
Product-Brand Store Web API

Project report submitted in partial fulfillment of the

requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information

Technology

By

Shivansh Thakur (191215)

Under The Supervision of

Dr. Ruchi Verma

to

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology
Waknaghat, Solan-173234, Himachal Pradesh

Acknowledgement

Firstly, I express my heartiest thanks and gratefulness to almighty God for His divine

blessing in making us possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Dr. Ruchi

Verma, Assistant Professor (SG), Department of CSE Jaypee University of

Information Technology, Wakhnaghat. It is their sincerity that prompted me throughout

the project to do hard work using industry-adopted technologies. Her endless patience,

scholarly guidance, continual encouragement, constant and energetic supervision,

constructive criticism, valuable advice, reading many inferior drafts, and correcting them

at all stages have made it possible to complete this project.

I would like to express my heartiest gratitude to Dr. Ruchi Verma, Assistant Professor

(SG), Department of CSE, for her kind help to finish my project.

I would also generously welcome each one of those individuals who have helped me

straightforwardly or in a roundabout way in making this project a win. In this unique

situation, I might want to thank the various staff individuals, both educating and

non-instructing, which have developed their convenient help and facilitated my

undertaking.

Finally, I must acknowledge with due respect the constant support and patients of my

parents.

Shivansh Thakur,
191215

iii

Table of Content

Certificate…………………………………………………………………..i
Plagiarism Certificate………………………………………………………ii
Acknowledgement………………………………………………………….iii
Table of Content……………………………………………………………iv
List of Figures ………………………………………………………..…….vi
List of Tables ………………………………………………………..……..vii
Abstract ………………………………………………………..........….......viii

1. Introduction…………………………………………………………….1

1.1 Company Profile ………………………………………………1
1.2 Introduction…………………………………………………….1
1.3 Problem Statement …………………………………………..…2
1.4 Objective …………………………………….…………………2
1.5 Methodology …………………………………………………...2

1.5.1 Proposed Architecture………………………………….3
1.5.2 System Requirements…………………………………..5
1.5.3 Database Used………………………………………….5

1.6 Organization…………………………………………………….6

2. Literature Survey……………………………………………………….8

2.1 Technology and Literature Survey.………………………………8
2.1.1 Development Tools…………………………………….8
2.1.2 Representational State Transfer (REST)……………….10
2.1.3 Golang HTTP Package…………………………………12
2.1.4 Database Migration……………………………….……13

2.2 Project Feasibility………………………………………...…….13
2.2.1 Technological feasibility ………………………...…13
2.2.2 Functional feasibility … ……………………..…….13
2.2.3 Schedule feasibility……………………………..…..14

2.3 Application Plan ………………………………………..………14
2.3.1. Justification and Project Building………………....…14
2.3.2. Milestones and Deliverables ……………………...…15
2.3.3. Roles and Responsibilities ……………………..……15
2.3.4. Group Dependencies ……………………………..….16
2.3.5. Project Scheduling chart …………………………….17

3. System Development and Implementation.………………………...18

3.1 Study of Current System …………………………………… 18
3.2 Problems and Weaknesses of Current System ………………18

iv

3.3 User Characteristics …………………………………………18
3.4 Assumptions and Dependencies …………………………….19
3.5 System Design……………………………………………….23
3.6 Database Design………………………………………….….25
3.7 Implementation Environment:……………………………….26
3.8 Coding Example……………………………………………..27

4.0 Performance Analysis ………………………………………………31

4.1 Project Testing Strategy…………………………………….. ..31
4.2 Unit Testing Planning….…………………………………… ..31
4.3 Unit Tests……………………………………………………..31
4.4 Test Cases ……………………………………………………33
4.5 Swagger Documentation...……………………………………37

5.0 Conclusion and Discussion …………………………………………40
5.1 Conclusion …………………………………………………...40
5.2 Discussion ……………………………………………………40
5.3 Future Scope and Enhancements …………………………….40
5.4 Application Contributions …...………………………………41
5.5 Limitations ……………... …...………………………………41

REFERENCE………………………………………………………….. 42

APPENDICES ………………………………………………………….. 43

v

List of Figure

Figure 1.1 Go Language Symbol …………………………………………………....3

Figure 1.2 MySQL Symbol………………………………………………………….4

Figure 1.3 Git/GitHub Symbol…………………………………………………...…..5

Figure 2.1 Iterative Waterfall Model ………………………………………………. .11

Figure 3.1 Implementation Diagram ..……………………………………………… 16

Figure 3.2 Flow Chart of Login ….………………………………………………… 19

Figure 3.3 Flowchart of create Diagram ..…….……………………………………. 20

Figure 3.4 Flowchart of GetByBrand …….…………………………………………20

vi

List Of Table

Table 2.1 Roles and Responsibilities ………………………………………………12

Table 2.2 Application Schedule…………………………………………………….13

Table 3.1 Product Data Dictionary……………………………………………….. 21

Table 3.2 Engine Data Dictionary…………………………………………………. 21

Table 3.3 Admin Data Dictionary………………………………………………….. 22

Table 4.1 Login Test Cases……………………………………………………… …36

Table 4.2 GetByID Object Test Cases………………………………………………36

Table 4.3 Create Object Test Cases……………………………………………….. 38

Table 4.4 Update Test Cases……………………………………………………….…39

vii

Abstract

The Products-Brand Store Web API is an API which easily create/update/delete

products as well as Admin Authentication for safety.

In everyday life there are many difficulties owners are facing. In these difficulties one

of the difficulties is to manage online web Store/shop sites as well as in this hectic life

schedule owners don’t have time to do all the things manually.

In my Web API, I have created a backend of the Product-Brand Web Store site which

has Admin –who can manage the site, who can manage the products. Now this Web

API may work with any sort of UI without any prior knowledge of building/structuring

of the API.

Apart from this Web API has UI friendly responses which can be easily utilised at the

time of creation of the UI as well as it is also user friendly for users when used the API

for testing in the postman. Also Web API is secure with basic sort of Authentication.

viii

Chapter 01: Introduction

1.1 Company Profile

Modern retail technology provider ZopSmart Technology offers all the resources

needed to establish an online store. ZopSmart offers services like digital marketing,

e-commerce, mobile commerce, and e-wallets.

ZopSmart help clients to define business processes and derive the optimum integration

needs using industry best practices to increase the automation for data communication

and for better decision making so that the business people can focus on business and

technology does the data communication and enables better decision making.

Services:

WebSite Development: End-to-End website development starting from UI/UX design

to development of the Website or maintaining the website for clients.

Framework Development: Framework Development for making Internal/Client

WebServices in Java/ Golang /NodeJS.

Mobile Development: Android Development, IOS Development

Company Website - https://zopsmart.com

1.2 Introduction:

This application is designed for store owners who have access to a database of data on

online goods. Our goal is to make it simple for executives and administrators to

automate their tasks with minimal effort. For instance, they can quickly produce quotes

for any inquiries about online products.

1

1.3 Problem Statement:

Nowadays it is easy to find online web stores on the internet, as online business

has become very common disregarding the age limit and gender.

Using manual procedures may pave the way for a variety of obstacles when

satisfying Customers and Employees of the respective online shopping. Valuable time

and money of the Owners, Employees get wasted unnecessarily due to these manual

dealings. These obstacles directly impact the dealership's profits, owners' interests, and

both.

1.4 Objective:

The following are the project's goals:

• Avoid the paper-based tasks at the shopping location, such as using diaries to record
brand and product information.

• Eliminate data duplication by maintaining Product and Brand details across many
devices (mobile, diary, etc.) and across multiple users (Owner, Employees).

• Eliminate the Owner's and Employees' wastage of time, resources, efforts, and
money.

• Boost the productivity and efficiency of a web store's operations, services, and
procedures including storing Product and Brand information.

• Boost employee and owner satisfaction.

1.5 Methodology:

Some of the main components of this system are “Three Layered Architecture”,

Postman-API testing, Swagger API documentation, Database Migrations etc. To start

building the project, it is needed to set up the machine for the required tools for

development.

Environment variables can be set in /.bashrc or /.bash_profile. These are hidden files,

which is why they begin with a dot. The home directory () contains both. The system

2

environment contains several processes that are active, as well as Environment

variables—variables that are set in the environment and have an impact on the processes

that use them. These procedures will be impacted if the value of these variables

changes.

OS having a command-line and graphical user interface that is based on Unix.

The default shell on Linux is BASH (Bourne Again Shell), a Unix shell.

Installing, upgrading, and maintaining packages are done via a package manager. APT:

Advanced Packaging Tool (APT), SUDO: Superuser Do or Substitute User Do, and

apt-get are the default package managers for Ubuntu.

1.5.1 Proposed Architecture:

In Three Layered Architecture, layers are autonomous from one another and interact

via interfaces. Basically, this aids in the modularization, readability, and

maintainability of our application.

HTTP layer, Service layer, and Store layer are the three layers of this.

1. HTTP layer: verifies request body, header checks, and query/path parameters.

2. Service layer, which carries out business logic and interacts with the datastore layer.

3. Store layer: Executes queries at the database level.

1. Each layer uses an interface (specified methods with input parameters and output

types) to communicate with its preceding and following layer.

2. Depending on the situation, each layer's interface, database, and server are mocked

during testing.

Dependency Injection

Dependency Injection is a way of creating code where the dependencies of a certain

object or struct are provided at the moment the object is initialised.

3

We have the option to explicitly specify when to reuse an existing instance of a

dependency and when to build new ones. The structs are no longer in charge of

creating their dependencies, which loosens their bond with those dependencies.

Micro Services:

A microservices-based approach to software development. It is an organisational and

architectural framework for building compact, independent services that communicate

with one another through well-defined APIs. Small, autonomous teams own and

operate these services.

Microservices architectures make it easier to build and develop applications and speed

up the time it takes to commercialise new features.

Flexibility in Scaling

The demand for each microservice's underlying app feature can be scaled

independently of the others.

This enables teams to maintain service uptime during moments of high demand,

precisely size infrastructure, and accurately estimate the cost of a feature.

Easy to Deploy

Microservices make it easier to test new ideas and roll them back if they don't work by

enabling continuous integration and delivery. It is able to experiment more, revise code

more quickly, and launch new features more quickly thanks to the low cost of failure.

Utilisable Code

Software can be divided into distinct, well defined modules, which teams can then use

for a variety of purposes. A service developed for one purpose may serve as the basis

for another feature.

The project titled as “Product-Brand Store Web API” is a Web API. These API provide

complete information about the product and its brand. The foundation of the online

Store is a product database that houses all of the necessary product data.

4

It provides the find, create, update and delete functionality.

key points about this application:

• Giving users the option to input Product and Brand information.

• Giving users the option to edit Brand and Product information.

• Offering the option to display information about all Products and Brands.

1.5.2 System Requirements:

Hardware Requirements :

• Processor: I3

• Higher Ram: 1 GB / Higher

• Hard disk: 10 GB / Higher

Software Requirements :

• Technology: Go Language

• IDE : GoLand

• Designing Tool : Creatly, Lucid Chart

• Server Side Technologies: Go Lang

• Database Server: MySql

• Operating System: Linux, Mac

1.5.3 Database Used

MySQL is used as the database. The drivers and libraries we use to link programmes

written in golang programming language to MySQL database servers are known as

the MySQL Connectors and APIs. The database server and application server may be

located on the same system or may communicate over a network.

By setting up several connections using the connection pooling functionality, MySQL

enables users to manage data coming in from various sources at various rates and over

time intervals, which helps improve system efficiency and lower overall resource

5

consumption. With connection pooling, new connections can be sent back to the pool

automatically.

By using the Java Naming and Directory Interface (JNDI), you may access the

application server configurations file and change the connection pool settings for your

MySQL instance. Make sure to consider the available resources, such as RAM, CPUs,

context switches, etc., when determining the size of your connection pool.

By using X DevAPI connections to compress data, MySQL enables users to reduce

the amount of time data is transmitted over the network and is ingested. You must

negotiate with the server and set the negotiation priority using the "compression

algorithms" connection attribute in order to employ such compression algorithms.

By keeping an extensive log, MySQL keeps track of all database transactions like data

transfers, updates, deletions, etc. By altering or setting the files, it enables users to

configure and control the log maintenance.

1.6 Organization

1.6.1. Company Profile:

To start an online store, ZopSmart Technology provides all the resources required.

Digital marketing, e-commerce, mobile commerce, and e-wallets are among the services

provided by ZopSmart. To boost automation, ZopSmart assists clients in defining

business processes and determining the ideal integration requirements.

1.6.2. Introduction:

Our objective is to make it simple for administrators and executives to automate

their activities quickly. For any enquiries concerning online products, for instance, they

can promptly create estimates. This application is designed for store owners who have

access to a database of data on online goods.

6

1.6.3. Problem Statement:

As online business has grown quite prevalent, regardless of age or gender, it is now

simple to locate online web retailers on the internet.

These manual transactions squander the Owners' and Employees' valuable time and

money.

1.6.4. Objective:

• Refrain from performing any paper-based duties while shopping, such as noting brand

and product information in diaries.

• Preserve Product and Brand information across numerous devices (mobile, diary, etc.)

and multiple users (Owner, Employees) to eliminate data duplication.

• Stop wasting time, resources, efforts, and money on the part of the owner and

employees.

1.6.5. Methodology:

The "Three Layered Architecture", Postman-API testing, Swagger API documentation,

Database Migrations, etc. are some of the key elements of this system.

In a three-layered architecture, layers are separate from one another and communicate

with one another through interfaces. In essence, this helps to make our application more

modular, readable, and maintainable.

7

Chapter 02: Literature Survey

2.1 Technology and Literature Survey:

2.1.1 Development Tools:

Goland Community Edition is an integrated development environment (IDE) used in

computer programming specially for Go language.It is developed by Czech company

JetBrains. Goland Community version is a free, fully featured, and extensible IDE for

individual developers, open source projects, education and academic research. Goland

is cross-platform with Windows, MacOs, Linux.

To assist developers in making changes to their code quickly and safely, GoLand also

comes with a number of refactoring tools. For instance, the rename refactoring tool

enables programmers to rename a symbol across their whole codebase, updating all

references to that symbol at the same time.

Additionally, GoLand is fully integrated with GitHub, which makes it simple for

developers to work together on projects and share code with their teams. It has

functions like code review, version control, and the ability to initiate pull requests right

from the IDE.

GoLand offers a number of debugging tools in addition to its code navigation and

refactoring features to assist developers in finding and resolving bugs in their code.

Developers may debug their code in real time thanks to the built-in debugger and

interaction with the Delve debugger.

Language :- Go Language

Go is a general-purpose open source programming language that is sometimes known

as Golang or Go.To construct stable and effective software, Google engineers created

the language Go. Go is statically typed and explicit, most closely resembling C. Go is

a compiled language. Go is utilised for many different applications, including DevOps,

Write Rest Api, cloud and server side applications, and more.

8

Figure 1.1 Go Language

Database :- MySQL

The core of Oracle's relational database management system (RDBMS), MySQL, is the

structured query language (SQL).

A database is a planned collection of data. It might be anything from a simple grocery

list to a photo gallery or a place to store the massive volumes of data in a corporate

network. In particular, a relational database is a digital repository that gathers data and

organises it according to the relational paradigm. In this paradigm, tables are made up

of rows and columns, and relationships between data items all follow a strict logical

structure. An RDBMS is a collection of software tools used to set up, run, and query

such a database.

In addition to your other apps, web servers, and other software, MySQL Server can

function smoothly on a desktop or laptop while requiring little to no maintenance. You

can modify the settings to utilise all the RAM, CPU power, and I/O capacity if you

dedicate a whole machine to MySQL. Additionally, MySQL can scale to networked

clusters of machines.

Since its inception, MySQL Server has been used effectively in extremely demanding

production environments, handling databases far faster than competing systems.

Figure 1.2 MySQL

9

Version Control :- Git/GitHub

GitHub is a web-based platform for version control and collaboration for software

engineers. Microsoft, GitHub's largest individual donor, bought the service for $7.5

billion in 2018. Using a software as a service (SaaS) delivery model, GitHub was

founded in 2008. Its foundation was Git, an open source code management system

created by Linus Torvalds to hasten software development.

Git is a tool for storing project source code and tracking all code alterations. It enables

developers to work on a project more successfully by offering methods for addressing

possibly conflicting modifications from different developers.

GitHub's public repositories allow for the free modification, adaptation, and

improvement of software by developers; nevertheless, the firm provides a number of

paid plans for private repositories. Both public and private repositories hold all of a

project's files together with each file's revision history. Repositories can have several

collaborators and can be either public or private.

Figure 1.3 Git/GitHub

2.1.2 Representational State Transfer (REST)

A REST API (also known as a RESTful API) is an application programming interface

(API or web API) that complies with the restrictions of the REST architectural style.

REST, also known as the representational state transfer protocol, was created by

computer scientist Roy Fielding.

10

An API must meet the following requirements in order to be deemed RESTful:

1. An HTTP-based client-server architecture that consists of clients, servers, and

resources.

2. Stateless client-server communication, where each request is independent and

unconnected and no client data is stored between get requests.

3. Data that can be cached to speed up client-server communications.

The fundamentals of RESTful design

Client and server decoupling In a REST API architecture, client and server

programmes must be completely independent of one another. The client software

should only be aware of the URI of the requested resource; it is unable to establish a

connection to the server application in any other way. Except when it needs to send the

client programme the required data over HTTP, a server application shouldn't modify

the client software.

Each request must have all the information necessary to process it because REST APIs

are stateless. In other words, server-side connectivity is not necessary for REST APIs.

Server applications cannot save any information related to a client request.

Resources should be cacheable on both the client and server sides wherever possible.

In addition, server answers must say if caching is possible for the requested resource.

While enhancing client-side performance, the objective is to increase server-side

scalability.

In a layered system architecture, REST API requests and responses move through

various layers. Most of the time, client and server applications will speak to one

another indirectly. There could be a variety of middlemen in the communication loop.

11

Status Codes for Responses

1. OK, Success 200

2. Success+Created in 201

3. Request accepted, but not yet fulfilled (202)

4. There is no content (204)

5. Invalid Request and Syntax (400)

6. Not Found (404)

7. Method Not Allowed (405).

8. Internal Server Error: (500)

2.1.3 Golang HTTP Package

A client and a server are provided by the http package. Handlers make up the server.

The handler receives a request and then responds to it.

HTTP protocols, first

Create a Post-> New Data

Read: Retrieve data from Get.

Put -- update the info.

Delete: delete->delete data

ServingMux (Multiplexer)

An HTTP request multiplexer called ServeMux is in charge of matching URLs in

requests to the right handlers and running them.

12

2.1.4 Database Migration

Application developers are in charge of creating, maintaining, and improving software;

this may need you to modify or update the database structures. In a dynamic

development environment, migration enables you to manage these changes quickly and

consistently. The more you understand about database shaping, the better prepared

you'll be to build a clear and efficient database for your application.

This capability is also offered by certain well-known frameworks like Django, Rails,

and even some standalone libraries like Flyway and Liquibase.

As a version control system for your database, migrations let your team establish and

share the specification of the database schema for the application.

A migration class has two methods: up and down. The schema modification you intend

to make should be specified in the up method of your migration, and the down method

should undo any changes performed by the up method. In other words, the database

schema ought to remain constant if an up is followed by a down. For instance, if you

create a table using the up approach, you should dump it using the down method.

The up method is utilised when moving a database forward in time, whereas the down

approach is used when moving a database backward in time. Consequently, we have

access to both older and more recent versions of our database.

2.2 Project Feasibility:

2.2.1 Technological Study

It is easy to install in any system as needed because Goland was utilised in the project's

design. It is easier to use, more effective, and easier for everyone to comprehend.

Massive amounts of data can be handled and stored procedures can be handled using

MySQL.

2.2.2 Functional Feasibility

Anyone can use this application to review their own work, and it has a very broad user

13

base. These software engineer evaluation applications are becoming more prevalent day.

And the application is divided into different modules so that every user has no

privileges to see every module, they can see only their permissible module only.

2.2.3 Schedule Feasibility

The project meets the requirement for time development feasibility since it is simple to

run and can fulfil the essential requirements in the allotted time frame. Determining

whether the deadlines were preferred or necessary was crucial.

2.3 Application Plan

2.3.1 Justification and Project Building

• Iterative Waterfall Model for Project Development

• This approach divides the cycle into the following phases:

1. Project planning and study about requirements

2. Analysis and formulation of requirements

3. Design, Programming and Testing

4. System testing and align with integration

5. Maintaining the project

Figure 2.1 Iterative Waterfall Model

14

Iterative Waterfall Model for Project Development This approach divides the cycle into

the following phases: Given that the primary requirements for the entire system were

obtained at the outset, the Iterative Waterfall technique was chosen as the project's

SDLC methodology. The iterative waterfall process offers the following benefits for

projects where "Major requirements must be defined; however, some functionalities or

requested enhancements may evolve with time":

2.3.2 Milestones and Deliverables

• Feasibility analysis phase: 1 week

• Requirement analysis and Specification phase: 1 weeks

• Designing phase: Approximately 3 weeks

• Coding phase: Approximately 3 weeks

• All forms are bound with particular data from the database.

• Testing phase: Approximately 15 days

• All the needed modules were analysed and tested.

• All function work and navigate correctly with testing three times

2.3.3 Roles and Responsibilities

As the project development was under an individual person, all the phases were

divided into parts and each module was assigned to each person in the team. We need

to complete a task within a specification defined and then finally integration of the

whole work was done.I divided my work in many modules so I can design the whole

application in a specific time.

15

Name System

Analysis

Design Backend

Coding

Testing Documentation

Shivansh

Thakur

✔ ✔ ✔ ✔ ✔

Table 2.1 Roles and Responsibilities

2.3.4. Group Dependencies

The dependencies among the tasks include the following:

• Analysis or System Requirement Study (SRS) is independent of all, yet will be

started after completion of feasibility study and project planning.

• Designing of prototypes can be done simultaneously with system analysis.

• Development of the project is preceded by the designing of prototype and system

analysis.

• Testing can be only done once the development of some major functionalities are

completed and are ready to be tested.

• Documentation is independent of all the tasks and can be done as the other tasks

proceed.

• Logical dependencies are components of a project that are essential to its success.

• Team-imposed practices result in preferential dependencies.

• Tasks with external dependencies depend on variables outside of the team's control.

16

2.2.5 Project Scheduling chart

No. Task Name Duration

1 System Requirement , Analysis and Project Planning 1 Week

2 System Design Layout 2 Week

3 Design 3 Week

4 Coding 3 Week

5 Testing 2 Week

6 Documentation 1 Week

Table 2.2 Application Schedule

17

Chapter-3 System Development and
Implementation

3.1 Study of Current System:

Currently, the majority of online web store agencies run their management processes

using a manual technique. Its owners lack a good system for managing details;

dealership owners and their staff keep a diary to record information about all the

brands and items, which frequently results in mistakes.

In the current system, if a consumer wants to buy a product or has a question about

one, the product dealers and customers have very few, if any, dynamic means to

display all the product-brand models, catalogues, quotes, etc. Even if many goods and

their characteristics can be shown to consumers even when they are not currently

accessible in the showroom, the current approach is extremely slow and not very

appealing to them. When there is little or no information accessible about a specific

brand, customers must make do with the product models that are currently on the

market.

3.2 Problems and Weaknesses of Current System:

• Most of the Online Web Store Agencies currently use a manual procedure to deal

with its management processes.

• Although many products and their features can be shown to clients even when they

are not currently available in the showroom, the current approach is extremely

slow and not particularly appealing to them.

3.3 User Characteristics

Mainly there is one system user who needs to access the system.

System Administrator

• Allow to adding Product and Brand Details

• Allow to Update all Product and Brand details

• Allow to View all Products and Brands the details

18

3.4 Assumptions and Dependencies:

Assumptions are described below : -

• Users have some knowledge about the workflow of the system

• Server is running smoothly.

• Database updates are giving expected and accurate results.

Dependencies are described as below : -

• The system needs Internet/Wi-Fi Connection.

System Analysis

Requirement of new Application:

This new application requires a system that can run both the docker application, which

can execute MySQL containers, and a golang server. To verify the functionality of the

APIs, it should be possible to run Postman. The developers working on the project should

have access to the Swaggers documentation in order to support diverse development

environments. The development teams should also be given the necessary administrative

access.

The needs listed in above are validated when requirement specifications are created.

Users could request an illegal or unworkable solution, or experts might misinterpret the

specifications. If not stopped in its tracks, this leads to a significant cost increase.

Thus, the requirements specification serves as a two-way insurance policy that ensures

both the client and the software vendor comprehend the necessary functionality and scope

of work.

Implementation Diagram

This Figure is an implementation diagram created to illustrate the system of the

Product-Brand Store. It illustrates the workflow of any online store.

19

Figure 3.1 Implementation Diagram

System Requirements

Functional Requirements :

• R1 : Create : Adding new Product and their Respected Brand in database

Input : Product name, Product Description, Product Price, Product

Quantity, Product Category, Brand Name, Product Status.

Processing : Insert data into database

Output : data added in database

• R2 : Delete : Deleting item from database using id

Input : Id

Processing : Delete data from database

Output : data Deleted from database

20

• R3 : Update : Updating item into database using id

Input : Id

Processing : update data into database

Output : data updated into database

• R4 : View : View all the Product and their Brands

Processing : Getting all the Product and their Brands from

database

Output : get all the products that is present database

• R5 : View Particular Product Details : View Particular Product with Brand

Input : Name /Id

Processing : Getting Product with their Brand according to

input

Output : get particular product with their brand details

• R6 : Login : For Login into system

Input : Enter Username & Password.

Processing : Validate credential

Output : If all details is valid then login successfully

• R7 : Registration : for new registration

Input : Enter Username, Email id , Password .

Processing : Validate Details

Output : If all details is valid than register successfully

21

Non-Functional Requirements :

• Security

Before being saved to the database, sensitive data will be encrypted. Only

administrators who have been authenticated are permitted access to the system's back

end servers.

• Responsive

The API needs to respond. Therefore, the portion that is entirely portable on any

system utilising any web browser ought to be able to utilise all system characteristics,

including those of any current or future hardware platform. On PCs, laptops, and other

devices, the system should function.

• Maintainability

The system can be readily maintained by the developers, who will be given full access

and access privileges.

• Accessibility

The authorised developer has access to the system at any time and from any location.

• Usability

This system is very important in providing Developer satisfaction as they want

depending on the requirement and capability.

• Error Handling

System should restrict entering the wrong data. System should be able to prompt

various error messages to the user if they provide wrong inputs to enter the required

data.

22

3.5 System Design

3.5.1 Sequence Diagrams:

When a user accesses a login page, this flowchart begins. After entering their username

and password, the user clicks the login button. The user login information is sent as a

message from the login page to the database for verification. After the username and

password have been verified by the database, two potential routes are revealed

(alternative fragment). A notification indicating that the user login has been

acknowledged is sent by the database if the login information is accurate. The user

receives a notice from the system informing them that their login information was

incorrect. The password field on the system is cleared. After that, the user can reenter

their password.

Figure 3.2 Flowchart of Login

23

Figure 3.3 Flowchart of Create Object

Figure 3.4 Flowchart of GetByBrand

24

3.6 DATABASE DESIGN

3.6.1 Data Dictionary

Table 3.1 Product Data Dictionary

Field name Type Size NOT NULL? Primary Key ?

Product_id integer - yes yes

Name varchar 35 yes -

Description varchar 250 - -

Price integer - - -

Quantity integer - - -

Category varchar 30 - -

Brand Name varchar 20 yes -

Status enum - yes -

Table 3.2 Brand Data Dictionary

Field name Type Size NOT NULL ? Primary Key ?

Brand_id integer - yes yes

Brand Name varchar - no -

25

Table 3.3 Admin Data Dictionary

Field name Type Size NOT NULL ? Primary Key

?

Admin_id Int yes yes

Name Varchar 25 yes -

Email Varchar 25 yes -

Password Varchar 16 yes -

3.7 Implementation Environment:

For Implementation we have used:

• Golang as Programming Language

• MySql as Database

Modules Specification

• Admin Module

Coding Standards

While writing our code we took the utmost care to follow the basic coding standards

while writing a Golang code like,

• Limited use of global variables.

• Following proper naming conventions of local variables, global variables,

constants and functions.

• Doing proper indentation.

• Proper error handling.

• Adding comments for better understanding.

26

3.9 Project Structure :

Three layer architecture

The handler/presentation tier, or user interface, the storage/application tier, where data is

processed, and the data tier, where the application's associated data is stored and

managed, are the three logical and physical computing tiers that make up the well-known

three-tier architecture.

The main advantage of a three-tier architecture is that each tier may be built concurrently

by a different development team and can be updated or scaled as necessary without

affecting the other tiers because each tier runs on its own infrastructure. The application

starts from the main.go file.

main.go: Source file includes all the endpoints and routers.

We require an entry point, or the point at which the programme execution starts, in order

to run an application in Go as an executable programme. The main() function in the

package main serves as such an entry point.

The Go compiler is informed by the package's "main" file that the package should be built

as an executable programme rather than a shared library. We will configure numerous

HTTP servers using http.Server in our main.go file. Your handler functions will also be

updated so they may access the context.

To start the server we have to type “go run main.go” in the terminal and it gets started on

port 8080. The server that listens for requests arriving from HTTP clients and one or

more request servers make up a Go HTTP server.

Now, the server is ready to receive any request on the endpoints that it defines.

The request first goes to the Handler layer.

27

HANDLER LAYER:

http.go : Here we process the request, unmarshal the body, check some basic

validations and send it to the service layer.

Create: In this case, we create a new entry by sending the desired json body to the service

layer, unmarshalling it, and then checking that all the data sent is accurate and adheres to

the parameters specified.

Update: In this case, we update an already-existing record by passing the requested json

body, unmarshalling it, and then delivering it to the service layer to be validated for

validity and adherence to the specified parameters.

Get By Id (Read): In this case, we retrieve product information based on the product's id

before passing it on to the service layer, which will verify that all the data is accurate and

within the parameters that have been set.

GetAll (Index): To get all the products created, a user can make a request to get all the

products for a given query-param like name. This endpoint takes the request and responds

with a complete body including all the product-brand details.

SERVICE LAYER:

service.go: We want to ensure that all of the business logic is sound before storing

the data in the database, so we follow the same procedure at this layer. We guarantee that

all fields are validated in accordance with the established rules.

Create: We verify that every newly added data is accurate and complies with established

guidelines. We pass it to the datastore layer to store the data in the database as soon as we

determine that there are no errors.

28

Update: We verify that all of the updated data is accurate and complies with the

established rules. We pass it to the datastore layer to store the data in the database as soon

as we determine that there are no errors.

GetById and GetAll:

We verify that the data obtained by Id is accurate and in accordance with the

established regulations. We pass it to the datastore layer to retrieve the database's data

once we determine there are no errors.

In GetAll, we verify the data and pass a query-param value to the store layer, based on

this value we filter the response body.

DATA STORE LAYER

store.go: In this layer, we create the database query to save the data and check for any

database-based issues.

The data is kept in the datastore. Any data storage device can be used. The only layer that

interacts with the datastore is the use case layer. In this manner, each layer can be checked

independently from the others.

Create: In this layer, a new entry is made by running a SQL query, and the data is

subsequently saved in a database.

Update: In this layer, we conduct a SQL query to update an existing entry before storing

the results in a database.

Get By Id and Get All :

Using a SQL query, we retrieve an entry in this tier before storing the information

in the database.

In Get All by Name, we retrieve product name-specific information using a SQL query

before storing the results in a database.

29

MIDDLEWARE:

The phrase "middleware," which has been used in the context of software engineering

since the late 1960s, can refer to a variety of contemporary software components.

Application runtimes, enterprise application integration, and numerous cloud services are

examples of middleware. Middleware frequently handles data management, application

services, communications, authentication, and application programming interface (API)

management.

As the name suggests, three-tier architecture is a hierarchical software architecture that

has three different, independent tiers or layers. In a three-tier architecture, each tier has a

specific task to complete and is made up of the following tiers: presentation, business,

and data access, in that order. The architecture's primary function is to make it possible

for software programmes to effectively and swiftly respond to user inputs or requests. A

streamlined illustration of three-tier architecture can be seen below.

30

Chapter-4: Performance Analysis

4.1 Project Testing Strategy

Black box testing will be the testing approach employed in the project. Black box

testing involves applying the application's anticipated inputs while just looking at the

results.

4.2 Unit Testing Planning

For the ensuing phases, the development process iterates this testing sub-process

several times.

• Unit testing.

• Check the liners

After the coding of a unit of code (module or programme) is complete, that unit is

tested. Integration testing examines how well the many programmes that comprise a

system fit together, interact with one another as intended, and have proper interfaces.

System testing makes certain that the system complies with its specific design

requirements. Users test a system during acceptance testing to see whether it accurately

implements the software requirements specification.

To make sure that each component is accurate and that the assembly or combination of

components is correct, testing is done in such a hierarchical manner.Simply testing the

entire system in the end would probably reveal component faults that would be very

expensive to find and rectify. To find and correct mistakes, we have carried out both

unit testing and system testing. Below is a quick summary of each.

4.3 Unit Tests

After development is complete, the goal of unit testing is to test a single unit of code (a

programme or group of programmes) using the unit test specifications. It is crucial to

31

subject them to quality and verification assessments because testing will depend on

how accurate and comprehensive the test specifications are.

Linter Check

Performed a linter check using command “golangci-lint” run which makes sure

that the program is properly formatted and follows standard code guidelines such as no

go cognitive complexity etc. There were no linter errors found in this project.

Unit Tests Requirements

• Determining if Code goes covers the reports that have verified the existence of

and adherence to coding standards are available as part of the testing process.

• Examining unit test requirements

• Check that the programme specifications and the unit test specifications are

compatible.

• Check to see if all conditions and null data conditions are present.

Program testing Cover profile

Covering every path in the programme during testing (using white-box testing)

is the best technique to ensure that you have addressed every aspect of control flow.

This indicates that all branches are exercised for a case statement, all branches are

exercised for a "if" statement, the loop is used once, several times, or ignored for a

while statement, and all parts of complex logical expressions are exercised. This refers

to Path Testing .

32

If the full Boolean expression is tested in control structures evaluated to both true and

false, Branch Testing reports that information.

The coverage extends to switch statement cases, exception handlers, and interrupt

handlers. Branch testing is included in path testing since it takes into account all potential

combinations of individual branch circumstances. A more straightforward method is

statement testing, which checks to see if each programme statement has been run at least

once.

4.4 Test Cases

Table 4.1 Test Cases For Login

Test Object

Descriptions

Test

Conditions

(Input)

Expected

Result

Status

Code

Actual

Result

Pass/

Fail

Login Email is not

correct

Validation

error

404 As

Expected

Pass

Password is

not correct

Validation

error

404 As

Expected

Pass

Table 4.4 Test Cases for GetByID Object

Test Object

Descriptions

Test

Conditions

(Input)

Expected

Result

Status

Code

Actual

Result

Pass/

Fail

Get By

Id

Valid Id View

Object

for

particular

Id

200 As

Expected

Pass

Invalid Id Error

Message

Invalid Id

404 As

Expected

Pass

Empty Id Error

Message

Please

Enter Id

400 As

Expected

Pass

Success Case (200 code) - Get request for product

34

Table 4.2 Test Cases for Create Object

Test Object

Descriptions

Test

Conditions

(Input)

Expected

Result

Status

Code

Actual

Result

Pass/

Fail

Delete Valid Id Object

Created

Successfully

201 As

Expected

Pass

Invalid Brand Error

Message

Invalid Brand

404 As

Expected

Pass

Empty Id Error

Message

Please

Enter Id

400 As

Expected

Pass

Success Case (201 code) - Post request for product

35

Table 4.3 Test Cases for Update Object

Test Object

Descriptions

Test

Conditions

(Input)

Expected

Result

Status

Code

Actual

Result

Pass/

Fail

Update

Object

Name or

Brand or

Description

or Price or

Quantity or

Statuts

Object

Updated

Successful

-ly

200 As

Expected

Pass

If Id == 1002 Invalid

Id

400 As

Expected

Pass

Success Case (200 code) - Update request for product

36

4.5 Swagger documentation:

Developers can write interactive, machine- and human-readable API documentation using

the Swagger framework. Information like supported operations, parameters and outputs,

authorisation needs, accessible endpoints, and required licences are frequently included in

API specifications.

Swagger documentation for the Product-Brand API

The core of all goodness in Swagger is the ability of APIs to describe their own

structures. Why is it so fantastic? We can, however, automatically create stunning and

interactive API documentation by reading the structure of your API.

Its sophisticated auto-completion feature helps us create code more quickly. It is simple to

set up and allows developers to quickly build server stubs for the API. Developers may

see in real-time how the API design is progressing, including how a third-party developer

might interact with the API, by receiving fast responses from the stubs.

37

For instance, the Products GET endpoint accepts some query-parameters and filters the

returned products based on the parameters. This GET endpoint additionally addresses all

improbable scenarios for both invalid and legitimate queries. Other endpoint

documentations mention similar validations.

Example: Product GET endpoint

Response with 200 status code for valid requests

38

Error Responses for invalid requests

39

Chapter-5 CONCLUSION

5.1 Conclusion

I learned so much while working on this project, which was amazing. I

experienced all of the project development phases while working on this project, which

really opened my eyes to the world of software engineering. I got a sense of the

developer industry through the pleasure of working and the thrill of meeting different

obstacles. I learned how professional software is created as a result of this project.

In this project, we created a dependable, simple, affordable, and practical

system to manage product and brand details.Owners may therefore easily and

effectively manage the details of their online business. For the owner, it saves a tonne

of time and money.

5.2 Discussion

We started the project by understanding the basics of Golang, Git/Github,

Postman, MySQL then understanding the workflow flow of software development life

cycle and after that moved to implementation. I took time to learn all these things.

Implementation of this WEB API took a major portion of time. And then I tested the

whole WEB API. Once that was complete, I had confidence that the project would

reach a successful conclusion.

5.3 Future Scope and Enhancements

• Efficiency increase

• Authentication technique can be enhance

• New field to be include in API Data Dictionary

• Structure of API can be enhance

• Adding more numbers of Filters for searching the data

40

5.4 Application Contributions

Several real-world and open source applications that GoLang has contributed below.

1. The container management system and a suite of tools for deploying Linux

containers called Docker

2. Dropbox switched several of its crucial Python components to Go.

3. Ethereum, a blockchain for the cryptocurrency Ether that uses the go-ethereum

version of the Ethereum Virtual Machine.

4. Gitlab, a web-based platform for the DevOps lifecycle that offers a Git repository, a

wiki, functionality for recording issues, continuous integration, deployment pipelines,

etc.

5.5 Limitations

• Limited numbers of Filters

• Limited Numbers of data

• Authentication in API is not much secure

• The application implements only the backend part

41

REFERENCES

1. https://docs.microsoft.com/en-us/azure/architecture/best-practices/api

design

2. https://github.com/DATA-DOG/go-sqlmock

3. https://github.com/golang/mock

4. https://go.dev/doc/tutorial/

5. https://medium.com/swlh/developing-a-web-application-in-go-using-the

layered-architecture-8fc13209c808

6. https://github.com/gorilla/mux

7. https://dev.mysql.com/doc/

8. https://www.linux.org/

9. https://docs.docker.com/

10. https://kubernetes.io/docs/home/

11. https://ngdocs.harness.io/

12. https://prometheus.io/docs/introduction/overview/

42

APPENDICES

Application Code Examples:

By entering "go run main.go" in the terminal, the server is launched on port 8080. A Go

HTTP server is made up of a server that watches for requests coming from HTTP clients

and one or more request servers.

main.go: Source file includes all the endpoints and routers.

.env file: Environment variables provide details on the working environment of the

process (production, development, build pipeline, etc.). Passwords, API credentials, and

other private information that shouldn't be written directly in code are stored as

environment variables in Node. Any settings or configuration information that may vary

between environments must be configured using environment variables.

.env config file

After setting up the .env file we can set the .local.env file for our local environment

variables.

43

.local.env config file

After setting up all the configs now we are ready to run the server. To run the server use

“go run main.go” in the terminal.

Now the server is ready to receive any request on the endpoints that it defines.

The request first goes to the Handler layer.

HANDLER LAYER:

Here we process the request, unmarshal the body, check some basic validations and send

it to the service layer.

By forwarding calls to the following layer, known as Business Logic, the Handler layer

handles incoming requests and interactions. In order to meet the requirements already

existent in the presentation layer itself, it could also activate other systems or

applications. Since it is the only layer responsible for consumer engagement, it is

interesting to note that the presentation layer of the current application communicates

with other applications through their presentation layers.

44

Openapi.json:

A standard for a machine-readable interface definition language for describing,

generating, consuming, and visualising online services is the OpenAPI standard, formerly

known as the Swagger Specification.

Openapi.json file

45

.golangci.yml:

GolangCI-Lint looks for configuration files in every directory from the first

analysed path's directory all the way up to the root. GolangCI-Lint will look in your home

directory for a configuration file if none have been found. Run golangci-lint with the -v

option to examine which configuration file is being utilised and where it was sourced

from. The file's configuration parameters are the same as command-line options. Only

within the configuration file (not the command-line) can certain linters' settings be

changed.

.golangci.yml file

46

SERVICE LAYER:

This layer guarantees that all fields are validated in accordance with the established rules.

CheckMissingFields():

CheckMissingFields function in Service/Business Layer

DATA STORE LAYER

The data is kept in the datastore. Any data storage device can be used. The only layer that

interacts with the datastore is the use case layer.

47

MIDDLEWARE:

Due to its extension from the conventional 2-tier architecture, the 3-tier

architecture is regarded as the second generation of client-server architecture. The third

tier of the three-tier architecture between the client and database servers adds an

application server as middleware.

KeyMiddleware() Method:

48

ValidateMethod() method:

49

ValidateEndpoint() and OrgMiddleware() methods:

50

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

