JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

T-3 Examination- 2023

Ph.D. (Mathematics)- I Semester

COURSE CODE (CREDITS):17P1WMA231 (3)

MAX. MARKS: 35

COURSE NAME: ADVANCED LINEAR ALGEBRA

COURSE INSTRUCTORS: Pradeep Kumar Pandey

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.
- 1. Suppose W is a vector subspace of \mathbb{R}^4 spanned by the vectors $v_1 = \begin{bmatrix} 1 & 2 & 5 & -3 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 & 1 & 1 & 4 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$. Find a basis for W and extend it to a basis for \mathbb{R}^4 . [CO1] [6]
- **2.** Suppose $B = \{[1 \ 0 \ 0], [0 \ 1 \ 0], [0 \ 0 \ 1]\}$, and $C = \{[1 \ 0 \ 1], [0 \ -1 \ 2], [2 \ 3 \ -5]\}$. Find a transition matrix from B to C and use it to find $[x]_C$ where $[x]_B = [1 \ 2 \ -1]^T$.
- 3. Using the inner product on $M_2(\mathbb{R})$ compute the angle between the vectors $X = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$, and $Y = \begin{bmatrix} 1 & -1 \\ 4 & 0 \end{bmatrix}$. [CO3] [6] Hint: $\langle X, Y \rangle = tr(X^TY)$.
- 4. Write the statement of spectral theorem for the real symmetric matrices. For the matrix

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

Find an orthogonal matrix P and diagonal matrix D such that $P^TAP = D$.

[CO4] [6]

5. Find the least squares solution of the following system:

[CO4] [5]

$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ -2 & -3 & 1 & -5 \\ 1 & -1 & 2 & 0 \end{bmatrix}^T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T$$

- 6. Let A is a 3×3 matrix. If the characteristic and minimal polynomials of A are given by $f_A(x) = x^3 + x^2 x 1$ and $m_A(x) = x^2 1$. Then justify whether A is diagonalizable or not? [CO5] [3]
- 7. Does there exist a 3×3 diagonal matrix which is neither Hermitian, nor skew-Hermitian nor Unitary. Give an example in support of your answer. [CO5] [3]
