JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

Ph.D.-II Semester (MATHEMATICS)

COURSE CODE (CREDITS): 17P1WMA111 (3)

MAX. MARKS: 25

COURSE NAME: DIFFERENTIAL GEOMETRY

COURSE INSTRUCTORS: P K Pandey

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
 - 1. Compute $\nabla_V W$ for a vector $V \in \mathbb{R}^3$ given by (α, β, γ) and a vector field W given by $W = (x_1^3 x_2 + x_3^2, 3x_2^2 + x_1, 2x_2^2 + x_1x_3^2)$. [3M] [CO2]
 - 2. For what values of c the set $f = \{(x, y, z): x^2 y^2 + z^3 z = c\}$ represents a smooth surface in \mathbb{R}^3 . [3M] [CO3]
 - 3. Compute the first fundamental form of $f: \mathbb{R}^2 \to \mathbb{S}^2 \{(0,0,1)\}$ given by $f(x,y) = \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, \frac{x^2+y^2-1}{1+x^2+y^2}\right)$ [3M] [CO3]
 - 4. If $\eta = F(x, y, z) dxdy + G(x, y, z) dydz + H(x, y, z) dzdx$, find $d\eta$. [3M] [CO3]
 - 5. Compute the second fundamental form for the surface given by: [5M] [CO4] $r = (u \cos v, u \sin v, cv)$, where $c \neq 0$.
 - 6. Explain the following with examples:

[4M] [CO4]

- (i) Surface
- ii) Regular surface
- 7. Explain differentiable manifold by means of a example and obtain a differentiable structure on it. : [4M] [CO4]
