JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATIONS- 2024

M.Sc - II Semester (BT/MM/PhD)

COURSE CODE (CREDITS): 20MS1BT213 (2)

MAX. MARKS: 35

COURSE NAME: Bioinformatics

COURSE INSTRUCTORS: Dr. Shikha Mittal

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q1. It is noted that major sequence alignments differ in approach computational complexity and accuracy. Do you agree with this? Explain with suitable examples, (3 marks)
- Q2. Write down the significance of multiple sequence alignment in biological data analysis. (3 marks)
- Q3. Explain the concept of molecular clocks and their use in estimating divergence times between species. Discuss the assumptions and challenges associated with molecular clock methods. (3 marks)
- Q4. Calculate possible number of topologies if taxa is 4 for rooted and unrooted trees. (3 marks)
- Q5. Briefly explain- (8 marks)
 - i. Difference between phylogram and cladogram
 - ii. Ramachandran plot
 - iii. Alpha-helix and beta pleated sheets
 - iv. E-value and Bit-Score in BLAST results
- Q6. Consider a simple distance matrix for four taxa (A, B, C, D): (5 marks)

	Α	В	С	D
Α		5	9	9
В	-	-	6	8
C	1	ı	-	10
D	-	-	-	-

Apply the UPGMA algorithm to construct a phylogenetic tree.

Q7. Explain the concept of homology modeling in bioinformatics. Discuss the steps involved in building a homology model of a protein and its applications in structural biology. (4 marks)

Q8. Define the following - (6 marks)

- i. Affine gap penalty
- ii. Write short note on PAM and BLOSUM scoring matrices.
- iii. Discuss the importance of biological databases in bioinformatics.