JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- APRIL-2023

B.Tech-VI Semester (CS/IT)

COURSE CODE (CREDITS): 20B1WCI732 (2)			MAX. MARKS: 25	
C	OUF	RSE NAME: From Graph to knowledge Graph		
COURSE INSTRUCTOR: Ravindara Bhatt MAX. TIME: 1 Hour 30 Min			MAX. TIME: 1 Hour 30 Min	
No	ne: /	All questions are compulsory.		
1.	Fill in the blanks for these statements. [CO3] [1 * 5 = 5 Marks]			
	a. Rule-based IE techniques are expected to have precision andrecall.			
	b.			
	c.			
		interest. One simple approach to do it automatically is by setting any phrase as a		
		candidate entity and any phrase as a candidate relation.		
	d.	d and are the practical applications of NER		
		is a graph database, that supports RDF		
2.	W	Which of the following is/are true? Justify your answer?[CO3] [1 * 5 = 5 Marks]		
	a.	Classes in RDF Schema are much like classes in object oriented programming languages.		
	b.	Ontology is a formal description of knowledge as a set of concepts within a domain and the		
		relationships that hold between them.		
	c.	N triples are designed to be human readable.		
	d.	Graphs G and G' are isomorphic without being equi	valent in the RDF Universe	
	e.	Ontologies are machine-readable and Interoperable		
3.	[CO3][1+1+1+2=5] Marks			
	a.	Ordinarily, focused crawlers (and many other types	of crawlers as well) take as traditional	
		inputs such		
		as some starting (or seed) URLs and, possibly, a top	pic description (e.g., a list of keywords).	
		Suggest at least two domains for the application areas of the focused crawlers.		
	b.	List the main design elements of a focused crawler.		

c. Compare and contrast Best-First crawlers and Semantic crawlers.

d. Draw the practical architecture for Named Entity Recognition (NER).

4. [CO2][2+1+1+1=5 Marks]

- a. Compare and contrast Resource Description Framework (RDF) and labeled property graphs
- b. Give an example of k-Vertex Cover.
- c. Using Menger's Theorem, show that k(G) = k'(G) when G is 3-regular,
- d. How do you find the minimum dominating set of a graph?

5. [CO2][2+2+1=5] Marks

- a. Let us define a new term called edge isomorphism as follows: Two graphs G1 and G2 are edge isomorphic if there is a one-to-one correspondence between the edges of G1 and G2 such that two edges are incident (at a common vertex) in G1 if and only if the corresponding edges are also incident in G2. Construct an example to prove that edge-isomorphic graphs may not be isomorphic.
- b. Prove that in a connected graph G a vertex v is a cut-vertex if and only if there exist two (or more) edges x and y incident on v such that no circuit in G includes both x and y.
- c. Compute the line graph of a graph G, written L(G) for Figure 1.

Figure 1: Graph G