Jaypee University of Information Technology, Waknaghat

Test-2 Examination - April 2024

B.Sc. (Mathematics and Computing) - II Semester

Course Code/Credits: 22BS1MA212/4

Max. Marks: 25

Course Instructors: RAD

Course Title: Fundamentals of Probability and Statistics

Max. Time: 90 minutes

Note: (a) ALL questions are compulsory.

(b) Scientific calculators are allowed to use.

- (c) Marks are indicated against each question in round brackets.
- (d) The candidate is allowed to make suitable numeric assumptions wherever required.
- 1. Consider frequency distribution of marks of 43 students of a university: (3 Marks) [CO-1]

Marks(x)	10	20	30	40	50	60
No. of Students (f)	4	7	15	8	7	2

- (a) Find the third quartile Q_3 of the marks of students.
- (b) Suppose $Q_1 = 20$. What is the quartile deviation of marks?
- 2. Out of those brought to court, there are 60% which are actually guilty. Of those that are guilty, 95% of them are convicted. But there are 1% of innocent people who get falsely (4 Marks) [CO-2] convicted.
 - (a) Determine the probability of you being convicted.
 - (b) What is the probability that you are actually innocent given that you are convicted?
- 3. Consider the density of the age of babies in years at a postnatal clinic: (4 Marks) [CO-3]

$$f(x) = \begin{cases} \frac{3}{4}x(2-x) & , & 0 < x < 2 \\ 0 & , & else \end{cases}$$

- (a) What is the probability that a baby is under 2/3 years old?
- (b) Out of 60 babies brought, how many are expected to be under 8 months old?
- 4. Consider the moment generating function of a random variable X: (3 Marks) [CO-3]

$$\mathcal{M}_X(\mathtt{t}) \ = \ e^{\mathtt{t}^2 + 3\mathtt{t}}, \quad -\infty < \mathtt{t} < \infty$$

Find the mean and variance of X.

- 5. Suppose that you attend an international conference with 500 delegates. (4 Marks) [CO-4]
 - (a) Without computing, write down the expression for the probability that exactly one other guest has the same birthday as you? For simplicity, exclude the possibility of a February 29 birthday.
 - (b) Approximate the probability expression obtained by using a Poisson distribution.

- 6. Consider a job-arrival computer system with $\lambda=2$ arrivals per minute. (4 Marks) [CO-4]
 - (a) Find the probability of at most 3 arrivals in any one-minute interval.
 - (b) What is the maximum jobs that should arrive in one minute with 90% certainty?
- 7. Let $X \sim \text{Gamma}(\alpha, \beta)$ be a random variable with $\mu = 20$ and $\sigma^2 = 100$. (3 Marks) [CO-4]
 - (a) Determine the parameters α and β .
 - (b) Describe the random variable **X** and write down its probability density function f(x).

* * * * * * * *