Deep Crowd: Estimating Crowd

Density with Deep learning

A major project report submitted in partial fulfillment of the requirement
for the award of degree of

Bachelor of Technology
in
Computer Science & Engineering / Information Technology

Submitted by
Rohan Rana (201116)

Karan Hansraj (201339)

Under the guidance & supervision of
Dr. Anita

\NFO
" o) R/{,Lq

7
(@)
¢
8}
A\
o
o
=
o
)
(2]

Y

#

Department of Computer Science & Engineering and
Information Technology
Jaypee University of Information Technology,
Waknaghat, Solan - 173234 (India)



JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGIARISM VERIFICATION REPORT

1 ) ——
Type of Document (Tick): |PhD Thesis| M.Tech Dissertation/ Report | B.Tech Project Report | [Paped

Name: Department: Enrolment No

Contact No. E-miail.

Mame of the Supervisor:

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters):

UNDERTAKING

| undertake that | am aware of the plagiarism related norms/ regulations, if | found guilty of any plagiarism
and copyright violations in the above thesis/report even after award of degree, the University reserves the
rights to withdraw,revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the
document mentioned above.
Complete Thesis/Report Pages Detail:

— Total No. of Pages =

— Total No. of Preliminary pages =

— Total Mo. of pages accommeodate bibliography/references =

{Signature of Student)
FOR DEPARTIMENT USE

We have checked the thesis/report as per norms and found Similarity Index at.................... (3%). Therefore,
we

are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

{Signature of Guide/Supervisor) Signature of HOD
FOR LRC USE
The above document was scanned for plagiarism check. The outcome of the same is reported below:
Copy Received on Excluded Similarity Index Generated Plagiarism Report Details
(%) [Title, Abstract & Chapters)
* AllPreliminary Word Counts
Pages
Report Generated on * Bibliography/Ima Character Counts
ges/Quotes Submission ID
o 14 Words String Total Pages Scanned
File Size
Checked by

Mame & Signature Libsrarian

Flease send your complete thesis/repert in (PDF) with Title Page, Abstract and Chapters in {(Werd File)
through the supervisor at plageheck.juitifgmail.com




CERTIFICATE

This is to certify that the work which is being presented in the project report titled “Deep
Crowd: Estimating Crowd Density with Deep learning” in partial fulfillment of the
requirements for the award of the degree of B.Tech in Computer Science And Engineering
and submitted to the Department of Computer Science And Engineering, Jaypee University
of Information Technology, Waknaghat is an authentic record of work carried out by
Rohan Rana (201116) & Karan Hansraj (201339)” during the period from July 2023 to
May 2024 under the supervision of Dr. Anita, Department of Computer Science &
Engineering and Information Technology, Jaypee University of Information Technology,
Waknaghat.

Rohan Rana Karan Hansraj
201116 201339

The above statement made is correct to the best of my knowledge.

Dr. Anita
Assistant Professor (SG)
Computer Science & Engineering and Information Technology



CANDIDATE’S DECLARATION

We hereby declare that the work presented in this report entitled ‘Deep Crowd:
Estimating Crowd Density with Deep learning’ in partial fulfillment of the requirements
for the award of the degree of Bachelor of Technology in Computer Science &
Engineering submitted in the Department of Computer Science & Engineering and
Information Technology, Jaypee University of Information Technology, Waknaghat is an
authentic record of my own work carried out over a period from August 2023 to May 2024
under the supervision of Dr. Anita (Assistant Professor (SG) Computer Science &

Engineering and Information Technology).

The matter embodied in the report has not been submitted for the award of any other
degree or diploma.

Rohan Rana
201116

Karan Hansraj
201339

This is to certify that the above statement made by the candidate is true to the best of our
knowledge.

Dr. Anita
Assistant Professor (SG)
Computer Science & Engineering and Information Technology

Dated:



ACKNOWLEDGEMENT

Firstly, we express my heartiest thanks and gratefulness to almighty God for His divine

blessing makes it possible for us to complete the project work successfully.

We are grateful and wish my profound indebtedness to my supervisor Dr. Anita,
Department of Computer Science Engineering and Information Technology, Jaypee
University of Information Technology, Waknaghat. Deep Knowledge & keen interest of
our supervision the field of “Deep Crowd: Estimating Crowd Density with Deep learning”
to carry out this project. His endless patience, scholarly guidance, continual
encouragement, constant and energetic supervision, constructive criticism, valuable advice,
reading many inferior drafts and correcting them at all stages have made it possible to

complete this project.

We are grateful to each and every individual who directly or indirectly helped me in

making this project a success.

Finally, we must acknowledge with due respect the constant support and patience of my

parents and grandparents.



TABLE OF CONTENTS

Content Page Number
List of Figures \
List of Graphs VI
List of Abbreviations VIl
Abstract VIl
CHAPTER 1 INTRODUCTION 1-6
CHAPTER 2 LITERATURE SURVEY 7-12
Chapter-3 SYSTEM DEVELOPMENT 13-34
Chapter-4 TESTING 35-41
Chapter-5 RESULT AND EVALUATION 41-49
Chapter -6 CONCLUSION AND FUTURE SCOPE 50-51
References 52-54




LIST OF FIGURES

Sr.no. Figure Name Page No.
1 MCNN 6
2 CNN Design 22
3 VGG16 Architecture 24
4 VGG19 Architecture 25
5 CNN Layers 27
6 Pooling Layer 28
7 Code Gen Density Map 31
8 Code Data Loader 32
9 Create Model 33
10 Tracker Class 34
11 M-CNN Architecture 36
12 C3D Model Architecture 41
13 YOLO Architecture 42
14 Testing 43
15 Density Map 44
16 Predicted Density Map 44




LIST OF GRAPHS

Sno. Graph Name Page No.

1 Benefits of Different Designs 38

2 Performance Analysis using Loss 39
Function

3 Performance of Different Datasets 40

VI



LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

M-CNN Multi-Column Convolutional Neural Network
VGG Visual Geometry Group

ML Machine Learning

DL Deep Learning

KNN K-Nearest Neighbour

SVM Support Vector Machine

RelLU Rectified Linear Unit

IDE Integrated Development Environment

RNN Recurrent Neural Network

OpenCV | Open Computer Vision

OS Operating System

CP-CNN [ Contextual Pyramid Convolutional Neural Networks
Sa-CNN [ Self-Attention Convolutional Neural Networks
CSRNet | Congested Scene Recognition Networks
CMTL Cascaded Multi-Task Learning

CC-NN Counting Convolutional Neural Networks
R-CNN Region_based Convolutional Neural Networks
HMM Hidden Markov Models

Vil



ABSTRACT

MCNN a multi- column convolutional neural network is the model used to study crowd
density estimation in a huge project. This project aims at comprehending and forecasting
diverse crowd density at both mass events like sports, and on roads like urban intersections.
An MCNN model that is capable of capturing complex patterns in a hectic scene was

trained and tested on a specially chosen dataset to make adjustments.

Key precision measures include Mean Absolute Error (MAE) and Mean squared error
(MSE) whereby they indicate the success of the project. The aforementioned metrics play a
critical role in gauging the model’s accuracy in forecasting crowd density. The obtained
result has shown a high accuracy with small MAE denoting very close predicted and actual

value and low MSE implying good precision.

It was faced with a host of challenges such as dataset diversity, hyperparameter tuning, and
constraints of implementing it in real-time. Although facing some challenges, the project
has confirmed the efficiency of the MCNN model as relevant for the crowd density
estimation. Further, it provides some crucial information for other deep learning and crowd

analytics projects.

Therefore, this major project signifies a pivotal step towards crowd density estimation
through MCNN model. The reported accuracy metrics prove the strength of this model,
giving hope for applications such as crowd management, surveillance, and others.
Knowledge gained from overcoming obstacles strengthens understanding in dynamic
settings, preparing for further gains in inter-relationship between artificial intelligence and

crowd analysis.

VIl



CHAPTER 1: INTRODUCTION

1.1 Introduction

People counting is a key topic in applications using video surveillance. Given the urgent
need for crowd monitoring, determining behaviour and crowd density can improve safety
and quality life. To properly comprehend situation, counting persons in a crowd by hand
will be challenging and might not be enough, particularly in situations when crowd conduct
could be crucial. For instance, it's critical do more than just gauge the attendance at events
like stadium athletic events or sizable protests in order to identify possible security risks
and enhance crowd control techniques.

Recent research has concentrated on creating methods for assessing crowd density in order
to address this problem. Using these methods, one can estimate the density of a crowd by
removing information from video feeds, such as activity levels, movement patterns, and

crowd density.

Although crowd behavioural analysis presents numerous hurdles, such as problems with
perspective distortion, occlusion, and the intricacy of crowd behaviour, it is now feasible
because to recent developments in machine learning and computer vision. It has been
probable to efficiently extract and evaluate crowd density data from recorded video streams
and photos by using methods like trajectory clustering, optical flow analysis, and deep

learning.

This study will consider the use of such methods for a crowd density estimations analysis
in creating a CCN model that will provide crowd counts, classification.

An M-CNN Architecture that has been implemented can precisely assess crowd densities.
Furthermore, We will investigate the effect of various characteristics on the performance of
the model, such as cameras location, lighting circumstances, and crowd density, as well as
will assess its efficacy using standard assessment metrics and real-world scenarios. The
purpose of this research is to develop an effective system of crowd behaviour analysis that
could help to enhance effective crowd control strategies in several applications contributing

to ensuring public safety.



1.1 Problem Statement
1.2.1 Definition
Crowd locations are frequent around the world and in India, raising severe challenges
for emergency management. Any incident that is detected in time can save countless
lives and infrastructure. To efficiently estimate crowd density, we need to design a
system that makes use of current infrastructure and technology. This uses two
different deep learning models that may be used to track crowd densities using a

camera in real time.

1.2.2Analysis of Problem Statement

To calibrate a digital camera and generate a set of projections parameters, the Tsali
technique is employed. The Ground plane is the map plane formed by the blob
projection. When an object is far away, and the camera’s angle becomes narrower,
the projected size grows and visibility improves. To some extent, this can be reduced
by establishing the ground plane at the same height with the subject and using
parallel plane to calculate the point when the projections cross each other. The
subsequent plane is known as the Head aircraft. Blobs are formed by morphological
dilatation in the vacant areas. In actuality, the two following characteristics should
cause the head plane to be adjusted. 1) Anything below the Head Plane is eliminated
by the twofold projection.2) HPH[2] only partially controls the initial projected area
challenges at different distances, which is quite possible.

It's a simpler method for managing the quantity in big gatherings. During processing,
background removal is mostly utilised to find foreground blobs. The approach is
predicated on a multitude of Gaussian distributions. To construct homogeneous
blobs, morphological blob dilatation and algorithm tuning are used to fill in the
constant gaps left by the intrinsic statistical restrictions of algorithms.Deep networks
capture the high level semantics necessary for crowd counting, which adopts an
architectural style similar to the VGG-16[4] network architecture. The filters have
particularly good applications in object segmentation, saliency prediction, and
generic captioning. By deleting the completely linked layers utilises in VGG
design[4,] pixel level foresights are achieved, allowing picture categorization
difficulties to be avoided, as just one discontinuous label is supplied for the whole

image.



1.3 Objectives

e Deep learning is being used to research tools as well as strategies for crowd

estimation assessment.

e For various DL approaches to assess crowd density behaviour.

e Crowd density analysis measures the level of the crowd in witness footage and

analyses crowd behaviour.

e Develop a deep learning based crowd prediction and modelling system.

e Significance and Motivation of the Project Work

1.4 Steps for Design a Model
1.4.1Collection of Data

The parameters of datasets can impact our project’s results.

Next step of the project will provide the sample data for the training

part.

Utilise datasets from Kaggle, pre-collected data, UCF_QNRF, and so
forth.

1.4.1.2Preparation of Data

Collect and then organise training part of data.

Work on cleaning up every detail that may benefit from it (removing
duplicates, correcting errors, managing missing numbers, normalising,

converting data types, and so on).

Make data visualisations to help in the identification of significant

connections between variables.

Create different classes for evaluation & training.

1.4.1.3Model Selection

Select the appropriate algorithm or model for different work which give

you better results with maximum accuracy.



1.4.1.4 Model Training
e Providing an accurate results or projection as often as possible is the aim
of training.

e Every step of the procedure is a training part of the phase.

1.4.1.5Model Analyzation
e Evaluate the model’s objective performance using a metric or set of

measurements.

e This raw data is intended to provide a reasonable representation of the
model's performance in the actual world, even if it is still being

improved.

1.4.1.6Parameter Tuning
e Changing the quantity and size of data, the model's accuracy, MAE,

MSE and precision may be alter.

e Among the simple model hyperparameters that may be employed are
initialization settings, exploring rate, training phase count, and

distribution.

1.4.1.7Make Predictions
e Adding additional data which was previously excluded from the model
but which has class labels allows a better understanding of the model

performance as it is expected to perform in real-time conditions.

1.4.2Methodology Proposed for Deep Crowd Estimation
To improve performance, we have proposed a M-CNN and deep learning based

crowd density estimate approach.



Text

32

Input
Images

|
§
r
|

20 40 20 10

Merged Density Map
— Feature

{ Map
r" " —

24

43

24

Figure 1: M-CNN

1.5 Organization

Chapter 1:

Introduction chapter provides a quick review of the project. This chapter includes a brief
study overview and an explanation of Crowd Density Estimation via Deep Learning. Deep
Crowd Estimation goals & the problem statement for the whole undertaking are also
covered in this chapter. In addition to providing an overview regarding the deep Crowd
Estimation methodology, this Introduction contains a thorough explanation of the model

the project uses to categorise the crowd density with Keras & transfer learning.

Chapter 2:
Information about previous studies on crowd density estimate techniques could be found in

this chapter. This chapter also covers neural networks, deep learning & machine learning.



Numerous journals and relevant publications that describe earlier work have been
published. The chapter discussed the many models that have been attempted to be used by
researchers in an attempt to develop an effective deep learning model for crowd density
estimate. The strategies and outcomes presented in this chapter dictate the approaches we

should take in order to train/create the model .

Chapter 3:

The procedures we will follow to complete the project were covered in great detail in this
chapter. There is talk of both system and model development. The data set we'll be utilising
is described in the chapter. All this information about the libraries that we will use is
contained in chapter 3. Moreover, it hints at the type of CNN to employ. All aspects of the
neural network theory are presented, thereby explaining each part supporting the entire
CNN. It gives the different stages of neural networks. Talk about the instruments of
measurement and validity. It also includes information about the process of designing and

planning.

Chapter 4:

We cover the overall process that we took place under this project and how we tracked
each step throughout. The report gives information about activities performed in different
levels and the results obtained at various stages. It outlines our different modules of the
model as well as the model itself. Below are the results of our performance indices that we
used during this project. This includes the predictions that emerge from the created model
as well as how accurate the model is. This whole part of the chapter discusses the

efficiency of the entire model or the entire project.

Chapter 5:

It comprises all of the work which is the subject of the project overview. The potential
scope of the project is given along with specifics about each phase. In order to advance
automation in that industry, it also offers information about the project's intended use and
possible application areas. It provides information about the project's enhancements as well

as future directions for this project's advancement.



CHAPTER 2: LITERATURE SURVEY

Using a MCNN for Single-Image Crowd Counting[8]. The goal of this research is to create
a method that, given a single photograph and a random crowd density and viewpoint, can
reliably count the people in a crowd. To this end, we have put up a straightforward yet
efficient MCNN architecture to maps the picture to its Crowd density map. The input
image can be any size as well as resolution when using the suggested MCNN.Each column
can be made to respond differently based on the size difference for reasons like perspective
effect or picture resolution, by using different filters with varying receptive fields.

Furthermore, geometry-adaptive kernels—which do not require knowledge of the input
image's perspective map—correctly construct the true density map. We utilised the data of
1463 pictures of about 330,000 heads labelled to sufficiently capture all the scenarios
considered in our work, as existing crowd measuring datasets are not sufficient in this
respect. To confirm the efficacy of the suggested model and procedure, we thoroughly test
it on this difficult new dataset and all the existing datasets. Specifically, their strategy

performs better than any other method when utilising the suggested basic MCNN model.

Due to the resultant distortions of perspective, the heads in the images look at distinctly
different scales or densities. The reason behind this is that filters with same receptive fields
cannot effectively spot such details as density in crowds of people. This makes learning the
map from raw images to density maps easier natural by utilising filters with varied local
receptive field widths. A series of scaled head-related filter banks are applied on each
column in the proposed MCNN model thus generating relevant density maps. Larger
receptive fields in filters will be useful, for instance, while carrying out density maps of

sizable head areas.

Convolutional neural networks for fast crowd density estimation[9]

Using an improved convolutional neural network, the proposed approach evaluates crowd
density (ConvNet). The contributions are divided into two parts. CNN is originally built to
estimate crowd density. Because duplicate feature maps exist, certain network connections

are removed to considerably speed up estimate. Second, to boost accuracy and speed, a



cascade of 2 ConvNet classifiers was developed. A cascade-optimized CNN is suggested in
this paper as a real world solution for deep crowd estimatation.

The first method involves Multi-ConvNets technology. In the second stage, one realizes
that some of those connections are not necessary and uses them to delete the duplicated

similarities and their corresponding links.

The network has a light computation system that enables easy connectivity and lesser
power. Because there is no standardised set of data for crowd density estimate, the
approach is evaluated on 3 data sets: Such films are Pets 2009 (Ferryman & Evans, 2010),
a metro clip (Ma et al. 2008; 2010) and a video on Chunxi Street in Chengdu (Zhou).

Several methodologies have been devised for Crowd behaviour analysis, which may be
generally classed as follows:

e Monitoring crowd movement and flow

e Making trajectories

e Spatiotemporal Gradients



No Journal/Conferen | Tools/Techniques/Data
Paper Title ce (Year) set Results Limitations
MAE
An Adaptive The paper
(ShanghaiTech) —
Multi-Scale | International does not
56.26 MSE
Network Conference on provide
NF-Net, Datasets: (ShanghaiTech) —
Based on Computer and detailed
1. Shanghai Tech Part A 93.24
Depth Communication information
and B, UCF_CC_50 MSE(UCF_CC_5
Information | Systems (ICCCS on how the
0)-112.7
for Crowd 2023) loss function
MAE(UCF_CC_5
Counting is calculated.
0) — 214.33
Single
Convolution
al Neural The model's
99.88% of
Network performance
Single CNN(S-CNN3), average test
with Three IEEE Access has only been
2. MATLAB Dataset: accuracy and
Layers (2022) evaluated on
ShanghaiTech dataset 0.02 of average
Model for this particular
validation loss.
Crowd dataset.
Density
Estimation




Crowd

Density
Estimation
by Using Multi-Column CNN, ShangaiTech Part
Itis
Attention CapsNet Dataset: A -96.1% UCSD
IEEE Access computational
Based UCSD, ShangaiTech —88.5%
(2021) ly expensive
Capsule Part A, B and WorldExpo'10 —
to train.
Network WorldExpo’10 95.2%
and Multi-
column
CNN
Crowd Limited
Density Novel Encoder-Decoder | MAE empirical
IEEE Transactions
Estimation CNN Dataset: (ShanghaiTech research,
on Intelligent
Using ShanghaiTech, Part A) — 69.8 exploration of
Transportation
Fusion of WorldExpo’10, Mall MSE(ShanghaiTe | outcomes,
Systems (2021)
Multi-layer Dataset, UCSD ch Part A) — 114.7 | impact of
Features factors
Encoder- Scale aware
Decoder module
Based sampling
Convolution rates are
International MAE
al Neural SFANet, SegNet fixed and not
Conference on (ShanghaiTech) —
Networks Dataset: -ShanghaiTech adjustable
Pattern 57.5 MSE
with Multi- dataset, UCF_CC_50 during
Recognition (ShanghaiTech) —
Scale- dataset training,
(ICPR) (2021) 94.48
Aware potentially
Modules for limiting
Crowd performance
Counting in unfamiliar

10




The

parameter
MAE
size of this
(ShanghaiTech
model is
Part A) — 88.1
IEEE International smaller,
A Real-time MSE(ShanghaiTe
Conference on which can
Deep ch Part A) — 141.7
Acoustics, Speech | Compact CNN Dataset: result in
Network for MAE
and Signal ShanghaiTech dataset reduced
Crowd (ShanghaiTech
Processing performance
Counting Part B) — 14.9
(ICASSP) (2020) on tasks that
MSE
require deep
(ShanghaiTech
and complex
Part B) — 22.1
understandin
g.
Crowd Some
MAE
Counting backgrounds
(ShanghaiTech) —
Method may be
86.6 MSE
Based on incorrectly
M-CNN Dataset: (ShanghaiTech) —
Convolution | IEEE Access counted as
ShanghaiTech, UCF CC | 129.7,
al Neural (2019) people,
50 MSE(UCF_CC_5
Network leading to
0) — 306.7
with Global noise in the
MAE(UCF_CC_5
Density estimated
0) — 396.3
Feature density map.

11




Crowd
counting via
scale-
adaptive

CNN

IEEE Winter
Conference on
Applications of
Computer Vision

(WACV) (2018)

Sa-CNN Dataset:
ShanghaiTech, UCF CC

50

MAE
(ShanghaiTech) —
86.6 MSE
(ShanghaiTech) —
129.7,
MSE(UCF_CC_5
0) — 306.7
MAE(UCF_CC_5

0) — 396.3

It may still
face
challenges in
extremely
diverse
scenarios
with a wide
range of scale
variations.

Table 1: Literature Review

12




CHAPTER 3: SYSTEM DEVELOPMENT

3.1 MODEL DEVELOPMENT

3.L.INUMPY

To work with arrays, utilize the NumPy Python module. Functions, matrix
operations, and the Fourier transform are also provided for use in the field of linear
algebra. Numpy, which stands for "Numerical Python," is a module that includes
many ways for managing multidimensional arrays as well as multidimensional
array objects. NumPy is frequently used for both mathematical and logical
operations on arrays. It also covers different indexing schemes, array ways, etc.
Because it's an open source project, you are free to use it for whatever. The Python
utilised in math is called NumPy. Programmes may access and alter NumPy arrays
more easily than lists since they are kept in a single, unified region of memory. This
attribute is called location of reference in computer science. This is the main reason,
and one that matters much to us, that NumPy is quicker than lists. It has also been
improved to handle the CPU architectures of today.

3.1.20S

It is considered the link among hardware and software components. For our case,
we used Windows 10 and Windows 11, it’s very easy to work with them, with a
comfortable command prompt, and the development is fast and safe. We also could
not choose a different OS because we had one, and it would have been a Linux
system or Mac if a few were available. Nevertheless, by importing a system library
into Python, one can seamlessly incorporate system files, read and write
instructions, read system date and time among others which will be necessary in
designing and developing of these prototypes for our major project.We can make
use of the os.path command to manipulate the direct of a file while open() function
is simple enough to open any file saved in our computer’s file directory. Also, we
may create temporary files which to be used in between until we attain the objective

result.

13



3.1.3Random
To create random numbers, utilise Python's Random module. Please take note that
these numbers are pseudo-random, meaning they were created using a non-random

parameter rather than being truly random.

3.1.4Keras

Keras is an open-source, easy-to-use tool for building and evaluating deep learning
models that are effective and intuitive for users. We present two frameworks for
designing and training neural network models: Theano and TensorFlow. Both are
designed for rapid numerical computation. It makes use of C#, Python, and C++
code libraries in addition to standalone machine learning toolkits.

While TensorFlow and Theano are very strong tools for configuring neural
networks, they are also hard to understand. Keras facilitates the rapid definition of
deep learning models. For applications requiring deep learning, Keras is
undoubtedly the best option.

3.1.5TensorFlow

TensorFlow is a popular Python framework that Google developed and made
available for fast computations and numerical applications. The TensorFlow
training is beneficial for both beginners and professionals. Sentiment analysis, deep
neural networks, image processing, and other advanced and foundational concepts
in machine learning and deep learning are all covered in this session. A popular
deep learning framework, TensorFlow. The tutorial aims at making a deep learning
project utilizing TensorFlow — free, open-source software which is written in

Python’s programming language.

14



3.1.6Matplotlib

A static visualisation may be created using the same library that is used to visualise
the data.The Matplotlib Python visualisation library is excellent for 2D array
displays. NumPy arrays serve as the foundation for Matplotlib, a cross-platform
data visualisation tool designed to handle the bigger SciPy stack. It was initially
introduced by John Hunter in 2002,

Our ability to visually access enormous amounts of data in easily comprehensible
ways is one of the main benefits of visualisation. Matplotlib has a large number of

plots.

3.1.7Pytorch

The Torch library serves as the foundation for PyTorch, a well-known open-source
machine learning package. It is developed and maintained by the Facebook Al
research group and made in IDE, making it easy to work and interface to several
other libraries. PyTorch is a continuous computational graph for research and
experimentation that lets programmers build and modify neural networks instantly.
It also supports full GPU acceleration, which significantly speeds up deep neural
network training and inference. All things considered, PyTorch is a powerful library
for building ML models, with both academics and business experts are using it

more frequently.

15



3.1.8Scikit-learn

The Scikit-learn machine learning toolbox for Python is quite popular, providing
many means of pre-processing data, object recognizing, result forecasting, ordering
data and choosing a model. This means that one can implement machine learning
approaches based on computational science libraries such as SciPy, NumPy, and
Matplotlib since it has an intuitive user interface. These include unsupervised and
supervised learning algorithms such as principal component analysis (PCA), k-
means clustering, random forests, decision trees, and Support Vector Machines.
This also includes methods for model evaluation like cross validation and
performance measures. Indeed, if we consider all this, then scikit-learn is a very
functional and multi dimensional python tool of machine learning which is popular

with machine learning specialists and data scientists.

3.1.9YOLOV5

The (YOLOvV5) DL object identification Algorithm has gained widespread
recognition for its exceptional precision and rapid inference speed. Its single-stage
detector is able to forecast item bounding boxes as well as classification
probabilities from input photographs only, without the use of area proposals
networks or anchor boxes. YOLOVS5 is easy to train and implement on low-resource
devices because to its lightweight architecture and few parameters. Because it can
do so quickly and accurately, it is particularly useful for identifying people in

crowads.

All things considered, YOLOV5 is a powerful and versatile object identification
method that has grown in favour for real-world computer vision applications, such

as the detection of crowd density estimation.

16



3.2DATASETS USED

3.2.1ShanghaiTech Dataset

The ShanghaiTech dataset, a substantial crowd counting dataset, was released in 2016.
Part-A and Part-B contain the 1198 annotated crowd photographs in total. Part-A has 482
photographs, while Part-B contains 716 pictures. The images in Part-A were downloaded
from the Internet, whilst the images in Part-B were shot on the congested streets of
Shanghai. In a crowd photo, each person has a label placed in the middle of their head.

There are 330,165 annotated people in the collection overall.

Scientists studying crowd counting techniques can benefit from the ShanghaiTech dataset.
Because it includes a wide range of crowd circumstances and is among the most
challenging crowd counting datasets available, it is one of the most often utilised datasets.
Using the dataset, a number of state-of-the-art crowd counting methods had been trained
and assessed.

The ShanghaiTech dataset offers several benefits, including the following:
e It'sabig and challenging dataset.
e Various crowd situations are discussed.
e It's well-structured and easy to use..
e It has been used to train and evaluate a large number of current crowd counting

algorithms.

3.2.2Examining Dataset

When any data item does not meet established data quality criteria, its origin, quantity, and
impact are verified through a separate phase of the data gathering process called a Data
Quality Assessment. lifetime quality of the data. In an ongoing project, the Data Quality
Assessment may be carried out only once or often to ensure the accuracy of the data.

Even if you follow strict data collecting methods and sanitise the data as it into your
database, the accuracy of your data may nevertheless drastically deteriorate over time.

A data quality review may help identify records which have become inaccurate and can

also help identify the origins of the data or any potential consequences that an inaccurate

17



record may have had. This review might assist to find any new problems and make the

necessary corrections.

3.2.3Preprocessing and Outlier deletion

Data purification is one integral part machine learning. It has to do with model making.
Though not sophisticated in the realm of machine learning, it’s neither a conundrum nor a
puzzle. There are also no loose ends and unanswered questions or twists.

However, good data cleansing can either make or mar your projects. This usually takes up
a considerable part of a professional data scientist’s time. Moreover, as one can ascertain
from “better data beats a smart algorithm”.

Often times even a simple method can provide usable results if it is applied for analysis on
a good data set. Obviously, different kinds of data types must be cleaned differently.

However, in this case, one should commence from systemic approach.

3.2.4Normalisation and Data Transformation

All of the data has already been smoothed and cleaned. Instead, data transformation
describes the steps to transform the data in a way it can be used for machine learning. Data
transformation involves combining data from their original blurry/segmented/normal state,
formatting it dimension-wise, denormalizing it, and then permitting analysis.

It can be costly, time-consuming, and difficult to change data if the incorrect technological
stack is in place. But conversion will guarantee the highest quality of data, which is
required for precise analysis and the creation of insightful knowledge that will ultimately
enable data-driven decision-making.

It's a great idea to create and train models for data analysis, and more businesses are using
machine learning or intend to use it for a variety of real-world applications. But data has to
be arranged such that examination of the data produces insightful information if models are

to learn from it and make useful predictions.

3.25C0OCO

In computer vision, the COCO (Common Objects in Context) dataset is a commonly used
benchmark for tasks involving object detection, segmentation, and captioning. Images of
intricate, ordinary scenes with segmented masks and bounding boxes labelling items are
included in the COCO dataset. It includes more than 330,000 photos with over 1.5 million

18



occurrences of objects in 80 distinct categories. It is an invaluable tool for training and

assessing computer vision models because of its diversity and size. The state of the art in a

number of computer vision tasks has advanced thanks in large part to the COCO dataset.

The COCO dataset has been used to train and assess numerous industry-leading models

and algorithms in the fields of object detection, instance segmentation, and image

captioning. Research in fields including multi-object tracking, visual relationship

recognition, and image production has been sparked by its availability.

3.3 ALGORITHMS

Supervised Learning

The supervisory signal, often referred to as the input item and often in the form of a
vector, and the intended output value are the two components of supervised
learning. A supervised learning approach generates a function inferred from the
training data, which may be applied to map fresh samples. In an ideal scenario, the
algorithm could be capable to accurately determine the labels of the classes for data
that are not yet apparent. In supervised learning, the main challenges come from
dealing with two types of problems: classification and regression. The hardships
come in when it is necessary to enable machines to classify information
(classification) or to provide prediction of numerical values (regression) via
supplied information data. These are the challenges faced in making sure that the

model understands and predicts various kinds of outcomes properly.

Unsupervised Learning

This uses X input variables and unlabelled data as input. The learning algorithm
makes predictions about the underlying structure of the information by using data
that is unlabelled from such X variables. Concerns with association and clustering

arise in unsupervised learning.

Reinforcement learning
Teaching a computer how to decide well can be likened to reinforcing learning by

rewarding correct decisions in this case. For example, trying to maneuver through a

19



packed venue, or predicting how dense a place may be. In reinforcement learning,
the computer learns from a certain state (being in a crowd) and then makes
decisions about their density. If it guesses correctly on the crowd density and is
lucky, then its reward would be “good one” otherwise it will learn from mistake.

Imagine now that the computer is learning with experimentation and finding out
which technique gives it the highest rewards for predicting crowd density. It learns
over-time how to make the accurate prediction adjusting itself to various conditions
that are typical of crowded space. Reinforcement learning makes computers get the
hang of things as it is similar to learning through experience in the aspect of crowd

density estimation just as we humans learn it.

3.4 MODELS UTILIZED

CNN (Convolution neural Networks)

Crowd density estimation is somewhat similar to training a computer in numbering
people in a crowd. This is tricky because crowds can be as large as that of a football
game or as small as that at a picnic with friends, where people are either closely
packed or spaced apart. Instead of relying on a conventional approach, one can
imagine employing what is known as CNN.

Imagine CNN as an intelligent image cop. The CNN will break the image on the
second page into constituent units or elements that may be viewed as pieces or
segments of a puzzle similar to how we focus on various elements of an image
when shown a photograph of a crowd. It allows the computer to pick out patterns

such as how people have been placed side by side.

CNN performs very well in feature recognition such as the shape and size of people
gathered at a public area. This is simply similar to the detective marking critical
leads in a photograph. The computer then becomes better at noticing these patterns

and clues as it analyzes more pictures to help it predict better crowd densities.

20



Input layer Hidden layers Output layer

(1)

(2) (3) (4) (5) (6)

Figure 2 CNN Design

Functioning of CNN

Consider CNN as computer eyes that can work as detectives. Just as we observe
details in a photograph when we break a picture into small parts, so does the case
with CNN when it is provided a picture./ The small pieces are looked at for patterns
such as shape and size that help the computer interpret what is going on in the

image.

Therefore, when we employ CNNs, it is like having a smart friend who has an eye
for critical features in pictures. There are various ways in which CNNs can be
applied successfully. For example, in distinguishing between cats and dogs or even

determining the number of people in a particular place.

VGG 16

VGG16 functions as the best artist for images, specifically in estimating the number
of individuals gathered in a group. In such respects, think of having a carefully
described coloring book page with VGG16 as the professional going through each

small area carefully.

21



In the area involving crowd density estimation, VGG16 dissects crowd pictures into
small parts, looking closely to elements like the shapes and layouts of individuals.
It’s just like having an excellent crowdsourcing detective who can readily recognize

the trends in the crowd.

This is known as VGG16 and acts like highlighting features within an image such
as vital clues which are crucial towards recognizing object within the images. It
also recognizes various forms and sizes whenever it perceives a crowd in any given

picture, improving through every other scene that contains crowds.

Imagine that you have hired a visual assistant called VGG16. It learns from
numerous crowd pictures and ends up becoming an expert in crowd estimation.
Therefore, when discussing VGG16 in crowd density estimation, consider it your
right-hand man who transforms difficult crowd images into the straightforward

determination of density.

VGG-16
v~ N — N — N — NmM —| N -
s | 2 A& 2 A A D |+ D Bhbnh 2888 a
o > =>"° > >0 > > = > =>|=° > =>=>9| 5 &5 & =
= s|&§l2 |58 & |55 5L 5§ &L | & 5§ L|ESS 3
0o 0o 00O 00O QIO o ©

Figure 3 VGG 16
Source: Adapted from ""Very Deep Convolutional Networks for Large-Scale Image
Recognition,™ by K. Simonyan and A. Zisserman, 2015, arXiv:1409.1556.

22



e VGG19
VGG19 works just like a very clever artist who has been properly taught to
interpret images and determine the number of people present at a particular

location. It’s a type of artificial intelligence which studies pictures.

VGG19 can be likened to a talented artist that only concentrates on identification of
features. It knows where to find what in the picture and almost marks essential
details. It does that by studying photos of crowds thereby improving its ability to

comprehend and estimate the population distribution within a site.

Therefore, talking about the use of CrowdVGG19 for crowd density estimation is
like having an intelligent art assistant that looks at images, gets educated from the
pictures, and assists in estimating how congested the area is. It is like having artistic
mind which becomes better in guessing the crowd numbers, with each image it

interprets.

Fine-tuned

)XIXIOZA |x|x5|2
ReLU b
Fully connceted layers

Input Layer

Input Image (224x224x3)

Convolution + ReLU

Max-pooling
Fully connected (FC) + Rel.U
S0 Ouput | sigmoid

Figure 4. VGG 19
Source: Adapted from ""Very Deep Convolutional Networks for Large-Scale Image

Recognition," by K. Simonyan and A. Zisserman, 2015, arXiv:1409.1556

23



YOLO with Ultralytics

YOLOV5 is a popular object detection algorithm that has gained attention for its
speed and accuracy. It is part of the You Only Look Once (YOLO) family of
models, known for their real-time object detection capabilities. YOLOvV5 builds
upon the previous versions with improvements in speed and performance, making it
suitable for a wide range of applications. UltraLytics, on the other hand, is a tool or
framework that extends the functionality of YOLOVS5. It likely adds features related
to analytics, insights, or visualizations that enhance the utility of the object
detection results. For example, UltraLytics might provide tools for tracking objects
across frames, analyzing object movement patterns, or generating reports based on
the detected objects.

3.4.1Project Design and Architecture

CNN architecture

One popular use for CNNs, a subclass of Deep Neural Networks, is the processing
of photographs. CNNs have the ability to identify and classify certain components
found in pictures. They are used in computer vision, video and image recognition,

image categorization, and therapeutic image analysis.

Convolution is the process of multiplying the two functions in mathematics to
create a third function that represents the way that one function's form is changed
by the other. CNN refers to this mathematical operation as a convolution. Two
pictures that may be presented as matrices are multiplied to produce an output in

order to extract features from a picture.
Technically speaking, for objects that have probabilistic values ranging from 0 to 1,

each input image should undergo convolutional layers along with Kernels, pooling,

FC as well as SoftMax functions. This is how CNN deep learning models are

24



crafted and evaluated. The illustration below depicts a CNN analysis of an input

image and assignment of values to its components.

3.4.1.2 Basic Architecture Used

e There are two main parts to a convolutional neural network's architecture.

e Using the feature extraction process, a convolution tool differentiates the picture’s
distinctive attributes for analysis.

e A layer with a fully connection, which makes conclusion about class for the picture

using the previously extracted data and results of previous phase of convolution.

3.4.2 CNN Layers

Deep neural networks are structures of this sort because these layers recur frequently,

indicating that our neural networks are deep.

e Raw pixel values are provided as input.

e Convolutional Layers: The CNN works to understand these visual features by
detecting edges and shapes found among the layered images.

e Pooling Layers: In turn, pooling layers reduce dimensionality thereby capturing the
more informative contents and increasing efficiency.

e Fully Connected Layers: The linking of each neuron from one layer to another
enables the CNN to predict using the features that have been learnt.

e Activation Layers: Non-linearity is introduced via activation layers which add
flexibility to CNN’s decision making process as they capture complexity within the

input data.

25



There is a noticeable rise in complexity as we progress through the stages. Though
accuracy might increase, time consumption unfortunately advances as well, which makes
the journey valuable.

FC layer: By concentrating on the scoring class, the highest score generated by the input

digits may be ascertained.

Fully
Convolution Connected

Pooling ...~
Input £.ov

Feature Extraction Classification

Figure 5 CNN layers

1. Convolutional Layer

First, the different properties were extracted from the incoming photographs using this
layer. At this layer, the input is a MxM filter, and between the two, mathematical
convolution is performed. By applying the filter on the input picture according to its size,
the dot product (MxM) between the filter and the image's elements is created.

The image's borders and corners are described in great detail in the feature map. Other
layers will eventually have access to this feature map, allowing them to add more features

from the original picture.

2. Pooling Layer

26



A pooling layer is usually employed after a convolutional layer. The objective of this layer

is to minimise the resulting feature map's size in order to reduce computing costs.

To do this, there are fewer connections between layers and distinct modifications made to

every feature map.

Depending on the technology being used, there are several distinct pooling techniques.

Reducing the size of the feature map is the most crucial aspect of max pooling. By

applying average pooling, segments of an input picture segment of a specific size are

averaged out.

Sum pooling is used to acquire cumulative sums of the raw data contained in the selected

picture segment. It is commonly associated with the pooling layer which connects the FC

layer and the convolutional layer.

12

2x2 pooling,
stride 2

13

10

£ I I R N |

14

Source: Adapted from ""Deep Learning,” by I. Goodfellow, Y. Bengio, and A.

V

N

Max pooling

12

7

13

14

Average pooling

9

S

7

8

Figure 6. Pooling Layer

Courville, 2016, MIT Press.

27



3. Fully Connected Layers

There is a fully connected layer that connects the neurons across the two layers with
weights and biases. They generally precede output layer of a typical CNN setup.

This provides a flattened shape that consists of the input image from the layers underneath
to the FC layer. The final vector is flattened and specific mathematical functions such as
fine-tuned processes are then calculated prior to going through several FC steps of

processing. This stage of ordering has become necessary.

4. Dropout

The presence of any traits linked to the FC layer may frequently result in fitting of the
training set. This happens when a model works well using training data but poorly uses
other information.

To solve this problem, the model’s size is reduced by using a dropout layer that is
eliminated with some neurons when the neural network is trained. Whenever 30 percent of
nodes of a neural networks reach a drop in threshold of 0.3, they will be randomly

removed.

5. Activation Functions

Activation functions are important for introducing non-linearity into deep neural networks
particularly CNNs. The roles of these functions lie in ensuring that a neuron takes action or

not. They therefore control the signal pathways through the network.

Common activation functions include:

28



e ReLU (Rectified Linear Unit): One of the popular approaches is known as ReLu. It
involves setting any negative value to zero and preserving any positive value intact.

It enables the network to identify and understand complex patterns efficiently.

e Sigmoid: These squash or compress input values which lie in the range of 0 to 1,
and are usually employed for binary classification problems because they

approximate probabilities.

e TanH (Hyperbolic Tangent): Like sigmoid but squashes input values between

negative one and positive one with a zero centred output distribution.

e Softmax: Softmax is often used out for multi-class, typically in the output layer for
converting raw scores into probabilities so as to make it easy to interpret final

predictions that come with any network.

Neural networks use activation functions to model complex data relations and extract
useful features during learning. Integrating dropout layers into CNNs make them capable

of learning complex nature of real world data thus assisting in making correct predictions.

Selected Applications:

Today, we have powerful CNN models for object detection such as Fast R-CNN and Faster
R-CNN. R-CNN is more or less a standard pipe of features used in 34 self-driving vehicles
and more, facial recognition, among others.

Semantic Segmentation: Deep Parsing Network is one of the networks that was established
in 2015 by a group of Hong Kong academics so as to improve on the poor performance the
other network were exhibiting when it came to using segmented photos with rich
information for instance the text in the images and words In addition, UC Berkeley
scientists invented full convolutional networks which made semantic segmentation state-

of-the-art.

29



3.5 IMPLEMENTATION

Generate a Density Map

gen_density_map(img, anno_points):

density_map np.zeros_like(img, dtype=np.float64)
h, w = density_map.shape

kernel_size = 15

sigma 4.

point in anno_points:

y = min(w-1, abs( h.floor(point[©]))), min(h-1, abs(math.floor(point[1]

vi x-kernel_.
y2 = x + kerne

out_of_boun
dx1, dyl, dx2,
if x1 <@:
dx1 abs (x1)
x1 = @
out_of_bounds =
if y1 <e:
dy1 abs(y1)
yli = @
out_of_bounds =

iankernel(kernel_h, cwv3 anKernel(kerne

ankernel(k (cwv

Figure 7: Code Gen Density Map



DatalLoader( ject) :
f __dinit__(self, data_path, gt_path, shuffle=False, gt_downsample=False):

self.data_path = data_path

self.gt_path = gt_path

self.shuffle = shuffle

self.gt_downsample = gt_downsample

self.data_ files [filename for filename in os.listdir(data_path)]
self.num_samples = len(self.data_files)

self.blob_list = []

for fname in self.data_file
C imread( path.join(self.data_path, fname), ©)
img.astype( float32, copy=False)

int((ht / 4)
int((wd / 4
resize(img, (wd_1, ht_1))
img.reshape((img.shape[@], img.shape[1], 1))
den = pd.read_csv(os.path.join(self.gt_path, os.path.splitext(fname)[@
heade ne).valu
den = den.astype(np.float32, copy=False)
if self.gt_downsample:
wd_1 = int(wd_1 / 4)
ht_1 = int(ht_1 / 4)

den = cv2.resize(den, (wd_1, ht_1))
den = den * ((wd * ht) / (wd_1 * ht_1))
den = den.reshape((den.shape[©], den.shape[1], 1))

blob = dict()

blob[ ‘data’] = img
blob['gt’'] = den

blob[ 'fname'] = fname
self.blob_list.append(blob)

if self.shuffle:]
np.random.shuffle(self.blob_list)

flow(self, batch_size=32):
loop_count = self.num_samples // batch_size
while True:
np.random.shuffle(self.blob_list)
for i in range(loop_count):
blobs = self.bleob_list[i*batch_size: (i+1)*batch_size]
X_batch = np.array([blob['data'] for blob in blobs])
Y_batch = np.array([blob['gt'] for blob in blobs])
yield X_batch, Y_batch

Ff get_all(self):

X = np.array([blob[ 'data'] for blob in self.blob_list])
Y = np.array([blob['gt'] for blob in self.blob_list])
return X, Y

def _ _iter__ (self):
for blob in self.blob_list:
yield blob

mae(y_true, y_pred):
return K.abs(K.sum(y_true) - K.sum(y_pred))

mse(y_true, y pred):
return (K.sum(y_true) - K.sum(y_pred)) * (K.sum(y_true) - K.sum(y_pred))

Figure 8: Code Dataloader

31



CREATE A MODEL

from keras.models import Model
from keras.layers import Conv2D, MaxPooling2D, Input, Concatenate

MCNN(input_shape=
inputs = Input(shap

column_1 =
column_1
column_1
column_1
column_1
column_1
column_1

column_2
column_2
column_2
column_2
column_2
column_2
column_2

column_3 =
column_3
column_3
column_3
column_3
column_3
column_3

nput_shape)

Conv2D(16, (9, 9), padding=
MaxPooling2D(2) (column_1)
(column_1)

Conv2D(32, (7, 7), padding:
MaxPooling2D(2) (column_1)
Conv2D(16, padding:
Conv2D(8, padding=

Conv2D(2@, (7, 7), padding:
MaxPooling2D(2) (column_2)
(column_2)

Conv2D(40, (5, 5), padding:
MaxPooling2D(2) (column_2)
Conv2D(2@, (5, 5), padding=
Conv2D(1@, (5, 5), padding=

Conv2D(24, (5, 5), padding=
MaxPooling2D(2) (column_3)
(column_3)

Conv2D(48, (3, 3), padding:
MaxPooling2D(2) (column_3)
Conv2D(24, padding:
Conv2D(12, padding=

same’,

same’,

same’,

activation='relu')(inputs)

activation='relu')(column_1)

activatio relu’')(column_1)

same', activation='relu’)(column_1)

same’,

same’,

same’,
same’,

same’,

‘same’,

same’,
same’,

merges = Concatenate(axis=-1)([column_1,

density map

model = Mode
return model

= Conv2D(1, (1, 1)

1(inpu

activation="relu’)(inputs)

activation='relu')(column_2)

activation='relu')(column_2)
activation='relu')(column_2)

activation="'relu')(inputs)
activation="'relu’)(col 3)
activatio relu’)(column_3)

activation='relu')(column_3)

column_2, column_3])

padding="'same"') (merges)

nputs, outputs=density_map)

Figure 9: Create Model

32



Tracker Class for Object Tracking

import math
class Tracker:
def _ init_ (self):

self.center_points = {}

self.id count = @
def update(self, objects_rect):

objects_bbs_ids = []

for rect in objects_rect:
X, ¥, w, h = rect
X = (x+ X +w) /2
cy = (y+y +h) //2

same_object_detected = False
for id, pt in self.center_points.items():
dist = math.hypot(cx - pt[@], cy - pt[1])

if dist < 35:
self.center_points[id] = (cx, cy)

objects_bbs_ids.append([x, y, w, h, id])
same_object_detected = True
break

if same_object_detected is False:
self.center_points[self.id_count] = (cx, cy)
objects_bbs_ids.append([x, y, w, h, self.id_count])
self.id_count += 1

new_center_points = {}
for obj_bb_id in objects_bbs_ids:
s _s _s _, Object_id = obj_bb_id

center = self.center_points[object_id]
new_center_points[object_id] = center

self.center_points = new_center_points.copy()
return objects_bbs_ids

Figure 10: Tracker Class

33



3.6 KEY CHALLENGES

The crowd density estimation foray with the MCNN model has been quite educational.

Nevertheless, this journey has its own set of challenges. In this chapter, we present some of

the challenges that arose as we tackled this project and how these were dealt with.

Diverse and Representative Dataset:

One major problem was to assemble a dataset accurately reflecting actual crowd
configurations which would manifest in reality. For the model to be able to
generalise it required a wide ranging dataset including all kinds of events, locations
and densities of crowds. Collecting, annotation and balancing of this data set took a
considerable amount of hard work and time.

Hyperparameter Tuning:

Yet, another great challenge was that of fine-tuning the myriad of hyperparameters
inside the MCNN model. These involved iteratively re-balancing between accuracy
and computational effectiveness. It was an intricate process that required one to
understand in detail, the complexity of model architecture as well as parameter

intricacies.

Computational Intensity:

Training the MCNN model had high computational requirements. Computing
power was needed because of complexity in the design and because it entailed
learning through different kinds of the dataset. However, it was a matter of extreme

care in managing these computational resources for prompt results.
Generalization to Unseen Environments:

Generalisation of the MCNN model to unseen environment continued to be a

challenge.

34



CHAPTER 4: TESTING

4.1Testing Strategy

4.1.1MCNN network

Filters with the same-sized receptive fields are unsuccessful at detecting crowd density
data at different scales even though perspective distortion frequently results in pictures

with heads of varying proportions.

As a result, it is preferable to construct the map from raw pixels to density maps employing

filters with varying local receptive field widths.

Text

32

Input
Images

|
3
lJ
|

Merged Density Map
Feature

{ Map

24

Figure 11: M-CNN Architecture

35



4.1.2BENEFITS OF MCNN:

MCNN is considered one of the best performing algorithms in many tasks including
classification and segmentation compared to other algorithms. Think of it as the greatest

algorithm out there and let me tell you why its so bright.

For instance, MCNN excels in dealing with cumbersome tasks such as measuring crowds
on images or number of stuffs in pictures. This is like having a superhero who has a unique

ability to see and understand all things in just an instant.

MCNN?’s strength, among other strengths, lies in its capacity to detect various sizes of
images’ features. It’s as if you have a Superman with myriad pairs of eyeballs and each one
of those peering into every facet of a scene. This provides MCNN to consider large but

small details thereby making it efficient for tasks having varied features.

Additionally, MCNN is like a clever student — it has an ability to be adaptive and
changeable depending upon the difficulty of the information delivered. This superhero
algorithm seems to be ever ready for any challenges and improve on its performance

making sure that it is as accurate as possible in different circumstances.

The world of algorithms likes MCNN because it is flexible, can be modified and it does not
treat visual input like others do. The company feels like it has a superhero in their team
showing why MCNN is mostly known for tackling complicated jobs better than other

solutions.

4.1.3Benefits of MCNN over CNN:
From demonstration, MCNNs outperform single column CNNs in terms of MAE and

MSE. This displays the precision of the MCNN architecture.

36



260
239.0

240 230.2
220 206.8
200
180
160.5
160 153.7
141.2
140
120 I
100
CNN(L) CNN(M) CNN(S)

Graph 1. Benefits of different Design

4.1.4Performance analysis using loss functions:

MCNN w/o pretraining

173.2 = MAE

= MSE

110.2

MCNN

We put our method to the test on several loss functions. In additional to mapping the

images to their density maps, we may directly map the photos to the overall head

countings in the image.

Theta denotes the overall count of heads per image in the input set {Xi} where 1= 1,...,N,

while F(Xi) stands for MCNN parameters and the predicted density map. This includes the

objective function follows.

N
1
L(®) = 5 > IIF(Xi;0) — Fi3,
i

The predicted density map’s area, S, replaces here the ground-truth density map.

Moreover, these CNNs are further pretrained in each column separately in order to

compensate for this loss. Such a model can be generally referred to as crowd count

regression using MCNN (MCNN-CCR).

37



It is evident that the crowd count regression's results are not appropriate . More of the
picture's finer characteristics may be preserved by the learning density map, which

enhances count precision.

loss fun

0.00128 -

0.00127

0.00126

0.00125 -

Graph 2: Performance analysis using loss function

4.1.5Evaluation matrix:
We have employed the mean squared error (MSE) as well as the mean absolute error

(MAE) to assess the suggested model.

i & .
MAR ==Y |2~ Z;
w2

f & . 2
, MSE = ﬁzlj(zi—zi) )

4.1.6Testing model on different datasets:
CNN counting model was tested using the UCF CC 50 and ShanghaiTech datasets; the

findings are shown:

38



500

400 —- - - oo e wm e e ene R S B S R 2
300 — , —
=
o 2 2
Q
w
200 — —
100 — - —
0 ‘
Shanghaitech Shanghaitech UCF_CC_50
part_A part_B
B MAE
MSE

Graph 3. Performance on different datasets

4.1.7The Implementation Of C3d Network For Analyzing Crowd Behavior

To classify whether the crowd’s behaviour is aggresive or peaceful, they use a model
known as C3D Model that utilises 3D convolutional neural network. Each video frame is
analyzed in character to give inputs for the model. C3D is similar to 2D convolutional

neural network and works with multiple frames at once.

39



Feature extraction

/ . r v [

(b >

\

OO0

PO

Fig 12: C3D Model architecture

4.1.8 The Implementation of YOLO Using ultralytics

The implementation and testing of an object tracking and counting system using YOLO v8
with Ultralytics, OpenCV, and custom tracking logic. The system is designed to detect and
track people in a video stream, count the number of people moving up and down, and
display the counts in real-time.

The object tracking and counting system successfully detects and tracks people in a video
stream, providing real-time counts of people moving up and down. The implementation
demonstrates the effectiveness of YOLO v8 for object detection and the custom tracking
logic for object tracking. The system can be further optimized and integrated into larger

projects for applications such as crowd monitoring, traffic analysis, and surveillance.

40



One-Stage Detector

Input

Backbone

Dense Prediction

9

Figure 13: YOLO Architecture

41



Chapter 5: RESULTS AND EVALUATION

5.1 Results

Training and Testing Dynamics:

Our project’s cornerstone was careful partitioning of our surroundings into train and test
subsets. Such segmentation helped to make sure that the MCNN model was not only
memorizing scenarios but appreciating changes in the densities of the crowds and different
environments. The goal was to arm the model with flexibility in line with practical

environment and enable reliable projections.

img_paths = ['../input/shanghaitech/ShanghaiTech/part_A/test_data/images/IMG_1.jpg’',
/input/shanghaitech/ShanghaiTech/part_A/test_data/images/IMG_101.jpg’]
for img_path g_paths:
img_ori = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
pts = loadmat(img_path.replace('.jpg', ".mat"').replace('images', 'ground-truth').replace('IMG_',
*GT_IMG_'))
img = cv2.imread(img_path)

sigma = 4 if 'part_A' in img_path else 15
k = np.zeros((img.shape[8], img.shape[1]))
gt = pts["image_info"][@, @][e, e][e]

for i in range(len(gt)):
if int(gt[i][1]) < img.shape[@] and int(gt[i][@]) < img.shape[1]:
k[int(gt[i][1]), int(gt[i][e])] = 1

DM = gen_density_map_gaussian(k, gt, sigma=sigma)
fg, (axe@, ax1l) = plt.subplots(l, 2, figsize=(20, 4))
ax®.imshow(img_ori)

ax@.set_title(str(gt.shape[0]))
axl.imshow(np.squeeze(DM), cmap=plt.cm.jet)
axl.set_title('DM -- "#+str(np.sum(DM)))

plt.show()

Figure 14 :Testing

Accuracy Metrics: MAE and MSE:

To gauge the performance of our MCNN model, we employed two key metrics: The MAE
and the MSE. MAE made itself known as an indicator of the mean magnitude of errors
whereas MSE sought to explain the difference in each instance based on the predicted and
actual values that were obtained. Taken together, these metrics offered an overall test of the

model’s accuracy, helping us shape it into a more predictive instrument.

42



DM - 17199997

DM -- 210.99994

Figure 15: Density Map

Original Image Prediction: 632.75336

Ground_truth: 133.00238

Figure 16: Predicted Density Map

Tracker Class For Object Tracking

The class named Tracker that implements a simple object tracking algorithm. This class is
designed to track objects in a video stream by their bounding box coordinates. The main
purpose of this class is to maintain a dictionary of object IDs and their corresponding
center points.

Initialization:
* The __init__ method initializes the Tracker object.
« It initializes an empty dictionary (center_points) to store the center points of the objects

being tracked.

« It also initializes a counter (id_count) to keep track of the number of unique object IDs.

43



Wk D

(=]

import math
class Tracker:

def

def

_ipit_ (self):

self.center_points = {}

self.id_count = 8
update(self, objects_rect):

objects_bbs_ids = []

for rect in objects_rect:
X, ¥, W, h = rect
X o= (X + X +w) /2
cy = (y +y +h) //2

same_object_detected = False
for id, pt in self.center_points.items():
dist = math.hypot{cx - pt[e], cy - pt[1])

if dist < 35:
self.center_points[id] = (cx, cy)

objects_bbs_ids.append([x, y, w, h, id])
same_object_detected = True
break

if same_object_detected is False:
self.center_points[self.id_count] = (cx, cy)
objects_bbs_ids.append([x, y, w, h, self.id_count])
self.id_count += 1

new_center_points = {}
for obj_bb_id in objects_bbs_ids:
s _s _s _, object_id = obj_bb_id

center = self.center_points[object_id]
new_center_points[object_id] = center

self.center_points = new_center_points.copy()
return objects_bbs_ids

Figure 17: Tracker Class For Object Tracking

44



Poool 7 '
| Down1

o

Figure 18: Output

Update Method:

* The update method takes a list of object bounding boxes (objects_rect) as input.

* For each bounding box in the input list, it calculates the center point of the object.

« It then iterates through the existing object IDs and their center points stored in the
center_points dictionary.

« If the distance between the center point of the current bounding box and the center point
of an existing object is less than a threshold (35 in this case), it considers them as the same
object and updates the center point of the existing object.

« If the distance is greater than the threshold, it considers the current bounding box as a
new object and assigns a new object ID (id_count) to it.

 After processing all bounding boxes, it creates a list (objects_bbs_ids) containing the
bounding box coordinates, object ID, and appends it to the list.

* It then cleans up the center points dictionary by removing IDs of objects that are no
longer being tracked.

« Finally, it updates the center_points dictionary with the latest object IDs and their center

points and returns the list of bounding boxes and object IDs.

45



bbox_id=tracker.update(list)
for bbox in bbox_id:
®x3,y3,x4,y4,id=bbox
cx=int (x3+x4)//2
cy=int(y3+y4)//2
cv2.circle({frame, (cx,cy),4,(255,8,255),-1)

if cyl<(cy+offset) and cyl»(cy-offset):
cv2.rectangle(frame, (x3,y3), (x4,y4),(8,8,255),2)
cvzone.putTextRect(frame,f {id}",(x3,y3),1,2)
persondown[id]=_cx,cy)

if id in persondouwn:
if cy2<(cy+offset) and cy2»(cy-offset):
cv2.rectangle(frame, (x3,y3),(x4,y4),(8,255,255),2)
cvzone. putTextRect(frame,f {id}", (x3,y3),1,2)
if counterl.count(id)==6:
counterl.append{id)

if cy2<(cy+offset) and cy2»(cy-offset):
cv2.rectangle(frame, (x3,y3), (x4,y4),(8,8,255),2)
cvzone.putTextRect(frame,f {id}",(x3,y3),1,2)
personup[id]=(cx,cy)

if id in personup:
if cyl<(cy+offset) and cyl»(cy-offset):
cv2.rectangle(frame, (x3,y3),(x4,y4),(8,255,255),2)
cvzone.putTextRect(frame,f {id}", (x3,y3),1,2)
if counter2.count(id)==0:
counter2.append(id)

cv2.line{frame, (3,cy1),(1018,cy1),(®,255,8),2)
cv2.line(frame, (5,cy2),(1819,cy2),(®,255,255),2)

down = (len(counterl))
cvzone. putTextRect(frame, ' Down{down}", (58,60),2,2)

up = (len(counter2))
cvzone.putTextRect(frame,f Up{up}',(56,160),2,2)

cv2.imshow("RGB", frame)
if cv2.waitKey(1)&BxFF==27:
break
cap.release()
cv2.destroyAllWindows()

Figure 19: Up-Down With_ID



| miRGB - O >

People: 27 e
Down1

o >

Figure 21: Count Down

47



5.2 Comparison with Existing Solutions

5.2.1Foreground segmentation

Most of the contemporary painting is built around foreground segmentation. Foreground
isolation in itself is quite an involved endeavor that may result in mis segmentation which
leads to a long-term negative effect on the summary of votes.

The position from where a photograph can be taken while on an assignment also varies. It
is almost impossible to identify with accuracy the crowd from its background without
knowing the geometrical structure and movement of the photograph. Therefore, we can

only guess at how many people were in the gathering beforehand.

5.2.2Variation of scale

Because the size of the individuals in the pictures varies widely, we must mix features at
many scales to reliably estimate crowd sizes for distinct images. We are compelled to
employ hand-crafted features due to a shortage of tracked features, and hand-crafting

features for all sizes is difficult.

5.2.30ur solution to the problem

In this study, we provide an unique convolutional neural network-based approach for
crowd counting in an arbitrary still era (CNN). More precisely, we put into practise a multi-
column convolutional neural network (MCNN) model for image categorization, which was
motivated by the research of [8]. Their methodology enables any number of columns to be
trained on inputs that have passed different pre-processing stages. The average of the
various predictions made by each deep neural network is then used to determine the final

predictions. Our MCNN consists of three rows with different sized filters.

Medium, small, and big filter or better said wide receptive fields are referred as different

types of filters. In such a situation, it is advisable to employ a single column design, with

48



each element understanding its unique elements. CNN is highly tolerant of a change in

head or person size due to projection effects and at different image resolutions.

For the proposed MCNN model, we replace the fully connected layer with a convolutional
layer of 1 x 1 filter size. To avoid distortion, we could use a different size as an input image
for our model. First, the network estimates the crowd density which gives us an eventual

total.

49



CHAPTER 6: CONCLUSION AND FUTURE
SCOPE

6.1 CONCLUSION

I employed one-shot MCNN that estimates crowd occupancy in a single image under
diverse viewpoints and settings. In order to cross-check my findings against other
researches, | adopted the use of ShanghaiTech dataset which consists of 330, 165
individuals that have been categorized into two main classifications. It is among the most
prominent heaads for density-based spatial clustering. The result of our method is better

than state-of-the-art on all test sets.

Moreover, the robustness of the proposed model is demonstrated since this model, with
minor adjustments in the parameters and final layers, can be applied to various purposes

across different sectors.

6.2 FUTURE SCOPE
The future of this crowd density estimation project using MCNN has many things to come
for improvement. The further work on MCNN includes the enhancement of the coding and

behavioral analysis towards a holistic comprehension on crowd dynamics.Model

e Refinement and Optimization:
Keep refining MCNN model in order to improve its accuracy and effectiveness.
Experiment further architectural improvements or sophisticated approach to
enhance model efficiency.Explore the inclusion of attention mechanisms to focus

on relevant features for improved crowd density predictions.

50



Dataset Expansion and Diversity:
Extend the dataset using other crowd scenarios that will include different behaviors,
crowding densities, and environmental conditions. Identify and address the biases

in the current dataset to cover and account for the real-world scenarios.

Behavioral Analysis Integration:
Integrate some behavioral analysis components into the current MCNN framework.
Develop new ways to capture crowd interactions, movement and response patterns.

Develop algorithms or models to interpret/translate behavioral cues in crowds.

Real-time Implementation and Deployment:

Ensure that the MCNN model optimizes real-time performance, making fast
predictions in dynamic settings.

Investigate deployment methods in actual scenarios, like public events or urban

surveillance, to verify the applicability of the model in real-life applications.

User Interface and Visualization:
Create an intuitive user interface for an easy interaction with the MCNN model.
Use visualizations to show crowd density predictions so that users can understand

and use the model’s results properly.

51



REFERENCES

[1] P. Zhang, W. Lei, X. Zhao, L. Dong, and Z. Lin, “An Adaptive Multi-Scale
Network Based on Depth Information for Crowd Counting,” Sensors, vol. 23, no.
18, p. 7805, Sep. 2023.

[2] A.Alashban, A. Alsadan, N. F. Alhussainan and R. Ouni, "Single Convolutional
Neural Network With Three Layers Model for Crowd Density Estimation,” in IEEE
Access, vol. 10, pp. 63823-63833, 2022.

[3] A. Kizrak and B. Bolat, "Crowd Density Estimation by Using Attention Based
Capsule Network and Multi-Column CNN," in IEEE Access, vol. 9, pp. 75435-
75445, 2021.

[4] X. Ding, F. He, Z. Lin, Y. Wang, H. Guo and Y. Huang, "Crowd Density
Estimation Using Fusion of Multi-Layer Features,” in IEEE Transactions on

Intelligent Transportation Systems, vol. 22, no. 8, pp. 4776-4787, Aug. 2021.

[5] P. Thanasutives, K. -i. Fukui, M. Numao and B. Kijsirikul, "Encoder-Decoder
Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd
Counting,"” 2020 25th International Conference on Pattern Recognition (ICPR),
Milan, Italy, 2021.

[6] X. Shi, X. Li, C. Wu, S. Kong, J. Yang and L. He, "A Real-Time Deep Network
for Crowd Counting," ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp.
2328-2332.

[7] Z. Liu, Y. Chen, B. Chen, L. Zhu, D. Wu and G. Shen, "Crowd Counting Method

Based on Convolutional Neural Network With Global Density Feature,” in IEEE
Access, vol. 7, pp. 88789-88798, 2019.

52



[8] L. Zhang, M. Shi and Q. Chen, "Crowd Counting via Scale-Adaptive
Convolutional Neural Network," 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), Lake Tahoe, NV, USA, 2018, pp. 1113-1121.

[9] K. Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193-202, 1980.

[10] W. Ge and R. T. Collins. Marked point processes for crowdcounting. In CVPR,
pages 2913-2920. IEEE, 2009.

[11] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief
nets. NEURAL COMPUT, 18(7):1527-1554, 2006.

[12] H. Idrees, |. Saleemi, C. Seibert, and M. Shah. Multi-source multi-scale
counting in extremely dense crowd images. In CVPR, pages 2547-2554. IEEE,
2013.

[13] H. Idrees, K. Soomro, and M. Shah. Detecting humans in dense crowds using
locally-consistent scale prior and global occlusion reasoning. Pattern Analysis and

Machine Intelli-gence, 2005.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-shick, S.
Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arX-iv:1408.5093, 2014.

[15] D. Kong, D. Gray, and H. Tao. Counting pedestrians in crowds using viewpoint
invariant training. In BMVC. Cite-seer, 2005.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceed-ings of the IEEE, 86(11):2278-2324,
1998.

53



[17] V. Lempitsky and A. Zisserman. Learning to count objects in images. In

Advances in Neural Information Processing Systems, pages 1324-1332, 2010.

[18] M. Li, Z. Zhang, K. Huang, and T. Tan. Estimating the number of people in
crowded scenes by mid based foreground segmentation and head-shoulder
detection. In ICPR, pages 1-4. IEEE, 2008.

[19] Z. Lin and L. S. Davis. Shape-based human detection and segmentation via
hierarchical part-template matching.Pattern Analysis and Machine Intelligence,
32(4):604-618,2010.

[20] B. Liu and N. Vasconcelos. Bayesian model adaptation for crowd counts. In
ICCV, 2015.

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for

semantic segmentation. arXiv preprint arxX-iv:1411.4038, 2014.
[22] A. Marana, L. d. F. Costa, R. Lotufo, and S. Velastin. On the efficacy of texture
analysis for crowd monitoring. In International Symposium on Computer Graphics,

Image Processing,and Vision, pages 354-361. IEEE, 1998.

[23] N. Paragios and V. Ramesh. A mrf-based approach for real-time subway
monitoring. In CVPR, volume 1, pages |1-1034.IEEE, 2001.

[24] V. Rabaud and S. Belongie. Counting crowded moving objects. In CVPR,
volume 1, pages 705-711. IEEE, 2006.

[25] C. S. Regazzoni and A. Tesei. Distributed data fusion for real-time crowding
estimation. Signal Processing, 53(1):4763, 1996.

54



D DrillBit

The Repant bs Generated by DeillBi Plagharism Detection Soltware

Submission fnfaroation

Author Name

Title

PaperSuhmissinn 1T
Submitted by
Submission Date

Total Pages, Total Waords
Document type

Result Inforaifon

13 %
| T

Similarity

ROHAN
CROWD
1704303
anita @@ juit.ac.in

20i24-05-13 11:06:36

G4, 10136
Research Paper

Sowrces Type

Report Content

Student

Paper
0.45%

Journall
Publicatio
n B.69%

Exelude Information

Cuotes
References/Bibliography
Source: Excluded = 14 Words
Excluded Source

Excluded Phrases

Intermet
3.86%

Mot Excluded
Excluded
Mot Excluded
0%

Mot Excluded

Words <
14, 6.5%

Database Seleciion

Language

Student Papers
Journals & publishers
Internet or Web
Institution Fepository

English
Yes
Yes

Quotes

0.98%

RefiBib
B.39%




