
Product Identification using Blockchain

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Parth Purwar (191281)

Under the supervision of

Dr. Amit Kumar

to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

CERTIFICATE

This is to certify that the work which is being presented in the project report

titled “Product Identification Using Blockchain” in partial fulfillment of

the requirements for the award of the degree of B.Tech in Computer Science

And Engineering and submitted to the Department of Computer Science

And Engineering, Jaypee University of Information Technology, Waknaghat

is an authentic record of work carried out by “Parth Purwar, 191281” during

the period from January 2023 to May 2023 under the supervision of Dr.

Amit Kumar, Department of Computer Science and Engineering, Jaypee

University of Information Technology, Waknaghat.

Parth Purwar

(191281)

The above statement made is correct to the best of my knowledge.

Dr. Amit Kuram

Associate Professor, Grade 2

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat

i

ii

iii

ACKNOWLEDGEMENT

Firstly, we express our heartiest thanks and gratefulness to almighty God for

His divine blessing makes it possible to complete the project work

successfully.

We are really grateful and wish our profound indebtedness to Supervisor Dr.

Amit Kumar, Associate Professor(Grade 2), Department of CSE/IT

Jaypee University of Information Technology, Wakhnaghat. Deep

Knowledge & keen interest of our supervisor in the field of “Block Chain”

to carry out this project. His endless patience, scholarly guidance, continual

encouragement, constant and energetic supervision, constructive criticism,

valuable advice, reading many inferior drafts and correcting them at all

stages have made it possible to complete this project.

We would like to express our heartiest gratitude to Dr. Amit Kumar,

Department of CSE/IT, for his kind help to finish our project.

We would also generously welcome each one of those individuals who have

helped us straightforwardly or in a roundabout way in making this project a

win. In this unique situation, We also want to thank the various staff

individuals, both educating and non-instructing, which have developed their

convenient help and facilitated my undertaking. Finally, We must

acknowledge with due respect the constant support and patience of our

parents.

Parth Purwar

(191281)

iv

TABLE OF CONTENT

S.
No

Title Page
No.

1 Certificate i

2 Plagiarism Certificate ii

2 Acknowledgement iv

3 List of figures vi

4 List of tables ix

5 Abstract x

6 Chapter - 1 Introduction 1

7 Chapter - 2 Literature survey 13

8 Chapter - 3 System Development 15

9 Chapter - 4 Performance analysis 45

10 Chapter - 5 Conclusions 55

11 References 57

12 Appendices 60

v

LIST OF FIGURES

S.
No.

Figu
re
No.

Description Page
no.

1 1 Working of an Ethereum smart contract 6

2 2 Flow chart of the system design 8

3 3 Flow chart showing different participants 9

4 4 System architecture of an Ethereum Virtual Machine 9

5 5 Encoding a JSON Web Token 19

6 6 Decoding a JSON Web Token 20

7 3.6 Working of JWT for authentication 21

8 3.7 An example of Finite State Machine 22

9 4.1 State change from Genesis state to current state 23

10 4.2 State Change in Blocks in Ethereum 23

11 5.1 Fork problem in a blockchain 24

12 I GHOST Protocol 25

13 II Implementation of Ownable smart contract 26

14 III Implementation of roles 27

15 IV UML Class Diagram for different roles 30

16 V State Structure 31

17 VI Item Structure 32

18 VII Item History Structure 33

19 19 Item History Structure 2 33

vi

20 20 ER Diagram of Objects and Entities 33

21 21 Access Control Implementation 34

22 22 Verify Caller 35

23 23 Schema of Customer 43

24 24 Distributor 43

25 25 Schema of Manufacturer 43

26 26 Retailer 43

27 27 UML Diagram of API Endpoints 44

28 28 Ethereum Transactions 45

29 29 Latency for logging in a customer 48

30 30 Latency for registering a customer 49

31 31 Latency for registering a manufacturer 49

32 32 Latency for logging in a manufacturer 50

33 33 Latency for registering a distributor 50

34 34 Latency for /api/roles/manufacturer/createproduct API
call

51

35 35 Latency for /api/roles/manufacturer/packproduct API call 51

36 36 Latency for /api/roles/manufacturer/dispatchproduct API
call

52

37 37 Latency for /api/roles/distributor/receiveproduct API call 52

vii

38 38 Latency for
/api/roles/distributor/dispatchproductretailer API call

53

39 39 Latency for /api/roles/retailer/receiveproduct API call 53

40 40 Latency for /api/roles/retailer/sellproduct API call 54

41 41 Implementation of registration 60

42 42 Implementation of login 60

43 43 Implementation of Ownership Transfer 61

44 44 Implementation of Product Creation 61

viii

LIST OF TABLES

S.No. Table
No.

Title Page
no.

1 1 Literature Survey 14

2 2 Working transactions in an Ethereum blockchain 46

3 3 Cost of different smart contract function calls 47

ix

ABSTRACT

Counterfeiting has become an increasingly prevalent issue in the context of
globalization and the rapid advancement of technology. To combat this
problem, various industrial producers and distributors have been working
towards enhancing the transparency of their supply chain operations. In this
paper, we propose a decentralized Blockchain-based application system
(DApp) that can be used to detect counterfeit goods in the supply chain
system.

We leverage the security and immutability of data stored on the Blockchain to
facilitate the transfer of ownership of goods. Our proposed system issues a
Quick Response (QR) code for each product, which is connected to the
Blockchain and can be scanned by customers to verify the distribution and
ownership information of the goods. This paper presents the design and
implementation of our DApp system and evaluates its effectiveness in
detecting and preventing counterfeit goods in the supply chain. The results of
our experiments demonstrate the feasibility and potential of using Blockchain
technology in combating counterfeiting.

x

Chapter 1: INTRODUCTION

1.1 Introduction

The inability of the consumer being able to authenticate their purchases has

led to the growth of a market that thrives on selling copies/counterfeit of real

products that are both.

This market has grown tremendously in recent years owing to the dominance

of e-commerce and online outlets and the ease with which a product can be

sold and bought there.

From apparel to electronics to medicines the counterfeit product market has

been harming both consumers as well as the manufacturer of authentic

products. From the product not being up to the mark in terms of quality and

not working as the authentic product should to being outright life-threatening

when it comes to medicines.

If the threat of encountering scams online and the bank details being stolen

was already not enough, all of this leading to consumers being swayed away

from making online purchases.

Here, we suggest a product verification system based on blockchain

technology that is completely secure, safe, and dependable to combat this

growing industry of counterfeit goods.

Barcodes, electronic product codes (EPCs), and RFID technologies are used

by more advanced centralised systems to track products in the supply chain.

However, these systems are fundamentally unsafe because they rely on

centralised certification bodies and databases, which have single points of

failure that leave them open to hacker attacks and insider fraud.

Blockchain solutions that are decentralized and irreversible allow for product

authenticity and traceability at every stage of the supply chain. Based on this,

several blockchain projects have already released decentralized applications

(dApps), which use data from the supply chain to confirm that a commodity,

1

like luxury items or food, is actually authentic. The user of the dApp can

authenticate and track the merchandise completely by scanning the QR code

on the item.

1.2 Problem Statement

Producing and distributing fake goods is a pressing and crucial global

problem, particularly in underdeveloped nations where there is less of a retail

presence for major brands than in more affluent nations.

A reputable news source, The Guardian, said that the annual value of the trade

in counterfeit goods is $600 billion. Up to 10% of all branded products sold

could be fake. Whether knowingly or unknowingly, 80% of us have handled

phony or counterfeit goods. The demand for luxury products has expanded

dramatically in recent years, but the growth of fakes has been even faster: one

estimate claims that fakes have grown by 10,000% in just two decades.

One of the major ways in which counterfeit products are sold is through the

second-hand/resale market and the reason why it's so much easier is thanks to

the not so perfect supply chain system. The ownership of a product changes

from manufacturers to distributor and then to a wholesaler and retailer before

it reaches the customer. Therefore, a product goes through many hoops and

intermediate players, each presenting a new avenue to replace it with a

counterfeit product before it reaches the ultimate player, the customer.

2

1.3 Tools/Technology used

a) Blockchain can be centralized or decentralized. However, it is

important not to confuse decentralized with distributed. While

blockchain is inherently distributed (meaning many parties own copies

of the ledger), it is not inherently decentralized. Whether a blockchain

is centralized or decentralized simply refers to the rights of participants

in the ledger and is therefore a matter of design.

b) A digital signature verifies data integrity using asymmetric

cryptography. A digital signature is nearly impossible to forge without

access to the sender's private key. A digital signature is created by

encrypting the hash of the document using a private key. The recipient

can use the public key to decrypt the signature and ensure that the

result actually matches the hash of the document. If the document is

changed after signing, the digital signature is invalidated because the

hash of the document will not match the decrypted signature. A digital

signature not only verifies the identity of the signer but also verifies

the content of the message itself.

c) Distributed Ledger Technology (DLT) refers to a technological

infrastructure and protocol that allows simultaneous access,

verification, and recording in an immutable manner in a network

spread across multiple entities or locations. DLT, better known as

Blockchain technology

d) Smart contracts, simply put, are blockchain-based programmes that

execute when certain criteria are met. They are typically used to

automate the implementation of an agreement so that all parties can be

certain of the outcome right away, without the need for any

intermediaries or additional time. They can also automate a workflow

such that when certain criteria are met, the next action is initiated.

3

Benefits-

i) Speed, efficiency, and accuracy

The contract is immediately completed once the requirement is

satisfied. There is no need to file any papers or spend time

gathering errors that frequently occur when manually filling

out documentation because smart contracts are digital and

automated.

ii) Trust and transparency

There is no question that information has been altered for

private gain because there is no external party engaged and

participants share encrypted transaction logs.

iii) Safety

Since the records of blockchain transactions are encrypted, no

one can easily hack them. Additionally, since every record in

the distributed ledger is linked to all previous and subsequent

records, hackers would need to alter the entire chain in order to

alter just one record.

iv) Savings

Smart contracts eliminate the need for transactions to be

processed by intermediaries, and thus the associated time

delays and fees.

e) Node.js, an open-source, cross-platform, back-end JavaScript runtime

running on the JavaScript engine.

f) Ganache, a private blockchain for Ethereum development that you can

use to publish contracts, develop your application, and run tests.

g) Truffles, a world-class development environment, testbed, and active

pipeline for blockchains using the Ethereum Virtual Machine (EVM),

which aims to make life easier as a developer.

4

h) Remix IDE allows the development, deployment and management of

smart contracts for Ethereum, such as blockchain. It can also be used

as a learning platform.

i) MongoDB, the available platform for document-oriented database

applications.

j) Solidity, a programming language for creating smart contracts on the

Ethereum blockchain.

1.4 Objectives

The idea of ​​this project arose from the need to counter the ever-growing

market of counterfeit products.

The objectives of this project are:

1. Design an anti-counterfeit system.

2. Create an infrastructure for the supply chain, from manufacturer to

consumer.

3. Make the system transparent and decentralized.

4. Make the system immutable to protect against attacks and hacks.

5. To achieve the above, build the system on Ethereum blockchain.

6. Secure product details using a QR code.

7. Protect the consumer from frauds by offering them data at every stage

of the supply chain.

5

1.5 Methodology

The figure below illustrates the execution/working of a smart contract written

in Solidity on Ethereum blockchain.

Figure 1. Working of an Ethereum smart contract

● ABI - The Contract Application Binary Interface (ABI) is the default

way of dealing with contracts in the Ethereum ecosystem, both from

outside the blockchain and for contract-to-contract communication.

This standard describes how data is encoded based on its kind. A

schema must be applied in order to decode the encoding because it is

not self-descriptive.

● Byte Code - Bytecode is the "translated" data from our Solidity code.

Two-way computer guidance is available. Bytecode is usually a small

number of codes, sequences, and other pieces of data. Each instruction

step is an operation called "opcodes" which is usually one byte (eight

bits) in length. That is why they are called "bytecode" - single-byte

code.

6

● EVM - After each new block is added to the chain, the Ethereum

Virtual Machine, also known as the EVM, computes the state of the

Ethereum network and executes smart contracts. The Ethereum Virtual

Machine is built on top of Ethereum's hardware and node network

layer.

Note:-

1. Contract bytecode is public in readable form

2. Contract doesn’t have to be public.

3. Bytecode is immutable

4. ABI acts as a bridge between applications and smart contracts

5. ABI and Bytecode cannot be generated without source code

7

The diagram below shows the basic structure or idea behind how the system

needs to be built.

Figure 2. Flow chart of the system design

8

The diagram below illustrates a more detailed working structure of the supply

chain pipeline and how everyone (participants of the supply chain) interact

with the blockchain and the powers they hold.

Figure 3. Flow chart showing different participants

Figure 4. System architecture of an Ethereum Virtual Machine

9

1.6 Organization

A. System Diagram

The proposed DApp's system diagram is shown in Fig. 1.2. Before logging in,

every user of the DApp must first be authorized, regardless of whether they

are a producer, distributor, retailer, or customer. Utilizing MongoDB, this

authentication mechanism was put into place. The manufacturer can join their

business to the DApp and enroll their items after a successful authentication.

The manufacturer is given the company's contract address, and the entire

company's data as well as the account address of the manufacturer are

recorded in the blockchain network. A QR code is given to a product after it

has been added to the blockchain for verification. After registering, the

distributor/sellers can purchase goods from the manufacturer. The QR code

allows for tracking of the product's ownership transfer.

B. Manufacturer

The manufacturer's duties include adding the business to the blockchain,

naming it, and establishing the minimal registration cost for third parties that

wish to sell or buy from the business. Only the manufacturer retains the

authority to add products to the network. After a merchant purchases product

stock, the manufacturer may transfer ownership. The manufacturer's two main

tasks in this system are adding and distributing products. A product is added

using Algorithm 1.

Algorithm 1 Create Product

Input: Product Name, Product Price, Product Stock

Output: Added Product

if msg.sender is not manufacturer then

throw;

end

else

10

insert product in product array

end if

For distribution of product Algorithm 2 is used. The product and order status

in the blockchain is changed through this.

Algorithm 2 Distribute Product

Input: Product ID

Output: Changed Product Status

if msg.sender is not manufacturer then

throw;

end

else

change product status to ‘shipped’ and set order status as ‘complete’

end if

C. Seller

A vendor can register for the business by paying the minimal fee imposed by

the manufacturer. The vendor can purchase any goods and follow the

distribution of it after registering just once. When a product is delivered to the

seller by the manufacturer, its status is changed from "Ready To Go" to

"Shipped."

Algorithm 3 here is used to make sure a seller pays the minimum registration

fee set by the manufacturer.

Algorithm 3 Seller(Distributor/Retailer) Registration

Input: Min. registration fee set by manufacturer

Output: Registered Seller

11

if msg.sender is already registered or fee not appropriate then

throw;

end

else

map msg.sender is true

end if

Algorithm 4 Complete Purchase

Input: : ProdID, Seller Name, Quantity

Output: Set Current Owner of product as msg.Sender

if msg.sender is not registered seller then

throw;

end

else if msg.value is less that required amount then

throw;

end

else

set product owner name to seller name and store account address of

seller

end if

Here, the seller purchases or books products from the manufacturer using

algorithm 4. It stores information about the seller in the blockchain.

D. Customer

Customers can confirm the ownership transfer from manufacturer to

distributor to seller to the customer by scanning the QR code included with

each product. Additionally, the buyer has the option of checking the product's

distribution status and the name of the product's current owner.

12

Chapter 2: LITERATURE SURVEY

In a paper titled “Identifying Counterfeit Products using Blockchain

Technology in Supply Chain System ” published in IEEE by Nafisa Anjum

and Pramit Dutta, the system proposed here used the MetaMask

cryptocurrency wallet for transactions and the smart contract here was

deployed in Rinkeby; Ethereum Blockchain Testnet. The dApp is based on

three main stakeholders, producers, sellers, and consumers.

However, the disadvantage of this paper was that there was no system in place

to track the detail of the discontinuation of a product or return of a product.

In another paper published in the same journal by Yasmeen Dabbagh, Reem

Khoja, Leena Al Zahrani, Ghada Al Showaier, and Nidal Nasser, titled “A

Blockchain-Based Fake Product Identification System” an implementation of

smart contract on solidity was proposed, but the paper failed to propose details

on how the actual system should be implemented.

In the journal IJARIIE a paper titled “Fake Product Detection Using

Blockchain Technology '' was published by Tejaswini Tambe, Sonali

Chitalkar, Manali Khurud, Madhavi Varpe, S. Y. Raut where they were able to

create an application using Android Studio and Firebase as the central

database, but it went against the principle of decentralization which is the

fundamental base for any blockchain-based application. Also, there was no

mention of cryptocurrency used or the system design in place and its

implementation.

The survey "A Survey on Counterfeit Product Detection" by Prabhu Shankar

and R. Jayavadivel. Because there are so many products on the black market

and online, the market for counterfeit goods is growing rapidly. Therefore, it is

imperative to find a solution to the problems associated with identifying fake

goods and to create the necessary technology to increase detection precision.

This is one of the active study areas being studied in the current era. This

essay examines many techniques for identifying counterfeit items.

13

Table 1. Literature Survey

14

Chapter 3: SYSTEM DEVELOPMENT

3.1 Introduction

This section would describe the system development of the product in detail

along with the system design, the data flows of the project.

3.2 Authentication

Authentication of the system is an important part of the problem to tackle first.

Since there are many types of users in the system namely the customer, the

Original Equipment Manufacturer(OEM), the distributor and the retailer,

authentication of each of the players needs to be handled by the backend.

The JSON Web Token (JWT) standard was used to achieve system

authentication. A concise, URL-safe method of encoding claims that need to

be exchanged between two parties is the JSON Web Token (JWT). A JWT's

claims are encoded as a JSON object, which is used as the payload of a JSON

Web Signature (JWS) structure or as the plain-text of a JSON Web Encryption

(JWE) structure, allowing the claims to be digitally signed or integrity

protected with a Message Authentication Code (MAC) and/or encrypted..

JSON Web Tokens(JWT) can be used mainly in two scenarios namely:

● Authorization: JWT can be used for authorization of a user in a system

which is the use case for the project. For each protected route, the JWT token

would also be sent in the request body itself. The received token would be

validated at the server-side allowing a user to access resources, protected

routes and services that are permitted within the scope of that user.

15

● Exchange of information: For exchanging information between two

parties, JSON Web Token is a good way of ensuring that:

(1) Senders are who they are claiming to be since JWTs are signed

using either secret key or public/private key encryption. Taking

example of public-private key encryption, at the receiver side, the

receiver would have to use the sender’s public key in order to decrypt

the received message. Since, no key other than that of the sender can

decrypt the message, it can be ensured that the message can be sent by

the sender itself and not a third party masquerading as the sender.

(2) Payload or the message has not been tampered with since at the

server side, the signature is recalculated and is checked with the

original hash. Checking both of them ensures that the information has

been tampered with and is the same as what was sent.

Structure of a JSON Web Token(JWT) consists of three parts namely the

header, the payload and the signature.

Header is nothing but a Javascript Object and consists of two parts: the type of

the token(denoted by key “typ”, can be JWT, JWE and so on) and the hashing

algorithm used for signing the payload(denoted by “alg”, can be SHA 256,

SHA 384, RSA and so on). An example of a header is denoted below;

{

"alg": "HS256",

"typ": "JWT"

}

16

This header is then encoded using the Base64Url encoding to form the first

part of a JWT token. For example, the base64url encode of the above header

would be:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

Similar to the header, payload is also a Javascript Object and contains claims.

In JWT, the statement about a user along with additional related data is called

a claim. There are three types of claims namely Registered Claims, Public

Claims and Private Claims. Registered claims are predetermined claims. Some

of the examples of registered claims are subject(sub), issuer(iss), expiration

time(exp) and so on. Public claims are generally custom claims defined by the

user. Private claims are also custom claims and are used in exchanging

information when two parties agree on them. An example of payload in JSON

format is given below:

{

"username": "John Doe",

"pass": "test@password"

"admin": true

}

This payload is then encoded using the Base64Url encoding just like the

header before it to form the second part of a JWT token. For example, the

base64url encode of the above payload would be:

eyJ1c2VybmFtZSI6IkpvaG4gRG9lIiwicGFzcyI6InRlc3RAcGFzc3dvcmQiLCJhZG1pbiI

6dHJ1ZX0

17

Finally, using the algorithm described in the header part of the token, the

base64url encoded headed, the base64url encoded payload and a secret key is

hashed together to for the third and final part of the JSON Web Token(JWT),

the signature. This process can be denoted as:

HashingAlgorithm(

base64UrlEncode(header) + "." +

base64UrlEncode(payload),

secret_key)

For the given payload and header and using “aGVsbG8sIGkgYW0gc29sY” as

the secret key for hashing, the above information can be encoded into a JWT

token as:

18

Figure 5. Encoding a JSON Web Token

19

Figure 6. Decoding a JSON Web Token

Similarly, the verification of a JWT token works in reverse on the server side.

First, the header part of the JWT token is fetched(generally from the Bearer

token in the Authorization schema in a request payload). The header part is

then decoded using base64url decoder.

After the header has been decoded, the payload is fetched and depending on

the hashing algorithm defined in the “alg” section of the decoded header of the

received JWT token, the header and the payload is hashed again using the

secret key as used in the encoding process..

20

Finally, the hashes of the token and the newly calculated are matched together.

Along with any claims made in the payload itself. If the hashes do not match,

the JWT is rejected. If the claims made in the payload are not checked out

(like time exceeds expiry as defined in “expiry” in claims part), the JWT is

again rejected.

Figure 7. Working of JWT for authentication

3.3 Ethereum Blockchain

Ethereum Blockchain is a transaction based state machine and is one of the

major implementations of the blockchain technology. It is an open-sourced,

decentralized blockchain with the support of Smart Contracts. Only second to

bitcoin in market capitalization, Ether is the official cryptocurrency supported

by the Ethereum Blockchain.

Any blockchain implementation like Ethereum is characterized by the

following properties:

● Transactional Singleton Machine: There is only a single canonical

instance of the blockchain at any given instance of time. This means

that there is defined global truth or state that every node(or machine) in

the blockchain network partakes in.

21

● Shared State: All the different nodes in the blockchain network share

only a single canonical global state. Any machine that wants to hold

the blockchain is open to do so and they can be a partial node or a full

node.

● Cryptographically Secure:

Aforementioned, Ethereum is a translation based state machine. Therefore, it

receives a series of inputs and goes to the next state which is globally shared

with all the nodes in the blockchain network.

With Ethereum’s state machine, the state starts with a state analogous to a

blank state with no transitions called the “genesis block”. Whenever a

translation occurs in the blockchain network, the state of the blockchain

changes to a different state. At any point in time, the final state is the current

state of the blockchain.

Figure 8. An example of Finite State Machine

22

Figure 9. State change from Genesis state to current state

State change in the Ethereum blockchain does not necessarily have to be a

single transaction. Thousands of transactions can be bunched together to form

blocks. Therefore a block may contain many transactions and each block is

chained together with its previous block.

The nature of blocks is immutability. A blockchain ledger's immutability is its

capacity to stay unaltered, unchangeable, and irrevocable. A cryptographic

principle or a hash value is used to carry out each block of data, such as facts

or transaction details. Now, each block independently generates an

alphanumeric string for this hash value.

Each block has a hash value or digital signature for both it and the block

before it. In turn, this ensures that the blocks are implacably tied together in

the past. This feature of blockchain technology ensures that no one can tamper

with the system or change the data that has already been saved into the block.

A blockchain is therefore referred regarded as being cryptographically secure.

Figure 10. State Change in Blocks in Ethereum

23

For the block to be added to the blockchain and the state to advance, the

transactions in the block must be legitimate. Mining is the process of

confirming a block's validity. In mining, a number of blockchain nodes pool

their processing power to solve a cryptography hashing puzzle. The miner

must demonstrate a block is valid faster than any rival miner in order for it to

be added to the main network. "Proof of work" refers to the procedure of

validating each block by requesting a mathematical justification from the

miner.

Any node that is part of the blockchain has the ability to mine. The miner's

responsibility is to build and verify each block in the network. When

submitting a block to the blockchain, each miner includes a mathematical

"proof" that serves as a guarantee that the block is valid.

The miner who successfully validates the block first by solving the

cryptography problem is rewarded with Ether, the official cryptocurrency

supported by the Ethereum blockchain.

However, it can be possible that more than one miner validates the block at

exactly the same instance. This can result in conflict as a blockchain can only

have one global state. This problem is known as Forking and is a common

problem in a fast blockchain.

Figure 11. Fork problem in a blockchain

24

To prevent forking, a blockchain should come down to having only one branch

in its global state. Different algorithms can be used for selecting the branch as

the global state. For example, Ethereum uses the Greediest Heaviest Observed

Subtree abbreviated as the GHOST Protocol. The principle behind the

GHOST protocol is to select the branch on which most work has been done. In

general, the longest branch has the most computational work done on it and is

the one generally selected for included in the canonical global state.

Figure 12. GHOST Protocol

3.4 Ethereum Smart Contract

The Smart Contract was written on the Solidity Programming Language

version 0.8.7.

The design pattern for the smart contract was inspired by the openZeppelin

library. In the smart contract, a Ownable contract is defined first. This contract

would have functionality related to the admin control of the smart control that

includes transferring ownership of the smart control, relinquishing control of

the smart contract and so on. This would play an important role in the overall

design of the smart contract implementation. Since there are many kinds of

users in the project, this would enable access control and ownership of those

accesses with transfer and renouncing rights.

25

Figure 13. Implementation of Ownable smart contract

The first owner of the smart contract would be the address that would make

the contract deployment call. This is defined in the constructor() of the smart

contract Line 9. This first call or contract creation call would also emit a

user-defined event call TransferOwnership(address, address).

Modifier functionality of the solidity programming language is used here.

Function modifiers are used to change the behavior of a function like adding a

prerequisite clause or clean up. They are either called before the function is

called or just after the function has been called in this implementation. In the

implementation, onlyOwner() modifier is used in functionality where the

26

actions can be performed only by the owner itself like in the case of

transferOwnership(address) and renounceOwnership() functions.

After the ownership part of the smart contract was implemented, different

Roles need to be defined. Different actions associated with a role also need to

be defined and implemented. Aforementioned, the roles are Original

Equipment Manufacturer(OEM) or the manufacturer, the distributor, the

retailer and the consumer.

Roles were first defined as a library. Any different roles and their

functionalities were implemented after importing from the roles smart

contract.

Figure 14. Implementation of roles

27

In this smart contract, Roles library was defined first. A library in solidity

programming language which provides code reusability while being similar to

a smart contract.

Every role defined later would have a mapping from address to boolean along

with some functionalities like assigning an address a role, checking if an

address has the role and removing an account from its role. Mapping in

solidity works like any dictionary implementation where data is stored as a

key-value pair and search is generally done on the basis of key values. A

boolean value false of a given key for a role would mean that the account does

not currently have the role. In the implementation of the Roles smart contract,

add(Role, address) function is used to assign a role to a given address.

Similarly, remove(Role, address) works to remove an account from a given

role. has(Role, address) is used to check if a given address belongs to a given

role.

After that, different smart contracts for different roles were defined. Every

smart contract thus would inherit the ownable smart contract already defined

and would import from the roles smart contract to use the functionalities

defined in that smart contract.

Starting with the OEMRoles smart contract, the roles, action and access

control of an OEM was defined. Only a manufacturer is allowed to create a

listing of products, remove a product and dispatch the product to the next stage

of the supply chain. For some functions, modifier need to be used to make sure

that only the addresses who are OEM can perform functionalities. This was

achieved using the onlyOEM modifier.

modifier onlyOEM(){

require(isOEM(msg.sender), "Only an OEM can

perform this functionality");

_;

28

}

Apart from this, different functions for adding an OEM, removing an OEM

and checking if an address is an OEM. All of these functions would make

function calls to the roles smart contract defined earlier.

function isOEM(address account)

public

view

returns (

bool

)

{

return Roles.has(oems, account);

}

function addOEM(address account)

public

payable

onlyOEM

{

_addOEM(account);

}

function _addOEM(address account)

internal

{

Roles.add(oems, account);

emit OEMAdded(account);

}

29

function renounceOEM()

public

{

_removeOEM(msg.sender);

}

function _removeOEM(address account)

internal

{

Roles.remove(oems, account);

emit OEMRemoved(account);

}

}

Similarly, the same was implemented for different roles in the

ConsumerRoles, RetailerRoles and DistributorRoles smart contracts

respectively.

Figure 15. UML Class Diagram for different roles

30

After that the main smart contract SupplyChain was implemented. As

mentioned, a product in a supply chain goes through different states like

Manufactured, Packed, Dispatched to distributor, Dispatched to retailer, Sold

to consumer and so on. Their states were represented using an enum in

solidity.

Figure 16. State Structure

Data related to a product and its history also needs to be stored. This was

achieved mainly by using the struct and mapping functionality as provided by

solidity. An item can be uniquely identified by its UPA or unique product

code. UPC is unique for different items for the same product. SKU stands for

Stock Keeping Unit and serves the same purpose as UPC. However, SKU is

generally used internally by the manufacturer and the distributor whereas UPC

is used at the retailer in the supply chain.

The implementation of Item is done using struct as:

31

Figure 17. Item Structure

● SKU: Stands for Stock Keeping Unit. Used internally by manufacturer

to identify a product

● UPC: Stands for Unique Product Code. Used externally by retailers to

uniquely identify a product

● ownerID: The address of the user in the supply chain which holds the

ownership to the product and can perform different functionalities to

the product in accordance to its role defined.

● OEMName: Name of the product Original Equipment

Manufacturer(OEM).

● productID: An integer used to identify a product in the project.

● productDescription: A string containing the description of the product.

● itemState: The current state of the product item in the supply chain.

● distributorID: An array of addresses of different distributors which

were in the supply chain cycle of the product.

● retailerID: The address of the retailer of the product.

● customerID: An array of addresses of different customers.

Similarly, the history of a product as it moves through the supply chain also

needs to be maintained. This was also done by the use of struct. The

implementation is:

32

Figure 18 Item History Structure

● status: Denotes the status of the product.

● stateDescription: The description associated with the associated

status of the product. This would include the timestamp,

location and other data of the state change.

The product item data and the product history data were stored as mapping

from uint to Item object and from uint to ItemHistory array which is

demonstrated as code snippet below:

Figure 19. Item History Structure 2

The ER diagram of the above relation is given below:

Figure 20. ER Diagram of Objects and Entities

33

To make sure that the access control of all functions are well-defined

depending on roles of a user and to check for the correct state of the product

before performing actions on it like changing state and triggering events

associated with state change, function modifiers are used whose

implementation is given below:

Figure 21. Access Control Implementation

● modifier manufactured(uint) is used to check where the listing of a

product has been made or not before performing subsequent actions

related to it.

● modifier packed(uint) is used to check whether a product has been

packed by the manufacturer before doing actions on it like dispatching

to a distributor.

● modifier dispatchDistributor(uint) is used to check if the product has

been dispatched to a distributor before performing any related actions

on it.

● modifier receivedDistributor(uint) is used to check if the product has

been received by the distributor before performing any subsequent

actions like dispatching to a retailer or dispatching to another

distributor.

● modifier dispatchRetailer(uint) is used to assert before performing

any subsequent action that the product has been dispatched to the

retailer.

34

● modifier receivedRetailer(uint) is used to assert before performing any

subsequent action that the product has been received by the retailer.

● modifier soldCustomer(uint) is used to check before running a

function that the product has been sold to the customer.

Apart from this, another modifier called verifyCaller(address) is defined as:

Figure 22. Verify Caller

The role of the verifyCaller(address) modifier is to make sure that the owner

of the product at any given instance of time is the one calling a function that

can change the state of the product. This binds the state and actions associated

with the product with a address which is the owner of the product at a given

time and makes sure that no address other than the owner can call function that

changes the state and ownership of the product.

The functionalities associated with a manufacturer are to create a listing for a

product, pack a product and dispatch the product. All of these functionalities

are implemented in the SupplyChain smart contract itself. For manufacturing

a product, the implemented function is given below:

function manufactureItem(

uint _upc,

address _OEMID,

string memory _OEMName,

uint _productID,

string memory

_productDescription,

uint _productPrice,

string memory _stateDescription

)

public

35

payable

onlyOEM

{

items[_upc].sku = sku;

items[_upc].upc = _upc;

items[_upc].ownerID = _OEMID;

items[_upc].OEMName = _OEMName;

items[_upc].OEMID = _OEMID;

items[_upc].productID = _productID;

items[_upc].productDescription =

_productDescription;

items[_upc].productPrice = _productPrice;

items[_upc].itemState = State.MANUFACTURED;

items[_upc].distributorID.push(address(0));

items[_upc].retailerID = address(0);

items[_upc].customerID.push(address(0));

sku = sku + 1;

ItemHistory memory hist;

hist.status = 0;

hist.stateDescription = _stateDescription;

itemHistory[_upc].push(hist);

emit Manufactured(_upc);

}

manufactureItem function is defined as payable. This is because the function

is adding data to the blockchain and hence it needs to be a payable function.

onlyOEM modifier is used to make sure that only the manufacturer is able to

call the function. An error is thrown if any address other than that of an OEM

tries to create a product listing. As seen in the function implementation, the

item data and item history data is initialized. This is followed by an

Manufactured(uint) event.

36

Similarly, a manufacturer's job is to pack the item before sending it to the next

player in the supply chain. This was also implemented as a payable function

function packItem(uint _upc)

manufactured(_upc)

onlyOEM()

verifyCaller(items[_upc].OEMID)

public

payable

{

items[_upc].itemState = State.PACKED;

emit Packed(_upc);

}

function dispatchToDistributor(uint _upc,

address _distributorAddress)

packed(_upc)

onlyOEM()

verifyCaller(items[_upc].OEMID)

public

payable

{

items[_upc].itemState =

State.DISPATCHED_DISTRIBUTOR;

items[_upc].ownerID = _distributorAddress;

emit Shipped_To_Distributor(_upc);

}

Similar to the manufactureItem() function, the packItem(uint) function is

also implemented as a payable function since data is modified in the

blockchain. In this function, three function modifiers are used namely

37

manufactured(uint) to make sure that the product has been listed and has been

manufactured by the OEM, onlyOEM() to make sure before calling the

function that only a manufacturer can call the function and change its state and

verifyCaller(address) to make sure that only the manufacturer which is the

current owner of the product can change its state. The function call does only

change the state key of the item struct to PACKED which is followed by a

trigger of the Packed(uint) event.

Another functionality provided by a manufacturer is to dispatch the product to

a distributor. The implementation is given below in the code snippet:
function dispatchToDistributor(uint _upc, address

_distributorAddress)

packed(_upc)

onlyOEM()

verifyCaller(items[_upc].OEMID)

public

payable

{

items[_upc].itemState =

State.DISPATCHED_DISTRIBUTOR;

items[_upc].ownerID = _distributorAddress;

emit Shipped_To_Distributor(_upc);

}

The function is, again, payable as it is modifying the contents of data stored on

the blockchain. packed(uint) modifier is used to make sure that the product

has been already packed by the manufacturer before calling this function.

onlyOEM() modifier to make sure that only those addresses can call this

function that are in the manufacturer role. verifyCaller() function to make sure

that only those manufacturers can make a call to this function who are the

original manufacturer of the product and made the product listing.

38

The function is responsible for changing the state of the product item to

DISPATCHED_DISTRIBUTOR and for changing the current owner of the

product to the distributor the product has been dispatched to. This means that

the ownership of the product changes to the distributor and only a distributor

can call any subsequent function that may change the state of the product. The

function ends with a call to event Shipped_To_Distributor(uint).

The next player in the supply chain is the distributor. A distributor role in the

supply chain is to receive products from a manufacturer in bulk and then

redirect the products to another distributor and/or to a retailer. Before doing so,

a distributor would receive the product from a manufacturer or another

distributor. This is implemented in receivedByRetailer(uint) function as:

function receivedByDistributor(uint _upc)

dispatchedDistributor(_upc)

onlyDistributor()

verifyCaller(items[_upc].ownerID)

public

payable

{

items[_upc].itemState =

State.RECEIVED_DISTRIBUTOR;

emit Received_By_Distributor(_upc);

}

This function is also payable as it is changing the state of the data stored in the

blockchain. This requires function modifier dispatchedDistributor(uint) to

make sure that only after the product has been dispatched that the function can

be called, onlyDistributor() modifier to make sure that only a distributor would

be able to call this function verifyCaller(uint) to make sure that only the

distributor to which the product was dispatched by the manufacturer would be

able to call this function. This function changes the state of the product to

39

RECEIVED_DISTRIBUTOR and does not change the ownership of the

product. The execution of the function is followed by triggering of an event

called Received_By_Distributor(uint).

After receiving the product, a distributor may either dispatch the product to

another distributor or to a retailer itself. Functions for both of the actions have

been implemented. The function for dispatching to a retailer is defined as

dispatchToRetailer(uint, address) and in dispatchToDistributor2(uint,

address) respectively the implementations to which are given below:

function dispatchToRetailer(uint _upc, address

_retailerAddress)

receivedDistributor(_upc)

onlyDistributor()

verifyCaller(items[_upc].ownerID)

public

payable

{

items[_upc].itemState =

State.DISPATCHED_RETAILER;

items[_upc].ownerID = _retailerAddress;

emit Shipped_To_Retailer(_upc);

}

function dispatchToDistributor2(uint _upc,

address _distributorAddress)

receivedDistributor(_upc)

onlyDistributor()

verifyCaller(items[_upc].ownerID)

public

payable

40

{

items[_upc].itemState =

State.DISPATCHED_DISTRIBUTOR;

items[_upc].ownerID = _distributorAddress;

emit Shipped_To_Distributor(_upc);

}

These two functions are also payable since they are changing the data stored in

the blockchain. The function modifiers used are receivedDistributor(uint) to

make sure that the product has been received by the distributor before it has

been dispatched to a retailer or a distributor. onlyDistributor() to make sure

that only a distributor can call this function and verifyCaller(address) to make

sure that only the distributor with which the current ownership of the product

lies can call this function. This function would change the ownership of the

product to a retailer or a distributor and the ownerID of the product to that of

the retailer or a distributor followed by a trigger to Shipped_To_Retailer(uint)

or Shipped_To_Distributor(uint) event depending which of the two functions

were called.

From a retailer, a product can be sold in the primary market i.e. to a customer.

This was facilitated in the project. The code snippet for the same is given

below:

function soldByRetailer(uint _upc, address

_customerAddress)

receivedRetailer(_upc)

onlyRetailer()

verifyCaller(items[_upc].ownerID)

public

payable

{

items[_upc].itemState = State.SOLD;

items[_upc].ownerID = _customerAddress;

41

emit SoldPrimary(_upc);

}

Again this function would take the upc of the product to be sold and the

Ethereum address of the customer to which the product is being sold to. Along

with this, function modifiers are used for access control.

receivedRetailer(uint) is used to assert that the product has been sold only

after it has been received by the retailer. onlyRetailer() is to make sure that

only a retailer can perform this functionality and verifyCaller(address) is to

make sure that no ethererum address other than that of the retailer which holds

the current ownership of the product can change its state and ownership. This

function changes the ownership of the product to that of the customer followed

by a trigger to SoldPrinary(uint) event.

3.5 NodeJS Backend

NodeJS is used as a backend for the project. A backend framework is

necessary to facilitate a couple of this. For one, the NodeJS backend is

responsible for making web3 calls to the different smart contract functions that

have been implemented so far. In this case, therefore, the NodeJS backend

would act as an intermediary between the user of the program and the smart

contract. All of the functionality implemented in the smart contract has been

wrapped by different REST API calls.

Apart from providing an interface between the smart contract functions and

the user, the NodeJS backend is also used to communicate with a centralized

server. MongoDB is used as a centralized server. The need for a centralized

server arises because of the fact that there can be different kinds of

users(manufacturer, distributor, retailer, customer) present in the system.

Therefore authentication and authorization of those users needs to be done.

The user details would have to be stored in a centralized database that would

be used later on in logging a user in the system and fetching information

42

related to the logged-in user. Any data related to product like description and

product history are stored in the blockchain.

The mongoDB schemas of different users is given below:

Figure 23. Schema of Customer Figure 24 Distributor

Figure 25 Schema of Manufacturer Figure 26 Retailer

The UML class diagram of the implemented API is given below:

43

Figure 27. UML Diagram of API Endpoints

44

Chapter 4: PERFORMANCE ANALYSIS

To evaluate the performance of our system we first need to understand the

term “gas”.

The term "gas" refers to the metric used to express the amount of

computational power necessary to carry out particular activities on the

Ethereum network.

Each Ethereum transaction has a cost since they all need computing resources

to complete. The charge needed to complete a transaction on Ethereum is

referred to as "gas."

Figure 28. Ethereum Transactions

Gas (ETH) is purchased using ether, the cryptocurrency that runs Ethereum.

Each gwei, which serves as a unit of currency for ETH and is used to represent

petrol prices, is equal to 0.000000001 ETH (10-9 ETH). You may say, for

instance, that your petrol costs 1 gwei as opposed to 0.000000001 ether. A

giga-wei, or 1,000,000,000 wei, is denoted by the word "gwei" itself. Wei

itself, the lowest ETH unit, is named after Wei Dai, the creator of b-money.

Block Size:Each block's intended size is 15 million gas, however actual block

sizes may vary from that up to the block limit of 30 million gas depending on

45

network demand. The protocol is able to achieve an equilibrium block size of

15 million on average by using tâtonnement. This means that if the block size

exceeds the intended block size, the protocol will increase the base price for

the following block. Similar to this, the protocol will reduce the base fee if the

block size is smaller than the intended block size. Depending on how far off

target the current block size is, the basic fee is adjusted.

Base Fee:Each block has a base cost that acts as a reserve price. To be

included in a block, the offered price per petrol must at least match the base

fee. Because the base cost is set independently of the current block and is

determined by the blocks before it, transaction fees are more predictable for

customers. During block mining, this base fee is "burned," or removed from

circulation.

The basic charge is calculated using a formula that contrasts the size of the

preceding block (the amount of petrol utilised for all transactions) with the

desired size. The base charge will increase by a maximum of 12.5% per block

if the target block size is surpassed. Due to this exponential growth,

maintaining a large block size is no longer commercially viable.

Table 2. Working transactions in an Ethereum blockchain

46

According to the table above, a wallet will advise the user that the maximum

base cost that may be raised to the following block in order to create a

transaction on block number 9 is the "current base fee * 112.5% or 202.8 gwei

* 112.5% = 228.1 gwei."

Max Fee: Users have the option of setting a maximum amount they are

willing to pay for a network transaction. This opportunistic parameter is

known as maxFeePerGas. For a transaction to be processed, the maximum fee

must be greater than the sum of the base cost and the tip. The transaction

sender is given a refund for the discrepancy between the maximum fee and the

sum of the base fee and tip.

The performance of the project can be measured in two ways. One is to

calculate the cost(in gas) of every payable function in the smart contract.

Another is to calculate the latency of the different endpoints of the REST API.

Both have been done. It should be noted that both NodeJS server and the

ethereum blockchain are running on the local machine. The Ethereum smart

contract was compiled using truffle and deployed on Ganache providing local

hosting of ethereum blockchain.

The table below shows the cost in gas of different functionalities:
Table 3. Cost of different smart contract function calls

Actions Cost(in gas) Cost(in ETH)

Creating Manufacturer 46306 78.49

Creating Customer 46307 78.49

Creating Distributor 46240 78.39

Creating Retailer 46239 78.39

Creating Product

Listing

293117 495.95

47

Pack Product 46869 79.28

Dispatching to

Distributor

38368 64.72

Received By

Distributor

31892 53.8

Dispatch to retailer 38368 64.72

Received by retailer 32626 55.02

Sold to customer 38390 64.85

Another performance measure for testing the project was to check the latency

for each API call of the NodeJS backend. Calls were made using an

open-source tool called Postman

Figure 29. Latency for logging in a customer

48

Figure 30. Latency for registering a customer

Figure 31. Latency for registering a manufacturer

49

Figure 32. Latency for logging in a manufacturer

Figure 33. Latency for registering a distributor

50

Figure 34. Latency for /api/roles/manufacturer/createproduct API call

Figure 35. Latency for /api/roles/manufacturer/packproduct API call

51

Figure 36. Latency for /api/roles/manufacturer/dispatchproduct API call

Figure 37. Latency for /api/roles/distributor/receiveproduct API call

52

Figure 38. Latency for /api/roles/distributor/dispatchproductretailer API call

Figure 39. Latency for /api/roles/retailer/receiveproduct API call

53

Figure 40. Latency for /api/roles/retailer/sellproduct API call

54

Chapter 5: CONCLUSIONS

5.1 Conclusions

With the increasing market size of counterfeit products the need to counter the

supply and distribution of such products is the need of the hour. Giving the

consumer the ability to verify the product authenticity can majorly help reduce

the circulation of counterfeit products. Such systems, although already in place

for certain products are still very vulnerable due the nature of them being

centralized, this is where our proposed system for tracking the products by

storing and updating the details of origin, transfer and sale on the blockchain is

a new step in creating a safe, secure and transparent ecosystem for both

manufacturers and consumers.

A system for monitoring ownership that is based on distributed ledger

technology using blockchain. The DApp created here guarantees increased

security and transparency in the supply chain and can be relied upon for use in

both local markets and e-commerce.

The fact that the system makes use of QR codes and user authentication at

every step in the supply chain hence helping verify each transaction and

eliminate the risk of counterfeits being put in at any instance of the product

delivery. Besides, the cost for enrolling each product in the proposed model is

suggested to be kept minimal so as to encourage more and more companies to

make use of it.

5.2 Future Scope

This project can further be expanded making use of the database built upon

and stored on the blockchain of all the registered manufacturers, distributors,

sellers as well as customers which can help the market in many ways such as,

● Grading the manufactures

● Trust rating for distributors as well as sellers

55

● Help the customers know about the product better before making the

purchase

● Help recommend products to the customers based on their previous

brand interactions

● Increasing the complexity of the smart contract by adding

functionalities like returning a product.

● Create a front-end for the NodeJS backend and to add different

automation techniques like the use of QR to automate different

functionalities.

5.3 Applications Contribution

The following contributions can be drawn form the conclusion,

● We aim to counter the supply and distribution of counterfeit products

● Protect the rights of the consumer by empowering them with the

knowledge of authenticity of their purchase

● Creation of an ownership tracking system DApp on Ethereum

blockchain

● Promoting transparency and security in the product supply chain

56

REFERENCES

[1]https://www.theguardian.com/fashion/2022/may/10/spot-the-difference-

the-invincible-business-of-counterfeit-goods#:~:text=According%20to%2

0some,in%20two%20decades.

[2] Anjum, N. and Dutta, P., 2022, January. Identifying Counterfeit

Products using Blockchain Technology in Supply Chain System. In 2022

16th International Conference on Ubiquitous Information Management

and Communication (IMCOM) (pp. 1-5). IEEE.

[3] Y. Dabbagh, R. Khoja, L. AlZahrani, G. AlShowaier and N. Nasser,

"A Blockchain-Based Fake Product Identification System," 2022 5th

Conference on Cloud and Internet of Things (CIoT), 2022, pp. 48-52, doi:

10.1109/CIoT53061.2022.9766493.

[4] Sonali P. Chitalkar, Manali B. Khurud, Tejaswini L. Tambe, Madhavi

G. Varpe, and S. Y. Raut, "Fake Product Detection Using Blockchain

Technology," International Journal Of Advance Research And Innovative

Ideas In Education, vol. 7, no. 4, pp. 314-319, Jul-Aug 2021. [Online].

Available:

http://ijariie.com/AdminUploadPdf/Fake_Product_Detection_Using_Bloc

kchain_Technology_ijariie14881.pdf [Accessed : 03 July 2022].

[5] Jadhav, R., Shaikh, A., Jawale, M.A., Pawar, A.B. and William, P.,

2022, June. System for Identifying Fake Product using Blockchain

Technology. In 2022 7th International Conference on Communication and

Electronics Systems (ICCES) (pp. 851-854). IEEE.

[6] https://phys.org/news/2019-03-counterfeit-pirated-goods-global.html

[7]https://www.statista.com/statistics/1117921/sales-losses-due-to-fakegood

-by-industry-worldwide

57

[8] T. J. Sayyad, ”Fake Product Identification Using Blockchain

Technology,” in International Journal of Future Generation

Communication and Networking, vol. 14, pp. 780-785, 2021, ISSN:

2233-7857 IJFGCN

[9] T. Tambe, S. Chitalkar, M. Khurud, M. Varpe, S. Y. Raut, ”Fake

Product Detection Using Blockchain Technology,” in International

Journal of Advance Research, Ideas and INNOVATIONS in Technology,

vol. 7, pp. 314-319, 2021, IJARIIE-ISSN(O)-2395-4396

[10] J. Ma, S. Lin, X. Chen, H. Sun, Y. Chen and H. Wang, ”A

Blockchain-Based Application System for Product Anti-Counterfeiting,”

in IEEE Access, vol. 8, pp. 77642-77652, 2020, doi:

10.1109/ACCESS.2020.2972026.

[11] K. Toyoda, P. T. Mathiopoulos, I. Sasase and T. Ohtsuki, ”A Novel

Blockchain-Based Product Ownership Management System (POMS) for

Anti-Counterfeits in the Post Supply Chain,” in IEEE Access, vol. 5, pp.

17465-17477, 2017, doi: 10.1109/ACCESS.2017.2720760.

[12] Y. P. Tsang, K. L. Choy, C. H. Wu, G. T. S. Ho and H. Y. Lam,

”Blockchain-Driven IoT for Food Traceability With an Integrated

Consensus Mechanism,” in IEEE Access, vol. 7, pp. 129000-129017, 2019,

doi: 10.1109/ACCESS.2019.2940227.

[13] S. Anandhi, R. Anitha and S. Venkatasamy, ”RFID Based Verifiable

Ownership Transfer Protocol Using Blockchain Technology,” 2018 IEEE

International Conference on Internet of Things (iThings) and IEEE

Green Computing and Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData), 2018, pp. 1616-1621, doi: 10.1109/Cybermatics

2018.2018.00270.

58

[14] S. Rahmadika, B. J. Kweka, C. N. Z. Latt and K. Rhee, ”A

Preliminary Approach of Blockchain Technology in Supply Chain

System,” 2018 IEEE International Conference on Data Mining

Workshops (ICDMW), 2018, pp. 156-160, doi:

10.1109/ICDMW.2018.00029. [10]

https://coinmarketcap.com/converter/eth/usd/

59

APPENDICES

Figure 41. Implementation of registration

Figure 42. Implementation of login

60

Figure 43; Implementation of Ownership Transfer

Figure 44; Implementation of Product Creation

61

