JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2023

Ph.D.-I Semester (Mathematics)

COURSE CODE (CREDITS): 17P1WMA231 (3)

MAX. MARKS: 25

COURSE NAME: ADVANCED LINEAR ALGEBRA

COURSE INSTRUCTOR: Pradeep Kumar Pandey

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

(c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

- 1. For any $u, v \in \mathbb{R}^+$ and $\alpha \in \mathbb{R}$, consider the operations \oplus and \odot defined as: $u \oplus v = uv$ and $\alpha \odot u = u^{\alpha}$. Prove or disprove that the algebraic structure (\mathbb{R}^+ , \oplus , \odot) is a vector space over the Field \mathbb{R} . [CO-1] [5M]
- 2. State the Cayley-Hamilton theorem, and using it reduce the degree of polynomial $A^3 5A^2 + 2I$ for the matrix $A = \begin{bmatrix} 3 & 7 \\ 0 & 1 \end{bmatrix}$. [CO-1] [5M]
- 3. Suppose $B = \{(1,0,1), (1,-1,0), (2,0,-1)\}$ is an ordered basis of \mathbb{R}^3 . Find the dual [CO-2] [5M]
- 4. Check consistency of the following linear system, and solve it by method of least squares

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}^T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 3 & 4 & 4 \end{bmatrix}^T$$
 [CO-3] [5M]

5. Using Gram-Schmidt method on the columns of matrix A find its QR decomposition

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 [CO-3] [5M]