JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATIONS- 2024

Ph.D. - II Semester (Mathematics)

COURSE CODE (CREDITS): 13P1WMA232 (3)

MAX. MARKS: 35

COURSE NAME: MATHEMATICAL ANALYSIS

COURSE INSTRUCTORS: SST

MAX. TIME: Hours

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.
- 1. Prove that the space l^p , $p \neq 2$, is not a Hilbert space.

(CO 3)[3]

- 2. State and prove the Cauchy-Schwarz inequality for inner product space and also prove that $|\langle x, y \rangle| = ||x|| ||y||$ if and only if the set $\{x, y\}$ is not linearly independent. (CO 3)[4]
- 3. Let X and Y be Banach spaces and T: $D(T) \rightarrow Y$ is a closed linear operator, where $D(T) \subset X$, then prove that if D(T) is closed in X, the operator T is bounded. (CO 3)[5]
- 4. Let f be a bounded linear functional on a subspace Z of a normed space X. Prove that there exists a bounded linear functional f on X, which is an extension of f to X and has the same norm, $\|\tilde{f}\|_X = \|f\|_Z$, where $\|\tilde{f}\|_X = \sup_{\|x\|=1} |\tilde{f}(x)|$, $\|f\|_Z = \sup_{\|x\|=1} |f(x)|$, and $\|f\|_Z = 0$ in the trivial case $Z = \{0\}$. (CO 3)[5]
- 5. Let T: $D(T) \to Y$ be a linear operator, where $D(T) \subset X$ and X, Y are normed spaces, then prove that T is continuous if and only if T is bounded. (CO 3)[4]
- 6. Prove that the linear functional f, defined by, $f(x) = \int_a^b x(t)dt$, $x \in C[a, b]$ is bounded and has the norm ||f|| = b a. (CO 3)[4]
- 7. If ((z) is an analytic function for all finite values of z and is bounded for all values of z in C, then prove that f is a constant function. (CO 2)[5]
- 8. Prove that the set C[a, b] of all real-valued functions continuous on the interval [a, b] with the function d, defined by, $d(f, g) = \left(\int_a^b (f(x) g(x))^2 dx\right)^{\frac{1}{2}}$, is a metric space.

 (CO 1)[5]