JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST – 3 EXAMINATION - 2023

B.Tech. - VIII Semester (Civil)

COURSE CODE (CREDITS): 18B1WCE736

MAX. MARKS: 35

COURSE NAME: Dam and Reservoir Design

COURSE INSTRUCTORS: Saurabh Rawat

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
- Q1. Explain in detail the various forces causing instability in a gravity dam. Also draw a section of an earth dam of 20 m height indicating the various parts of the dam. (CO3, CO5) [3+3 = 6]
- Q2. An earthen dam is made of homogeneous material has the following data:

Level of the top of the dam	200.00 m
Level of deepest riverbed	178.0
H. F. L. of reservoir	197.5 m
Width of top of dam	4.5 m
Upstream slope	3:1
Downstream slope	2:1
Length of the horizontal filter from d/s toe, inwards	25 m
Cohesion of soil of dam	24 kN/m^2
Cohesion of soil of foundation	54 kN/m ²
Angle of internal friction of soil in the dam	25°
Angle of internal friction of soil in the foundation	12°
Dry weight of the soil in the dam	18 kN/m^3
Submerged weight of the soil in the dam	12 kN/m^3
Dry unit weight of the foundation soil	18.3 kN/m³
Coefficient of permeability of soil in the dam	5×10^{-6} m/sec

The foundation soil consists of 8 m thick layer of clay, having negligible coefficient of permeability. Check the stability of the dam and its foundations. (CO5) [8]

Q3. Differentiate between a 'low gravity dam' and a 'high gravity dam'. How does the practical profile of a low gravity profile differ from that of the theoretical one and why? Derive an expression for the limiting height of a low dam.

(CO4, CO5) [2+1+3=6]

- Q4. Briefly explain the following:
 - a) Drainage gallery
 - b) Construction joints in a dam
 - c) Ogee spillway

(CO1, CO2, CO5) [2+2+2 = 6]

Q5. A flow net is plotted for a homogeneous earthen dam of height 22 m and freeboard 2.0 m. The result obtained are:

Number of potential drops = 10

Number of flow channels = 4

The dam has a horizontal filter of 30 m length at the downstream end and the coefficient of permeability of the dam material is 5×10^{-4} cm/sec. Calculate the discharge per run of the dam.

(CO5) [**5**]

- Q6. Explain and elaborate the importance of 'seepage' through earthen dams. What precautions and remedial measures would you undertake to control the 'seepage' through
 - a) Earthen dam body
 - b) Dam foundation

(CO1, CO5) [2+1+1 = 4]