It is an adaptable tool for managing time-related tasks in a variety of fields, such 

as scientific computing, system management, and software development. 

2. Matplotlib.pyplot: 

It is a feature-rich Python plotting package that lets users make a broad range of 

static, interactive, and publication-quality figures. For creating plots, scatter plots, 

bar charts, line plots, histograms, and more, it offers a high-level interface. 

Offering a wide range of customisation choices and compatibility for multiple 

plot types, annotations, and colour maps. It is frequently used in domains like data 

science, scientific research, engineering, finance, and academia for activities 

involving data exploration, analysis, and visualisation. It is a flexible tool for 

producing visualisations for reports, presentations, and interactive applications 

because it also provides smooth interface with web apps, GUI frameworks, and 

Jupyter notebooks. 

3. Transformers (Hugging Face): 

The famous open-source resource, Hugging Face’s Transformers library 

provides various options for pre-trained NLP models which include transformer-

based models like BERT, GPT, and many more. We required such a library for 

tasks like text summarization to exploit pre-trained transformer architectures. 

This package made it easier for us to integrate strong language models into our 

project. 

4. YouTube- Transcript-API: 

Retrievable YouTube video transcription, also known as captions, is obtained 

using a Python package identified as YouTube-transcript-API. It helps to retrieve 

text- based video transcripts via a programmatic fashion. This may be useful as 

a project if the audio needed from some YouTube spoken videos that is to be 

included in it. Having gotten the transcripts, the process of summarisation begins. 
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5. NumPy: 

Large multidimensional arrays and matrices are supported by NumPy, a core 

library for numerical computing in Python, which also offers a set of mathematical 

methods to effectively work with big arrays. Array manipulation, mathematical 

operations, linear algebraic routines, Fourier transforms, and random number 

generation are some of its primary characteristics. NumPy's speed, memory 

efficiency, and user- friendliness, it is extensively utilised in scientific 

computing, data analysis, machine learning, and engineering applications. 

Thanks to its array-oriented computing capabilities, users may apply algorithms 

for tasks like data pretreatment, signal processing, optimisation, and simulation, 

as well as carry out intricate numerical computations and work with sizable 

datasets. Furthermore, NumPy forms the basis of numerous other scientific 

computing and data analysis tools inside the Python ecosystem. 

6. Seaborn: 

It is based on matplotlib, Seaborn is a Python visualisation package that offers a 

high- level interface for making visually appealing and educational statistical 

visuals. Plotting options include scatter, line, bar, histogram, and heatmap plots; 

statistical estimation and data aggregation are also supported natively. Among 

Seaborn's primary characteristics are its smooth interaction with pandas’ data 

structures, its ability to handle data aggregation and binning automatically, and 

its wide range of customisation choices for plot aesthetic control. It is frequently 

utilised in domains including data science, economics, biology, and social 

sciences for statistical visualisation, presentation-quality visuals, and exploratory 

data analysis. Furthermore, Seaborn makes complicated visualisation jobs easier 

by offering default settings and user-friendly APIs for producing aesthetically 

pleasing plots with less coding. 

 

7. Cosine_similarity: 

The scikit-learn library contains a function called cosine_similarity that is used 

to calculate the cosine similarity between pairs of samples, which are usually 

represented as vectors. It goes from -1 (totally unlike) to 1 (exactly similar), 

measuring the cosine of the angle between two vectors. Information retrieval, 

recommendation systems, text mining, and clustering are among the fields in 

which cosine similarity is applied. In many different fields, including 
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collaborative filtering, document classification, natural language processing, and 

document comparison, it is frequently utilised to compare documents, determine 

the degree of similarity across text documents or features, and locate related 

objects. Furthermore, cosine similarity is used in machine learning applications 

such as nearest neighbour methods for similarity-based classification or 

regression and clustering algorithms (e.g., k- means). 

8. TfidfVectorizer: 

A part of the scikit-learn library called TfidfVectorizer is used to turn a set of 

unprocessed text documents into a matrix of TF-IDF (Term Frequency-Inverse 

Document Frequency) characteristics. It calculates each document's TF-IDF 

representation, where each feature denotes a term's significance inside the 

document in relation to the corpus. TfidfVectorizer is used for document 

classification, information retrieval, and text mining. Preprocessing text data for 

machine learning tasks like sentiment analysis, document clustering, and text 

categorization is a typical usage for it. Furthermore, TfidfVectorizer makes it 

possible to convert textual data into a numerical format that can be used as input 

into machine learning algorithms. By capturing the significance of keywords and 

reducing the impact of frequent phrases, it enhances model performance. 

 
4.1.3 GOOGLE COLAB AS IDE - 

 
For Python projects, Google Colab, also known as Collaboratory, is a dynamic, cloud-

based Integrated Development Environment (IDE). Colab's all-cloud operation removes 

the requirement for local installations, giving customers convenient access to 

computational resources free from hardware restrictions. One of its most notable features 

is that it offers free usage of GPUs and TPUs, which are very helpful for applications 

related to deep learning and machine learning. Because of Colab's easy integration with 

Google Drive, users can share and store their project notebooks with ease. The platform 

facilitates an interactive and iterative development process by supporting Jupyter 

Notebooks, which enable users to integrate code, visualizations, and narrative text in a 

single document. Pre- installed with popular Python libraries and frameworks such as 

NumPy, Pandas, and TensorFlow, Colab streamlines setup and ensures users have access 

to robust tools for data analysis and machine learning. With real-time collaboration 

capabilities, multiple users can work on the same notebook simultaneously, making it 
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conducive for team projects and research collaborations. Access to external data 

sources, interactive visualizations, Markdown support for documentation, and simplified 

sharing of code snippets further enhance Colab's appeal. In essence, Google Colab 

provides a versatile, collaborative, and accessible environment for Python development, 

making it particularly well-suited for projects in data science, machine learning, and 

research. 

4.1.4 VS CODE AS IDE - 

 
Microsoft created the well-known integrated programming environment (IDE) Visual 

Studio Code (VS Code), which is free and open source. With support for features like 

syntax highlighting, code completion, debugging, version control, and extensions, it 

provides a lightweight and adaptable environment for scripting in a variety of 

programming languages. With VS Code, developers can customise their coding 

experience and increase productivity thanks to its wide ecosystem of extensions, 

customisable layout, and user- friendly interface. Due to its widespread usage in web 

development, software engineering, data science, and other programming jobs, it is a very 

adaptable and potent tool for contemporary workflows in software development. 
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4.2 TEST CASES AND OUTCOMES: 

 
In this section test cases are used to access the system and the anticipated results are 

discussed below. 

 

Test Case 1: 

Objective: Check if transcript is extracted. 

Expected Output: Transcript should be extracted. 

Result: In this test case we check if the transcript is downloaded when the link is input 

by  the user. The test result observed indicates that YouTube transcript is being loaded 

when the user is giving the input.

 

Fig 4.1: Transcript is downloaded. 

 
 

Test Case 2: 

Objective: To check the behavior of the application when incorrect URL is input. 

Expected Output: Should throw an error. 

Result: In this test case we check if the model could detect if the URL added by the user 

is valid. The test result observed indicates that if an incorrect URL is added then the app 

will display an error. 

 

Fig 4.2: Output when incorrect URL is input. 
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Test Case 3: 

Objective: To test the behavior of the application if the user doesn’t input any URL. 

Expected Output: Error should be thrown in the app. 

Result: In this test case we check if the app can detect if the URL was added by the user. 

The test result observed indicates that if no URL is added then the app will display an 

error. 

 

 

Fig 4.3: Output when no URL is input. 

. 
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CHAPTER 5 

RESULTS AND EVALUATION 

5.1 RESULTS 

 
After implementing summarization techniques with the help of different LLMs like 

Google Gemini Pro, HuggingFace models we observed the following results. 

A. Result of summarization performed by the Google Gemini Pro API- 

In the result the similarity score, time taken for summarization and a heatmap were 

plotted. 
 

 

Fig 5.1: User must enter the link of video which is to be summarized. 
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Fig 5.2: Generated summary of the YouTube video. 
 

 

 

 

Fig 5.3: Similarity score between Transcript and generated Summary. 
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B. Result of summarization performed by the HuggingFace Model- 

Falconsai/text summarization. 

In the above implementation YouTube video podcast is downloaded and its transcript is 

fetched using YoutubeTranscriptApi then it is summarized using the Hugging Face 

Pipeline. The model used was “Falcons-ai/text_summarization”. The same parameters 

were covered, that is time taken to summarize, the similarity score and heatmap. 

Fig 5.4: Similarity score between Transcript and generated Summary. 
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C. Result of summarization performed by the HuggingFace Model 

- Stevhliu/my_awesome_billsum_model. 

A different HuggingFace model was used to summarize the YouTube video and the 

same parameters that were covered for the aforementioned models. 

Fig 5.5: Similarity score between Transcript and generated Summary. 
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D. Result of summarization of two YouTube videos simultaneously 
 

The model used here was Facebook/bart-large-cnn and it was given the task of 

summarizing two videos simultaneously. One was a shorter YouTube video, and the 

other was a longer YouTube podcast. It was successfully able to summarize both the 

videos. 

 

Fig 5.6: Result of multiple video summarization 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

6.1 CONCLUSION 

 
Developing a YouTube/Podcast Summarizer using AI. The thorough examination looks 

at Python code created with the OpenAI Hugging Face pipeline in mind for summarising 

YouTube videos. With the help of libraries like transformers and Youtube 

Transcript_API. Important discoveries include the assessment of the original code's 

temporal efficiency and the incorporation of many tools, such as Gemini Pro API 

HuggingFace models namely “Stevhliu/my_awesome_billsum_model” and 

“Falconsai/text summarization”. We observed that the most efficient results were given 

by the Google Gemini Pro Model in terms of time taken to summarize and similarity 

score. The other models were relatively less efficient and lacked summarization ability. 

The revised implementation includes improvements and makes use of Google Gemini 

Pro to provide better outcomes. With a special post-processing step, it optimizes 

transcript extraction, video processing, and summary for improved readability. Time 

efficiency measures and fine-tuning parameters are used, which add to a thorough 

analysis of the code's performance. 

To sum up, both methods effectively automate the summary of YouTube videos, 

showcasing the efficient integration of models and libraries. The metric of time 

efficiency offers significant insights that direct continuous improvement endeavors. It is 

encouraged to get in touch with developers and maintainers with questions or for help. 

 
Limitations 

 
In our project, we leverage fixed summarization models such as Google Gemini Pro and 

HuggingFace models to distill information from video content. While these models 

generally perform well, their effectiveness hinges on the nature of the video content 

itself. To optimize summarization outcomes, it's imperative to explore various forms of 

summarization and select the most suitable method for the specific application at hand. 

This    entails considering factors like the complexity and diversity of the content. Our 
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project employs a chunking approach to process video transcripts, dividing them into 

smaller parts or phrases for summarization. However, this method runs the risk of 

producing fragmented summaries, especially when crucial information spans across 

multiple chunks. Fine-tuning parameters such as chunk size and overlap can enhance 

coherence, but it's essential to maintain a holistic perspective to ensure no critical 

information is lost in the process. 

Summarization parameters such as max_length, min_length, length_penalty, 

num_beams, and early_stopping play a pivotal role in shaping the quality and relevance 

of the produced summaries. These values need to be carefully adjusted according to the 

unique characteristics of the video content. Experimenting with different parameter 

configurations can help optimize summarization outcomes and meet specific 

requirements effectively. 

An underlying assumption of our project is that the video content is in English. 

However, this assumption may prove misleading if the video contains content in other 

languages not supported by the summarization model. To address this limitation, 

integrating a language detector and utilizing language-specific models could enhance 

the project's language processing capabilities and ensure accurate summarization across 

diverse linguistic contexts. 

The project relies on external APIs like the YouTube API and Hugging Face Model Hub 

for data retrieval and summarization. However, maintaining proper authentication and 

monitoring changes in these APIs poses a challenge. It's crucial to stay vigilant and 

adapt to any modifications that may affect the validity or functionality of the project's 

codebase. When dealing with lengthy videos, particularly those where only certain 

segments are relevant, relying solely on Hugging Face models to download and 

transcribe the entire video may not be the most efficient approach. Instead, alternative 

methods such as extracting transcripts directly from the video without downloading it 

have been implemented to streamline the summarization process and conserve 

resources. 
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6.2 FUTURE SCOPE 

 
Several improvements are planned for further versions to improve the summarizer's 

usability and flexibility. Firstly, users could have the freedom to select from a wide 

range of Hugging Face summary models, customising their choices to fit their tastes or 

particular use cases. This modification could greatly increase the summarizer's 

adaptability. Secondly, although the English content in the present edition works well, 

there are plans to provide models optimised for other languages. Furthermore, 

investigating language identification algorithms may increase the tool's suitability in 

various linguistic circumstances. Among the most important things to do in the future 

is to strengthen error management systems. The summarizer may be made more 

dependable and robust by improving the error-handling procedures, particularly when 

video URLs stop working or accessibility problems arise with APIs. The model also 

gives different results repeatedly as it requires more training which won’t be sufficient 

just by instruction tuning and prompt tuning. For more efficient results fine tuning is 

required which requires high GPU usage. Ultimately, expanding adaptive input 

management skills is essential to support a wider range of applications. It would be 

more flexible and useful if the script could handle different podcast or video URLs 

on the fly. This would allow it to serve a larger range of users with different 

summarising requirements. These upcoming improvements should improve the 

summarizer's usability and functionality, guaranteeing that it will remain  relevant 

and useful for jobs involving the summation of text and video. 
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