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ABSTRACT

Through the Internet, the Internet of Things (IoT) has changed how people live.
Cyber-physical systems (CPS) and other traditional disciplines have been
transformed into smart regions by IoT, which has specified numerous smart
solutions for everyday issues. The majority of the Internet of Things' edge devices
have incredibly low processing speeds. To overturn the IoT networks, attackers can
use these devices to initiate a variety of network attacks. In addition to that, as IoT
devices are added to a greater degree, the potential for new and unknown security
threats grows exponentially. Due to this reason, an intelligent security framework for

IoT networks must be developed that can identify such threats.

We have created an unsupervised ensemble learning model in this paper that can
identify new or unidentified attacks in an IoT network from an unlabeled dataset. A
deep learning model is trained to recognise IoT network assaults using the
system-generated tagged dataset. The study also offers a feature selection technique
for selecting the dataset's most critical elements for threat detection. The research
indicates that the proposed model can recognise unlabeled IoT network datasets, and
DBN (Deep Belief Network) outperforms the other models with an accuracy of —
(97.5%) along with a False Alarm rate — (2.3%) when trained using labelled datasets
provided by the proposed approach.

Keywords Used : Unsupervised Machine Learning,Clustering, Feature Selection,

Attacks, Internet of things, Deep Learning, Fuzzy C-Means, Optics, Mini-Batch
Algorithm.
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CHAPTER -1

1.1 Introduction

Globally, the Internet of Things ( IoT ) has experienced exponential development.
Despite the fact that the IoT is adopted by millions of people, attacks like man in
the middle, spoofing, and denial of service ( DOS ) make it difficult for these
networks to function. The privacy and security of the consumer is highly
compromised by these cyberattacks, which also jeopardises the entire IoT
ecosystem. Therefore, it is still quite difficult for researchers to forecast and
identify new unidentified network assaults inside an IoT network. Recently,
detecting and classifying various assaults in an IoT network has been greatly aided
by newly developed machine learning and deep learning models. However, as the
number of attacks are on a rise, these algorithms become more and more

computationally complex.

Huge amounts of data are produced as a result of the sensors used in IoT networks
and CPS continuously monitoring their environment. IoT networks and CPS are
vulnerable to numerous cyberattacks because of the enormous volumes of data that
are stored in data centres, some of which may contain sensitive information about
systems or individuals. Attacks like Denial of Service (DoS), Remote to Local (R2L),
Brute Force, Probing (Probe), User to Root (U2R), Man-in-the-middle, Scanning,
Ransomware, Password assault, etc. are becoming more prevalent and obvious,
wrecking havoc and causing irreparable harm. Additionally, the attack surface is
expanded when a network uses a lot of diverse IoT devices. Because data centres
contain vast amounts of information sources, attackers frequently target them. The
low storage and computing capability of IoT network devices makes it impossible for
them to detect and defend against potential online cyber attacks. Also, the detection
of new or undiscovered assaults makes attack detection increasingly difficult due to

the expansion of the threat vectors for IoT networks.

This introduction chapter provides a summary of the security risks to IoT
networks and IoT devices along with the main driving forces behind this project. It
also includes a small briefing on the topics worked and a general summary of the

chapters ahead is given along with the important results obtained.



1.2 Problem Statement

The acceptance of small embedded devices, often referred to as the Internet of
Things, have grown exponentially during the past few years. These technologies
are gradually entering every element of contemporary life and altering how
individuals, organisations, and sectors of the economy function. The desire for
smart apps that can work independently without requiring human interference
has become one of the main motivations behind the progress in this field (for
control and data analysis). The creation of efficient applications, enhanced
communication protocols, and breakthroughs in integrated systems design have

all contributed to the acceleration of IoT growth.

The absence of built in security features comparable to those found in
conventional systems, such as servers, desktop computers, and tables, has been
among the most obvious shortcomings of IoT. This issue results from the fact the
majority of IoT devices lack the processing power needed to execute sophisticated
security procedures and encryption. The “three Ps,” which we categorise as
prototype, production, and packaging, have traditionally received much more
interest from IoT device manufacturers due to rising market competitiveness in
these fields rather than working on its security. This reality makes it extremely
challenging to develop a single security architecture that works well in all

circumstances.

It just becomes crucial to make sure that bona-fide security measures are put in
place to maintain the confidentiality of user's data and safeguard sensitive user
data from being accessed by malicious attackers. Due to the progressive nature of
the IoT environments, the conventional security trilogy —-> (confidentiality,
integrity, and authentication) is no longer feasible and must now also contain

other security features, such as access control and availability.



1.3 Objectives

1.3.1 Model 1

e We suggest using PCA to identify features in order to find attacks in an IoT
network. In order to boost the system's overall performance, the most
pertinent features from the available network datasets are chosen for
amalgamation after a thorough examination of the performance metrics and

identification of essential parameters.

e The model ought to be able to detect out of sight patterns inside the network
dataset & clusterize the network traffic into categories of normal and
malicious to find new or unknown threats. We have employed a number of
clustering algorithms to accomplish this. For a specific IoT network traffic, the
output of each clustering method is coupled using a weighted voting

mechanism to more accurately forecast the class label (normal / malicious).

e After a thorough performance examination, the weights assigned to each
clustering technique's output were determined. An ensemble machine
learning approach that turns an unlabeled dataset into a labelled dataset as a
result of the combination of clustering techniques and weighted voting is able

to discover new/unknown assaults in the IoT network traffic.

e The suggested model's labelled dataset is used to train a deep learning model
for IoT network threat detection. It is advised to employ a convolutional

neural network architecture for IoT network attack detection.

1.3.2 Model 2

e We suggest using PCA to select the features to identify or to find the attacks in
an IoT network. And before applying the PCA dataset should be pre processed
by different methods like by replacing the missing values in the dataset. And
by using label encoder to replace all the string values int values. Then after

these steps all the features should be normalised by applying standard scalers.



e After PCA, three different algorithms will be introduced and all the required
libraries will be installed. Three algorithms include -
1. LSTM (Long Short Term Memory)
2. Bagging Decision Tree

3. Random Forest classifier
Second and third algorithms are classifiers and LSTM is a regression model.

e In model 1 we utilised the weighted voting from all three algorithms and
predicted their cumulative results to classify an entry as malicious or non-
malicious. In model 2 we will apply three different algorithms namely LSTM,
Begging Decision Tree, Random Forest classifier. These predict the malicious

and non-malicious entries individually.

e In total we have tried to create two different models including both
individual and cumulative prediction of cyber threats. These both models

have their own qualities and working process.

1.4 Methodology

1.4.1 Model 1

The study suggests an optimised unsupervised ensemble strategy for classifying
network traffic into Malicious and Normal, hence discovering new or undiscovered
attacks. It uses system detected network traffic for training the deep learning model
to identify attacks inside an IoT network. The suggested mechanism has an overall
attack detection accuracy of 97.6 percent and a false alarm rate of 2.3 percent, on the
UNSW NB-15 dataset picked from kaggle.
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Figure 1.1 - Model Architecture

Stage 1: Data preprocessing

The suggested model is seen in figure (1), which accepts the unlabeled dataset

from an IoT network as an input that contains both malicious and non-malicious
IoT network traffic.

Dataset Details

Network intrusion dataset —> UNSW-NB15 is used here. It consists of nine distinct

attacks, involving DoS ( Denial of Service ), Fuzzers, Malware , Backdoors, Exploits,

Reconnaissance, Shellcode, Generic and Worms. Raw network packets are included

in the collection. 175,341 records make up the training set, while 82,332 records from

the attack and normal types make the testing set.



Statistical features 16 hours 15 hours
No. of flows 987,627 976,882
Src bytes 4.860,168.866 5,940,523,728
Des bytes 44,743 560,943 44.303,195,509
Src Pkts 41,168,425 41,129,810
Dst pkts 53,402,915 52,585,462
TCP 771,488 720,665
Protocol UDP 301,528 688.616
types ICMP 150 374
Others 150 374
Label Normal 1,064,987 1,153,774
Attack 22215 299.068
Unique Src_ip 40 41
Dst ip 44 45
Table 1.1 : Dataset Statistics
# Name T Description

48 attack cat N

The name of each attack category. In this
data set, nine categories (e.g., Fuzzers,

Analysis,

Backdoors,

DoS, Exploits,

Generic, Reconnaissance, Shellcode and

Worms)

49 Label B

0 for normal and 1 for attack records

Type (T.) N: nominal, I: integer, F: float, T: timestamp and B: binary

Table 1.2 : Labelled Features
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Figure 1.2 : The Testbed Visualization for UNSW-NB15

The unlabeled input dataset is initially pre-processed to remove any duplicate or
missing data by replacing NA values and then replacing with o and then shuffling
the dataset. Post the data pre-processing, a standard scaler is used to normalise
the dataset , i.e, scale the value of each characteristic. The suggested "Feature
Selection" module is then provided with our pre-processed and scaled dataset to

select pertinent features for identifying network assaults.

Stage 2: Feature Selection

The suggested "Feature Selection" module is then provided with our pre-processed
and scaled dataset to select pertinent features for identifying network assaults.
Any kind of machine learning algorithm's effectiveness depends on choosing the
right features from the available dataset. Machine learning models that are either
over-fitted or under-fitted and this anomaly can be solved by choosing essential
characteristics from a dataset. To find essential features for the proposed model,

we used PCA ( Principal component analysis.

We are applying PCA ( Principal component analysis ) to selected relevant features

and in above PREPROCESSED data we can observe it contains 39 features and



after applying the PCA algorithm it selects 25 important features.

Stage 3: Ensemble Learning & Deep Learning Model

The foundation of ensemble learning is the idea that results can be improved by
combining the outputs of different learning models. This ensembled approach can
be used in 2 ways to create numerous anticipated outputs. One being -
Independent ensemble and the other is Coordinated ensemble construction. In an
independent ensemble construction approach, a learning algorithm can be
executed independently multiple times on various training data subsets or
different learning models can be executed independently on the same dataset, to
produce multiple results which can then be combined using ensemble technique.
Whereas, in coordinated ensemble building the outcome of one learning algorithm
can be utilised as an input to another learning algorithm, thereby making all the

base learning algorithms dependent on each other.

We have used an ensemble learning approach by applying 3 algorithms :
1. Mini Batch Algorithm.
2. Fuzzy C means for clustering.

3. OPTICS clustering.

The predicted output of each clustering technique is either o or 1, where o
represents non-malicious traffic (cluster-1) and 1 represents malicious traffic
(cluster-2). The predicted output from each clustering algorithm, for each data
entry, is combined using weighted voting using equation 3 to create two clusters —

one containing benign data and another containing malicious data.

A labelled dataset is produced by the suggested ensemble model. The generated
annotated dataset is then utilised to train different deep learning models. In our

research, we used a CNN network.



1.4.2 Model 2

Stage 1: Data preprocessing

Data Preprocessing usually involves cleaning, preparing and transforming raw

data into that format which can be easily processed by the algorithms. And the

need for this data preprocessing arises because of several reasons. Raw data is

often incomplete, or contains errors which sometimes lead to inaccurate results.

Data should be in a specific format such as Numerical values, therefore these all

steps like converting the categorical data into numerical data comes under pre

processing.

[

[

]

#dataset processing replace missing values

dataset.fillna(0, inplace = True)
dataset = dataset.values
print("Dataset preprocessing completed")

Dataset preprocessing completed

Fi

gure 1.3 : Dataset Preprocessing for replacing missing values

#applying standard scaler to normalized features
scaler = StandardScaler()

X = scaler.fit transform(X)

print ("Features normalization task completed")

Features normalization task completed

Figure 1.4 : Normalising Features



Stage 2: Feature Selection

Principal Component Analysis (PCA) is a technique popularly used for feature
selection because it identifies the most important and right features that the
models can work on. PCA does this by transforming the original features into a set
of new features called principal components that are made of different

combinations of original features.

[ 1 #applying PCA for features selection
print("Total features found in dataset before applying PCA : "+str(X.shape[l]))
pca = PCA(n_components = 25)
X = pca.fit_transform(X)
print("Total features found in dataset after applying PCA : "+str(X.shape[l]))

Total features found in dataset before applying PCA : 40
Total features found in dataset after applying PCA : 25

Figure 1.5 : Applying PCA for feature selection

After normalising the dataset there were 40 features in the dataset and after
applying the PCA for feature selection there are 24 features that would be used by
the algorithms.

Stage 3: Deploying Model

In this model 2 we are using 3 three different algorithms to train the model by
splitting the dataset into training set and testing set and then finding the accuracy

of the model of prediction.

The models are :-
1. LSTM - long Short Term Memory
2. Bagging Decision Tree

3. Random Forest Classification

10



After PCA is done for feature selection, required libraries for each algorithms are

installed and the dataset is divided into training and testing sets then each model

is build and trained on the training dataset and then testing the algorithms on

testing datasets and then check models -

[

]

Accuracy_score
Precision_ score
Recall

F1_score

Confusion matrix

# Calculate the evaluation metrics
accuracy = accuracy _score(y_test, y pred)
precision = precision_score(y_test, y pred)
recall = recall score(y test, y pred)

fl = f1 score(y_test, y pred)

cm = confusion matrix(y_test, y_pred)

Figure 1.6 : Calculating the evaluating matrices

11



CHAPTER - 2
LITERATURE SURVEY

[1] The aim of this article is to provide a broad overview of the security

[2]

risks in the IoT sector and to discuss some possible interactions. To this
end, after a general introduction to security in the IoT domain, we discuss
the specific security mechanisms adopted by the most popular IoT
communication protocols. Then , we report and analyse some of the
attacks against real IoT devices reported in the literature, in order to point
out the current security weaknesses of commercial IoT solutions and
remark the importance of considering security as an integral part in the
design of IoT systems. We conclude this article with a reasoned
comparison of the considered IoT technologies with respect to a set of
qualifying security attributes, namely integrity, anonymity, confidentiality,
privacy, access control, authentication, authorization, resilience, self

organisation.

Rossie PS et al. discussed the problem of distributed detection of a
non- cooperative ( Unknown emitted signal ) target with a wireless sensor
network. Davies’ framework is exploited herein to design the generalised
forms of Rao and locally optimum detection ( LOD) tests. For our
generalised Rao and LOD approaches, a heuristic approach for threshold
optimization is also proposed. The simulation results confirm the

promising performance of our proposed approaches.

[3] Javed F et al. provides a detailed comparison of the OS’s designed for IoT

devices on the basis of their architecture , scheduling methods, networking
technologies , programming models, power and memory management
methods, together with other features required for IoT applications. In
addition, various applications, challenges, and case studies in the field

Of 10T research are discussed.

12



[4] Hassan WH et.al presents an analysis of recent research in IoT security from

2016 to 2018, its trends and open issues. The maine contribution of this paper
is to provide an overview of the current state of IoT security research , the

relevant tools, IoT modellers and simulators.

[5] In this paper , the investigation of the prospects of using machine learning

[6]

classification algorithms for securing IoT against DoS attacks has been done.
A comprehensive study carried out on the classifiers which can advance the
development of anomaly-based intrusion detection systems (IDS’s).
Performance assessment of classifiers is done in terms of prominent metrics
and validation methods. Popular datasets CIDDS- 001, UNSW- NB15, and
NSL-KDD are used for benchmarking classifiers. Friedman and Neymenyi
tests are employed to analyse the significant differences among classifiers
statistically. In addition , Raspberry Pi is used to evaluate the response time of

classifiers on IoT specific hardware.

Kumar N at al. in this proposal, presented a cognitive spammer
framework that removes spam pages when search engines calculate the
web page rank score. The framework detects web spam with the support of
Long Short-term Memory network by training the link features. This training
resulted with an accuracy of 95-25 as more that 1,11,000 hosts are being
correctly classified. However, the content features are trained by a neural
network. The proposed scheme has been validated with the WEBSPAM-UK
2007 dataset. Prior to processing, the dataset is pre-processed using a new
technique called “SPlit by Oversampling and Train by Under-fitting”. The
ensemble and cross validation approach has been used for optimization of

results with an accuracy of 96.96%.

13



[7] Eskandari M et al. presented Passban, an intelligent intrusion detection system
(IDS) able to protect the IoT devices that are directly connected to it. The
proposed solution is that it can be deployed directly on very cheap [oT gateways
(e.g., single board PCs currently costing few tens of U.S. dollars), hence taking
full advantage of the edge computing paradigm to detect cyber threats as close
as possible to the corresponding data sources. We will demonstrate that
Passban is able to detect various types of malicious traffic, including Port
Scanning, HTTP and SSH Force, and SYN Flood attacks with very low false

positive rates and satisfactorv accuracies.

[8] This paper proposed a non-symmetric deep autoencoder (NDAE) for
unsupervised feature learning. Furthermore, a novel deep learning
classification model is constructed using stacked NDAEs. The proposed
classifier has been implemented in a graphics processing unit (GPU)-enabled
TensorFlow and evaluated using the benchmark KDD Cup '99 and NSL-KDD
datasets. Promising results have been obtained from the model thus far,
demonstrating improvements over existing approaches and the strong

potential for use in modern NTDSs.

[o] This paper presents a novel security framework and an attack detection
mechanism using a Deep Learning model to fill in the gap, which will
efficiently detect malicious devices. The proposed mechanism uses a
Convolutional Neural Network (CNN) to extract the accurate feature
representation of data and further classifies those by Long SHort-term
Memory (LSTM) Model. The dataset used in the experimental evaluation is
from twenty Raspberry Pi infected IoT devices. In addition, it is observed that
the proposed model outperformed various recently proposed DL- based attack

detection mechanisms.

14



[10] Nanda P et al. proposed a mutual information based algorithm that
analytically selects the optimal feature for classification. This mutual
information based feature selection algorithm can handle linearly and
nonlinearity dependent data features. An Intrusion Detection System (IDS),
named Least Square Support Vector Machine based IDS ( LSSVM-IDS), is
built using the features selected in the proposed feature selection algorithm.
The performance of LSSVM-IDS is evaluated using three intrusion detection
evaluation datasets, namely KDD Cup 99, NSL-KDD and Kyoto 2006+
dataset. The evaluation results show that our feature selection algorithm
contributes more critical features for LS SVM-IDS to achieve better
algorithm contributes more critical features for LS SVM-IDS to achieve
better accuracy and lower computational cost compared with the

state-of-the-art methods.

15



CHAPTER - 3
SYSTEM DEVELOPMENT

3.1 Model 1

This chapter contains information on the dataset and its patterns. The dataset is
provided visually in the form of graphs and tables. The proposed model is also
presented, as is the process that led to it. The architecture of the proposed

Optimised Ensemble Framework to secure IOT Network is shown in figure 10.

7" Ensemble Learning Model
Mini Batch :
K-Means
Pre-processing Clustering o
17}
o Y
it |2 - cM hted e
nlabe e, ; . Fuzzy C-Means Weighte Neural Network
Data | P | Feature Scaling Clustering Classifier
3
- _lf“'\‘
Feature Selection OPTICS : T:{a:::? {-.J_]_ A
Clustering L
............................ _ ' :g; '['esﬁngnl'
Neural Network
Classifier
o)
y il
Model Accuracy

Figure 3.1 : Optimised ensemble framework

3.1.1 Methodology Used

e Install & Import necessary Dependencies.
e Data collection (UNSW_NB15 dataset from kaggle)
e Data Pre-processing

e Data Normalisation & then applying PCA

16



e Splitting the dataset into training & testing datasets

e Training dataset with MINI BATCH K MEANS clustering
e Training dataset with Fuzzy C MEANS clustering

e Training dataset with OPTICS clustering

e Applying Weighted Voting to get label with highest weight
e Defining Deep Learning layers & Applying CNN model

e Performing prediction on test data & calculating accuracy

3.1.2 Tools Platforms/Technology/Languages Used

e Imported UNSW_NB15 dataset from kaggle.

e Tools & Platforms used are Anaconda Navigator for setting up the
environment for Jupyter Notebook.

e Language Used: Python

3.1.3 Proposed Method

In this section we introduce the proposed model for the detection of attacks in
an IoT network. The proposed model which takes an unlabelled IoT network dataset
(containing IoT network traffic: malicious as well as non-malicious) as input. The
input unlabelled dataset is first pre-processed for any missing/redundant data. After
data pre-processing, the value of each feature is being scaled using a standard scaler.
The pre-processed and scaled dataset is then given to the proposed feature selection
module to select relevant features for detecting network attacks. After feature
selection, each data entry of the dataset (for selected features) is given to three
clustering mechanisms (Mini batch K-means, Fuzzy C-means and OPTICS)
simultaneously which cluster the data into malicious (represented by 1) or

non-malicious (represented by 0).
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The output of each clustering algorithm is combined using a weighted voting, thereby
predicting the most appropriate/accurate class label for the data entry. The
combination of clustering algorithms and voting mechanism formulates the
proposed ensemble learning model. So, after processing the entire unlabelled dataset
by the ensemble learning model, a labelled dataset is generated. This process of
converting the unlabelled IoT network dataset into a labelled dataset suffices that
any new/unknown IoT network attacks can be also detected by the system.

Due to the limited availability of computational resources in IoT devices, the
proposed ensemble learning model can be deployed at a cloud layer and the labelled
dataset generated by the system can be used to train a deep learning model for

detecting new/unknown attacks in an IoT network.

Hence at step-7 in figure 1 we propose to use a deep learning model, which is to be
trained using the system generated labelled network dataset. Finally, the trained
deep learning model can be deployed in any IoT device at fog or edge layer of fog
computing architecture. The deep learning model can be then updated timely at
cloud layer using the proposed ensemble learning model for detecting new/unknown

attacks that may be encountered in future.

3.1.4 Unsupervised Learning

Ensemble learning is based on the principle that the combination of outputs from
various learning models can produce more accurate results. The ensemble learning
model can be implemented in two ways to produce multiple predicted results:
Independent ensemble construction and Coordinated ensemble construction. In an
independent ensemble construction approach, a learning algorithm can be executed
independently multiple times on various training data- subsets or different learning
models can be executed independently on the same dataset, to produce multiple
results which can then be combined using ensemble technique. Whereas, in
coordinated ensemble construction the output of one learning algorithm can be used
as an input to another learning algorithm, thus making all the base learning

algorithms dependent on each other.
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In the proposed model, we have used an independent ensemble construction
approach and used weighted voting for combining the output from different base
learning models. The main purpose of the proposed ensemble learning model is to
predict a class label for each data vector in the given unlabelled dataset. It is because
of this we have used clustering techniques for predicting the class labels for data
vectors. In the proposed model, we have used Mini Batch K-Means, Fuzzy C-Means
and OPTICS (Ordering Points to Identify the Clustering Structure) clustering as the
base learning models. The predicted output of each clustering technique will be
either 0 or 1, where 0 represents non-malicious traffic (cluster-1) and 1 represents
malicious traffic (cluster-2). The predicted output from each clustering algorithm, for
each data entry, is combined using weighted voting using equation 3 to create two

clusters — one containing benign data and another containing malicious data.

After thorough performance analysis of the clustering technique used in our
proposed model, the weights associated with the predicted value from Mini Batch
K-Means and OPTICS clustering were set to 0.25 each and for Fuzzy C-Means it was
set to 0.5.

3.1.5 Model 1 Details
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Figure 3.2 : Dataset Details
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In the given screen, the first row consists of dataset column names and the
remaining rows consist of dataset values. By using the above three datasets we will

be able to train all the three clustering and deep learning algorithms.

B <« HomePage- Selectorcreal | — Untitled - Jupyter Notel X | 4 - X
< S>> 0O (@ localhostass kernel_name-=| ¥ = 4 e

" Jupyter Untitled Last Checkpoint:an hour ago {autosaved) @ | Logout

Fle Edt View Inset Cell Kemel Widgets  Help Tsted | # | Python3 O

+ 52| B[4 ¥ PRun B C W cCode Vo=

In [1]: #importing python require packages
import pandas as pd
import numpy as np
from sklearn.preprocessing import Standardscaler
from sklearn.metrics import accuracy_score #function to calculate accuracy|
from sklearn.decomposition import PCA #PCA for features selection
import matplotlib.pyplot as plt
from sklearn.cluster import MiniBatchkMeans #loading mini batch kmeans algorithms
from fcmeans import FCM #loading fuzzy cmeans algortihm
from sklearn.cluster import OPTICS #loading optics clustering algorithm
from keras.utils.np_utils import to_categorical
from keras.layers import MaxPooling2D
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D #class For deep Learning convolution neural networks
from keras.models import Sequential
from keras.models import model from json
import pickle
from sklearn.model selection import train test split
import os
import seaborn as sns
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import confusion matrix
from IPython.display import display

Using TensorFlow backend.
c:\users\admin\appdata\local\prograns\python\python37\1ib\site-packages\tensorflow\python\framework\dtypes.py:516: FutureWarnin
g: Passing (type, 1) or ‘ltype’ as a synonym of type is deprecated; in a future version of numpy, it will be understood as (typ

HOTypeheremsear(h g E a h Qo L] ] ° d

Figure 3.3 : Necessary Libraries

In the above screen we are importing require python packages and you can red

blue colour comments to know about coding.

— Untitled - Jupyter Notel X | 4 < = a x

(Sl e @ localhost:as8s/noteba titled.ipynb7kermel_name=python3 w el A S

B «9 T Home Page - Select or creal
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I np_Fesuurce = np.dtybe‘([("resuurce", np.ubyte, 1)])

In [2): #reading and displaying dataset
dataset - pd.read csv("Dataset/iot data.csv”)

display(dataset)
dur spkts dpkts sbytes dbytes rate sttl dftl sload dioad ... ct dst_sport ftm ct_dst_src_ltm is_fip_login ct_ftp_cn
0 0.00004 2 0 4% 0 90900.090200 254 0 1.803636e+08  0.000000 .. 1 2 0
1 0.000008 2 0 1762 0 125000000300 254 O B.B10000e-0B  0.000000 _ 1 2 0
2 0.000005 2 0 1068 0 200000005100 254 0 B.544000e-08  0.000000 _ 1 3 0
3 0.000006 2 o 00 0 166665660800 254 0 6.000000e+08  0.000000 .. 1 3 0
4 0.000010 2 0 1% 0 100000002500 254 0 B8504000e+08  0.000000 1 3 0
82327 0.000005 2 0 104 0 200000005100 254 0 8.320000e+07  0.000000 1 2 0
82328 1.106101 20 8 18062 354 24410067 254 252 124104de+05 2242 109863 1 1 0
82320 0.000000 1 ] % ] 0000000 © 0 0000000e+00  0.000000 1 1 0
82330 0.000000 1 0 46 o 0000000 0 0 0000000e+00  0.000000 1 1 0
8233 0.000009 2 0 14 0 111111107200 254 0 4.622222e+07  0.000000 .. 1 1 0

82332 rows x 41 columns

In [3]: |#dataset processing reploce missing values

dataset.fillna(@, inplace - True)
H O Type here to search
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Figure 3.4 : Loading Dataset
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In [3]: #dataset processing replace missing values
dataset.fillna(®, inplace = True)
dataset - dataset.values
print(“Dataset preprocessing completed™)

Dataset preprocessing completed

In [5]: |#dataset shuffling

¥ - dataset[:,dataset.shape[1]-1]
x =[]
for i in range(len(Y)):

if Y[4] == o:
0append(dataset[i])

if len(XX) > 2008:
break

for 1 in range(len(¥)):
if Y[i] — 1:
XX.append(dataset[1])
if len(XX) > 4808:
break

XX = np.asarray(XX)
X = XX[:,0:XX.shape[1]-2]

fling
indices = np.arange(X.shape[@])
np.random. shuffle(indices)
X = X[indices]
print(“Dataset shuffling completed")

Dataset shuffling completed

H QO Type here to search

Figure 3.5 - Dataset Shuffling

3.2 Model 2

3.2.1 Methodology Used

e Install & Import necessary Libraries..

e Data collection (UNSW_NB15 dataset from kaggle)
e Data Pre-processing

e Data Normalisation

e Applying PCA for feature selection

e Splitting the dataset into training & testing datasets
e Training dataset with LSTM Algorithm

e Training dataset with Bagging Decision Tree

e Training dataset Random Forest Classifier
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e Calculating Accuracy_score, Precision_score, Recall, F1_Score,
Confusion matrix.

e Implement Accuracy graph and Loss graph

3.2.2 Tools Platforms/Technology/Languages Used

e Imported UNSW_NB15 dataset from kaggle.
e Tools & Platforms used are Python Colaboratory..

e Language Used: Python

3.2.3 Proposed Method

In this Model 2 we will first upload the dataset that we downloaded from kaggle.

° dataset=pd.read_csv('/content/UNSW NB15 updated.csv .csv')
display(dataset)

g id dur proto state spkts dpkts sbytes dbytes rate sttl ... ct_dst_ltm ct_src_dport_ltm
0 1 0.000011 udp INT 2 0 496 0 90909.090200 254 .. 1 1

1 2 0.000008 udp INT 2 0 1762 0 125000.000300 254 .. 1 1

2 3 0.000005 udp INT 2 0 1068 0 200000.005100 254 .. 1 1

3 4 0.000006 udp INT 2 0 900 0 166666.660800 254 .. 2 2

4 5 0.000010 udp INT 2 0 2126 0 100000.002500 254 .. 2 2
82327 82328 0.000005 udp INT 2 0 104 0 200000.005100 254 .. 2 1
82328 82329 1.106101 tep FIN 20 8 18062 354 24.410067 254 .. 2 1
82329 82330 0.000000 arp INT 1 0 46 0 0.000000 (O 1 1
82330 82331 0.000000 arp INT 1 0 46 0 0.000000 0 .. 1 1
82331 82332 0.000009 udp INT 2! 0 104 0 111111.107200 254 .. 1 1

82332 rows x 42 columns

igure 3.6 : Dataset

Then we will import all the necessary libraries that should be used to build and run

all the algorithms that we will implement in this model.
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° #importing python require packages
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train test_split
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.svm import SVC
from keras.layers import Dense, Dropout, Bidirectional, LSTM
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder
from sklearn.datasets import make_classification
from sklearn.metrics import accuracy_score
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test split
import matplotlib.pyplot as plt
from sklearn.cluster import MiniBatchKMeans
from fcmeans import FCM

Figure 3.7 : Libraries For Model 2

from sklearn.cluster import OPTICS

from sklearn.ensemble import GradientBoostingClassifier
from keras.utils.np_utils import to_categorical

from keras.layers import MaxPooling2D

from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D

from keras.models import Sequential

from keras.models import model from json

from keras.models import Sequential

from keras.layers import LSTM, Dense

import tensorflow as tf

from tensorflow.keras import layers

import pickle

from sklearn.model selection import train_test_split
from sklearn.preprocessing import LabelEncoder

import os

import seaborn as sns

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.metrics import f1_score

from sklearn.metrics import confusion_matrix

from IPython.display import display

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, Conv2D, Flatten, Activation
from keras.optimizers import Adam

Figure 3.8 : Libraries For Model 2
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After Importing these libraries we will preprocess the data.

Steps that we will include in pre processing are -

AR I S

[

Using Label Encoder we will convert all the string values to integer
values.

We will replace all the missing values from the dataset.

Shuffling of the dataset.

Then features will be normalised using standard scalar.

Then we will apply PCA to select the main and important features on

which the algorithms will work.

] #dataset processing replace missing values
dataset.fillna(0, inplace = True)
dataset = dataset.values
print("Dataset preprocessing completed")

Dataset preprocessing completed

] #dataset shuffling
Y = dataset[:,dataset.shape[l]-1]
XX =[]
for i in range(len(Y)):
if ¥[i] == 0:
XX.append(dataset[i])
if len(XX) > 2000:
break

for i in range(len(Y)):
if Y[i] == 1:
XX.append(dataset[i])
if len(XX) > 4000:
break
XX = np.asarray(XX)
X = XX[:,0:XX.shape[1]-2]
#shuffling the dataset
indices = np.arange(X.shape[0])
np.random.shuffle(indices)
X = X[indices]
print("Dataset shuffling completed")

Dataset shuffling completed

Figure 3.9 : Replacing missing values and shuffling dataset
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[ 1 #applying standard scaler to normalized features
scaler = StandardScaler()
X = scaler.fit transform(X)
print("Features normalization task completed")

Features normalization task completed

[ 1 print(X.shape)

(4001, 40)

[ 1 #applying PCA for features selection
print("Total features found in dataset before applying PCA : "+str(X.shape[l]))
pca = PCA(n_components = 25)
X = pca.fit transform(X)
print("Total features found in dataset after applying PCA : "+str(X.shape[l]))

Total features found in dataset before applying PCA : 40
Total features found in dataset after applying PCA : 25

Figure 3.10 : Applying PCA for feature selection

After data preprocessing is done we will be applying the following steps :-

e Split the dataset into a training set and testing set.

e Build LSTM Regression Algorithm and train it on a training dataset.

e Test models accuracy, precision, recall, f1 score and confusion matrix on
testing dataset.

e Build Bagging Decision Tree Algorithm and train it on a training dataset.

e Test models accuracy, precision, recall, f1 score and confusion matrix on
testing dataset.

e Build Random Forest Tree Algorithm and train it on a training dataset.

e Test models accuracy, precision, recall, f1 score and confusion matrix on

testing dataset.
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3.2.4 Models Used

1. LSTM - Long Short Term Method Algorithm

[ 1 # split data into training and testing sets
train size = int(len(X) * 0.7)
test_size = len(X) - train_size
train data, test data = X[0:train size,:], X[train size:len(X),:]

[ 1 # convert data into time series dataset
def create dataset(dataset, time step=1):

£ ¥ =11, []

for i in range(len(dataset)-time step-1):
a = dataset[i:(ittime_step), 0]
X.append(a)
Y.append(dataset[i + time_step, 0])

return np.array(X), np.array(Y)

time step = 100
X train, Y train = create dataset(train data, time_step)
X test, Y test = create_dataset(test_data, time_step)

Figure 3.11 : Splitting the dataset into a training and testing dataset

[ 1 # reshape input to be [samples, time steps, features]
X train = np.reshape(X train, (X train.shape[0], X_train.shape[l], 1))
X test = np.reshape(X test, (X_test.shape[0], X_test.shape[l], 1))

[ 1 # build LSTM model
model = Sequential()
model.add (LSTM(50, return sequences=True, input shape=(X train.shape[l], 1)))
model.add (LSTM(50, return sequences=True))
model.add (LSTM(50))
model.add(Dense(1))
model.compile(loss="mean squared error', optimizer='adam')

Figure 3.12 : Building the LSTM Model

[ 1 # train the model
model.fit(X train, Y train, validation data=(X test, Y test), epochs=10, batch_size=64, verbose=1)
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Figure 3.13 : Training the model using 10 epochs

2. Bagging Decision Tree Algorithm

[ ] # Split your dataset into features and target variable
X = dataset[:, :-1]
y = dataset[:, -1]

[ ] # Split your dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y, test_size=0.2)

[ 1 # Create a decision tree classifier

dt = DecisionTreeClassifier()

Figure 3.14 : Splitting the dataset and creating Algorithm

7.1699

71-1573

7.1591

7.1616

7.1602

7.1613

7.1627

7.1615

7.1660

7.1593

[ 1 # Create a bagging classifier with 100 decision trees

bagging = BaggingClassifier(dt, n_estimators=100)

Figure 3.15 : Creating Bagging Classifier
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[ 1 # Fit the bagging classifier to your training data
bagging.fit(X_train, y train)

v BaggingClassifier

'BaggingClassifier(estimator=DecisionTreeClassifier(), n_estimators=100)

v estimator: DecisionTreeClassifier

DecisionTreeClassifier()

| v DecisionTreeClassifier :

éDecisionTreeClassifier()é

Figure 3.16 - Fitting the Bagging Classifier

3. Random Forest Algorithm

[ 1 # Split the data into training and testing sets
X_train, X_test, y train, y test = train test_split(X, y, test_size=0.2, random state=42)

[ 1 # Define the model
model = RandomForestClassifier(n_estimators=100, max depth=10, random state=42)

Figure 3.17 : Splitting the dataset and defining the model

[ ] # Fit the model to the training data
model.fit(X train, y_train)

Ev RandomForestClassifier

RandomForestClassifier(max_depth=10, random state=42)

Figure 3.18 : Fitting the model
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CHAPTER - 4

PERFORMANCE ANALYSIS

4.1 Performance of Model 1

The following results were produced :

e Count of 0’s and 1’s after Applying Mini Batch algorithm

COUNT OF 0's and 1's after applying Mini Batch Algorithm

2500

2000 4

1500 4

1000 4

500 4

[=] —

Figure 4.1 : Result of Mini Batch Algorithm

e Count of 0’s and 1’s after Applying Fuzzy C means algorithm

COUNT OF 0's and 1's after applying Fuzzy CMeans Algorithm

2000 4

1500 4

1000 4

500 1

i &

Figure 4.2 : Result of Fuzzy CMeans Algorithm



e Count of 0’s and 1’s after Applying OPTICS algorithm

COUNT OF -1's and 0's after applying OPTICS clustering algortihm

3500 1

3000 1

2500 1

2000 1

1500

1000 4

500 1

D_

- (=]

Figure 4.3 : Result of OPTICS Algorithm

e LOSS v/s EPOCH graph for training Dataset

Training v/s Test Loss Progress

0.03
—— training loss

E 002 - test loss
=
ZE 0.01 -
=

0.00 1 T -I." T T T

o 2z 4 5] 8
Epoch

Figure 4.4 : Loss Graph for training dataset

e LOSS v/s EPOCH graph for testing Dataset

Training v/s Test Loss Progress

0.03
= fraining loss

E 0.02 - test loss
g
ZE 0.01 A
=

'D.[”} L T T T T T

0 2 4 & ]
Epoch

Figure 4.5 : Loss graph for testing dataset
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e Confusion matrix for training Dataset

Deep Learning Accuracy : 69,3125

Deep Learning Precision : 74.46697867914716
Deep Learning Recall 1 78.26471898216911
Deep Learning FScore : 68.9763986458618

Deep Learning Neural Network Confusion matrix for training phase

1 1277 I
il L)

-1200

1000
800
600
400
200
0

Figure 4.6 : Confusion Matrix 1

Malicious

Tue class

Normal Malicious
Predicted class

e Confusion matrix for training Dataset

Deep Learning Accuracy 1 69.91268923845194
Deep Learning Precision : 75.25667351129364
Deep Learning Recall 1 78.28828828828829
Deep Learning FScore 1 69.69419617976787

Deep Learning Neural Network Confusion matrix for testing phase

-300
- 250
200
150
100
1 314
| -0

Malicious

Tue class

Normal

5

Normal Malicious
Predicted class

Figure 4.7 Confusion Matrix 2
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4.2 Performance of Model 2

The following results were produced :-

e RMSE_Score of LSTM Model

[ 1]

# Predict the output values for the test set
y _pred = model.predict(X_test)

# Calculate the RMSE of the predictions
from sklearn.metrics import mean_squared_error
rmse = np.sgrt(mean_squared_error(Y_ test, y_pred))

# Print the RMSE
print("RMSE:", rmse)

35/35 [== === === =] - 1ls 25ms/step
RMSE: 2.6756898939925904

Figure 4.8 : RSME Score

e Accuracy_Score, Precision_Score, Recall, F1_Score,

[

Confusion Matrix of Bagging Decision Tree Algorithm

1 # Print the evaluation metrics
print("Accuracy score:", accuracy)
print("Precision score:", precision)
print("Recall score:", recall)
print("F1l score:", £f1)
print("Confusion matrix:\n", cm)

Accuracy score: 0.9995141798749013
Precision score: 0.9994448762073942
Recall score: 0.9996668517490284
Fl score: 0.9995558516544526
Confusion matrix:

[[7457 5]

[ 3 9002]]

Figure 4.9 : Evaluation Metrics of Bagging Decision tree
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Confusion Matrix of Bagging Decision Tree Algorithm

Confusion Matrix
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Figure 4.10 : Evaluation Metrics of bagging Decision Tree

Accuracy Graph of Testing and training Sets of Bagging

Decision Tree Algorithm

1.0000 -

0.9998 1

0.9996 -

0.9994 -

0.9992 -

0.9990

0.9988 —— Training Accuracy

—— Testing Accuracy

0.9986

T T T T

2 - 6 8 10
Number of Estimators

Figure 4.11 : Accuracy graph of Bagging Decision Tree

33



e Loss Graph of training and testing sets of Bagging Decision

Tree Algorithm

Loss Graph

e —— Training Loss
— Testing Loss
0.025 A

0.020 A

0.015 +

Log Loss

0.010 +

0.005 A1

0.000 +

Number of Estimators

Figure 4.12 : Loss graph of Bagging Decision Tree

e Accuracy_Score, Precision_Score, Recall, F1_Score,

Confusion Matrix of Random Forest Classifier Algorithm

[ 1 # Print the results
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("Fl Score:", f1)
print("Confusion Matrix:\n", cm)

Accuracy: 0.885
Precision: 0.9230769230769231
Recall: 0.8648648648648649
Fl Score: 0.8930232558139535
Confusion Matrix:

[[81 8]

[15 96]]

Figure 4.13 : Evaluation Metrics of random Forest Classifier
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e Confusion Matrix of Random Forest Algorithm

True

Predicted

Figure 4.14 : confusion matrix of Random Forest Algorithm

e Accuracy Graph of Testing and training Sets of Random

Forest Algorithm

Accuracy Graph

1.000 4

0.975 A

0.950 A

0.925 A

0.900 A

Accuracy

0.875 A

0.850 A

0.825 A —— Training Accuracy

—— Testing Accuracy

0.800 A

T T T

0 20 40 60 80 100
Number of Estimators

Figure 4.15 : Accuracy graph of Random Forest Classifier
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e Loss Graph of training and testing sets of Random Forest

Algorithm

Loss Graph

7 —— Training Loss
—— Testing Loss

Log Loss

3

L T T

T
0 20 40 60 80 100
Number of Estimators

=5
-

Figure 4.16 : Loss graph of Random Forest Classifier

36



CHAPTER - 5
CONCLUSION

5.1 Conclusion

Globally, the Internet of Things ( IoT ) has experienced exponential development.
Despite the fact that the IoT is adopted by millions of people, attacks like man in
the middle, spoofing, and denial of service make it difficult for these networks to
function. The privacy and security of the consumer are compromised by these
cyberattacks, which also jeopardise the entire IoT ecosystem. Therefore, it is still
difficult for researchers to forecast and identify new network assaults inside an IoT
network. The proposed framework is used to identify what attack has been done.
The dataset was picked using “Kaggle”, and data preprocessing was done. Then,

various algorithms like:

Model 1

e Mini Batch

e FUZZY C MEANS

e Optical Clustering
Model 2

e LSTM

e Bagging Decision Tree

e Random Forest Classifier
has been applied and their accuracy was compared. Later, using the first three

algorithms an ensemble model was built to achieve higher accuracy. And accuracy

and some other evaluation parameters were compared of the other three models.
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5.2 Future Scope

® By analysing the unlabeled IoT network activity, the suggested unsupervised
ensemble-based learning model can be implemented at the cloud layer to
detect novel/unknown assaults.

e It can be implemented using cloud computing architecture.

e The suggested model's network traffic labelling may then be utilised to train
the DBN deep learning model to recognise network attacks.

e The trained DBN may then be used at the fog node to analyse network traffic
from edge devices and spot attacks, with constant updates just at cloud layer

to spot fresh assaults.
e The taught DBN may then be used at the fog layer to monitor the network

activity of edge devices and find attacks, with retraining at the cloud layer as
needed to spot new assaults.

e To further examine the effectiveness and complexity of the suggested model,
we will deploy it on a real-world Internet of Things network using a fog -
based architecture in the future.

5.3 Application Contribution

We proposed an unsupervised Ensemble Learning model which will identify
future unidentified attacks on an IOT Network. A deep learning model is trained to
recognise attacks on Iot Network. The model is trained using the different and best
algorithms to detect the future attacks. First the PCA was used to train the model to
distinguish the attacks and non attacks like 0 and 1 (0’s are no attack and 1’s are
attacks). Then Mini Batch Algorithm is used to train the model and after this
algorithm two more algorithms are used to increase the accuracy of the model and
those two algorithms are Fuzzy C MEANS and Optical Clustering. After applying all
these algorithms on the dataset the data points are divided into 0’s and 1’s and then
the model will make confusion matrices to show all the values and the model will

make the accuracy and loss graphs.
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CHAPTER - 7
APPENDICES

e Code for Dataset Pre Processing

In [14@]: #importing python reguire packages

import pandas as pd

import numpy as np

from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy score #function to calculate accuracy
from sklearn.decomposition import PCA #PCA for features selection
import matplotlib.pyplot as plt

from sklearn.cluster import MiniBatchkMeans #loading mini batch kmeans algorithms
from fcmeans import FCM #loading fuzzy cmeans algortihm

from sklearn.cluster import OPTICS #loading optics clustering algorithm

from keras.utils.np utils import to_categorical
from keras.layers import MaxPooling2D
from keras.layers import Dense, Dropout, Activation, Flatten

from keras.layers

from keras.models import Sequential

from keras.models import model from json
import pickle

from sklearn.model selection import train test split
import os

import seaborn as sns

from sklearn.metrics import precision_score
from sklearn.metrics import recall score
from sklearn.metrics import f1_score

from sklearn.metrics import confusion_matrix
from IPython.display import display

In [144]:

In [145]:

In [146]:

import Convolution2D #class for deep learning convolution neural networks

Figure 7.1 : Import and Install Dependencies

#applying standard scaler to normalized features
scaler = Standardscaler()

X = scaler.fit transform(X)

print(“Features normalization task completed")

Features normalization task completed

print(X.shape)

(4001, 39)

#applying PCA for features selection

print("Total features found in dataset before applying PCA :

pca = PCA(n_components = 25)
X = pca.fit transform(X)

print("Total features found in dataset after applying PCA :

Total features found in dataset before applying PCA : 39
Total features found in dataset after applying PCA : 25

"+str(X.shape[1]))

"+str(X.shape[1]))

Figure 7.2 : Normalisation and Feature selection
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e Code for Implementation of Model 1

In [147]: #running Mini Batch Algorithm

kmeans = MiniBatchKMeans(n clusters=2, random state=e, batch size=6)
kmeans.fit(X)

kmeans label = kmeans.predict(X)

print("Kmeans cluster labels where @ means Normal and 1 means Malicious attack")
print(kmeans label)

C:\Users\new\anaconda3\1lib\site-packages\sklearn\cluster\_kmeans.py:1043: Userliarnin
y leak on Windows with MKL, when there are less chunks than available threads. You c
or by setting the environment variable OMP NUM THREADS=1

warnings.warn(

Kmeans cluster labels where @ means Normal and 1 means Malicious attack
[010...000]

Figure 7.3 : Clustering into Normal/Malicious using Mini Batch Algorithm

In [149]: #implementing Fuzzy CMeans Algorithm
fom = FCM(n_clusters = 2)
fem. fit(X)
centers = fcm.centers
fem label = fem.predict(X)

print("FCM cluster labels where @ means Normal and 1 means Malicious attack")
print(fcm label)

FCM cluster labels where @ means Normal and 1 means Malicious attack
(610 ...0001]

Figure 7.4 : Implementation of Fuzzy C MEANS

In [151]: #implementing OPTICS clustering algortihm
optics = OPTICS(max_eps=25, min samples=100, xi=0.1)
optics.fit(X)
optics label = optics.labels

print("optics cluster labels where -1 means Normal and @ means Malicious attack™)
print(optics_label)

Optics cluster labels where -1 means Normal and @ means Malicious attack

[-1 At waw 12T <]

Figure 7.5 : Implementation of OPTICS
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In [153]:  #function for weighted voting between all 3 clustering algorithm and Label w
#for deep lLearning algorithm
def weightedvoting(kmeans, fcm, optics):
weighted label = []
for i in range(len(kmeans)):
label = [kmeans[i], fem[i], optics[i]]
label = max(label,key=label.count)
weighted label.append(label)
return np.asarray(weighted label)

In [154]: #get weighted Label for unlabel dataset
weighted label = weightedvoting(kmeans label, fcm label, optics label)
print("Selected Weigthed Voting Labels")
print(weighted label)

Selected Weigthed Voting Labels
(010 ...000]

Figure 7.6 : Weighted Voted

In [156]: |#now 80% training will be used to train deep learning model and 28% will be applied on trained model to colculate
#prediction accuracy
if os.path.exists('model/model.json’): #Load the model if already trained
with open('model/model.json', "r") as json file:
loaded_model_json = json_file.read()
dl = model_from_json(loaded model_json)
dl.1load_weights("model/model weights.h5")
dl.make_predict_function()
else: #if model not trained then start training
#defining deep Learning object
dl = Sequential()
#defining neural netwok Layer with 32 filters of kernel size 1 X 1. This loyer filter data 32 times
dl.add(Convolution2D(32, 1, 1, input_shape = (X_train.shape[1], X_train.shape[2], X _train.shape[2]}, activation = 'relu’))
#max pooling will collected relevant features from filtered data
dl.add(MaxPooling2D(pool_size = (1, 1)))
#adding another layer with more 32 lahyers
dl.add(Convolution2D(32, 1, 1, activation = 'relu'))
#collect the filtered data
dl.add(MaxPooling2D(pool_size = (1, 1)))
#convert multi dimension datg to single dimenssion
dl.add(Flatten())
#defining output Layer of size 256
dl.add(Dense(output_dim = 256, activation = 'relu'))
#defining y Label as the prediction output
dl.add(Dense(output_dim = y_train.shape[1], activation = 'softmax'))
#now compile the model
dl.compile(optimizer = 'adam', loss = 'categorical crossentropy', metrics = ['accuracy'])
#now start training model and then saved the model
hist = dl.fit(X_train, y_train, batch_size=8, epochs=18, shuffle=True, verbose=2, validation_data=(X_ test, y test))
dl.save_weights( 'model/model weights.h5')
model_jsen = dl.to json()
with open(“model/model.json”, "w") as json file:
json_file.write(model_json)
f = open('model/history.pckl’, 'wb’)
pickle.dump(hist.history, f)
f.close()
f = open{'model/history.pckl’, 'rb')
print()
print("Deep Learning CNM model training completed and below is the model architecture")
print(dl.summary())

Figure 7.7 : Implementation of CNN
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e Code for Result and Analysis of Model 1

<matplotlib.legend.Legend at ©x14aae74de80>

Training v/s Test Accuracy Progress

s 1000 1
8
-
“ 0998 1
b
e —
= 0.996 = training accuracy
- ~ test accuracy
0 2 4 ) 8
Epoch
Figure 7.8 :Accuracy graph
plt.subplot(2,1,1)

plt.plot(history[‘loss'])

plt.plot(history['val loss'])

plt.title('Training v/s Test Loss Progress')
plt.ylabel('Training loss')

plt.xlabel( Epoch")

plt.legend([ 'training loss', 'test loss'], loc='upper right")

<matplotlib.legend.Legend at ©x14aae782280>

Training v/s Test Loss Progress

003
- training loss

g 0.02 - ~ test loss
o
=
[ ;
E 001

000 ] T T T T T
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_Epoch

Figure 7.9 : Loss graph
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Figure 7.10, Figure 7.11 : Confusion matrix
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e Implementation of Model 2

[ 1 # reshape input to be [samples, time steps, features]
X train = np.reshape(X train, (X train.shape[0], X_train.shape[l], 1))
X test = np.reshape(X test, (X test.shape[0], X test.shape[l], 1))

[ 1 # build LSTM model
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(X train.shape[l], 1)))
model.add(LSTM(50, return_sequences=True))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(loss='mean_squared error', optimizer='adam')

Figure 7.12 : LSTM Impl.

[ 1 # Split your dataset into training and testing sets
X_train, X test, y train, y test = train_test split(X, y, test_size=0.2)

[ 1 # Create a decision tree classifier
dt = DecisionTreeClassifier()

[ 1 # Create a bagging classifier with 100 decision trees
bagging = BaggingClassifier(dt, n_estimators=100)

[ 1 # Fit the bagging classifier to your training data
bagging.fit(X_train, y train)

Figure 7.13 : Bagging Decision Tree Impl.

[ ] # Split the data into training and testing sets
X_train, X_test, y train, y test = train_test split(X, y, test_size=0.2, random state=42)

[ 1 # Define the model
model = RandomForestClassifier(n_estimators=100, max_depth=10, random state=42)

[ 1 # Fit the model to the training data
model.fit (X train, y_train)

Figure 7.14 : Random Forest Classifier Impl.
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e Code for Results and analysis of Model 2

[ 1 # Predict the output values for the test set
y_pred = model.predict(X_ test)

# Calculate the RMSE of the predictions
from sklearn.metrics import mean squared error
rmse = np.sqgrt(mean_squared error(Y test, y pred))

# Print the RMSE
print("RMSE:", rmse)

RMSE: 2.6756898939925904

Figure 7.15 : LSTM Result

[ 1 # Calculate the evaluation metrics
accuracy = accuracy_ score(y_ test, y pred)
precision = precision_score(y_test, y_ pred)
recall = recall score(y test, y pred)
fl1 = f1_score(y_test, y_pred)

cm confusion matrix(y test, y pred)

[ 1 # Print the evaluation metrics
print("Accuracy score:", accuracy)
print("Precision score:", precision)
print("Recall score:", recall)
print("Fl score:", fl)
print("Confusion matrix:\n", cm)

Figure 7.16 : Evaluation of Bagging Decision Tree
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[ ] # Calculate the accuracy for the training and testing sets

train_accuracy = []

test_accuracy = []

for i in range(1l, 11):
bagging.set params(n_estimators=i)
bagging.fit(X_train, y train)
train_accuracy.append(bagging.score(X_train, y_train))
test _accuracy.append(bagging.score(X_test, y _test))

[ 1] # Plot the accuracy graph
plt.plot(range(l, 11), train_accuracy, label="Training Accuracy")
plt.plot(range(l, 11), test accuracy, label="Testing Accuracy")
plt.xlabel("Number of Estimators")
plt.ylabel ("Accuracy")
plt.legend()
plt.show()

Figure 7.17 : Accuracy graph for Bagging Decision Tree

[ 1 # Calculate the loss for the training and testing sets

train_loss = []

test_loss = []

for i in range(l, 11):
bagging.set_params(n_estimators=i)
bagging.fit(X_train, y_train)
train loss.append(log loss(y train, bagging.predict proba(X train)))
test_loss.append(log_loss(y_test, bagging.predict proba(X_test)))

[ 1 # Plot the loss graph
plt.plot(range(l, 11), train loss, label="Training Loss")
plt.plot(range(l, 11), test_loss, label="Testing Loss")
plt.xlabel("Number of Estimators")
plt.ylabel("Log Loss")
plt.title("Loss Graph")
plt.legend()
plt.show()

Figure 7.18 : Loss graph for Bagging Decision Tree
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[ 1 # Print the results
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("Fl Score:", £fl)
print("Confusion Matrix:\n", cm)

Figure 7.19 : Results for Random Forest Classifier

# Calculate the accuracy for the training and testing sets

train_accuracy = []

test_accuracy = []

for i in range(l, 101):
model.set_params(n_estimators=i)
model.fit(X train, y train)
train_accuracy.append(accuracy_score(y_train, model.predict(X train)))
test_accuracy.append(accuracy_score(y_test, model.predict(X_test)))

# Plot the accuracy graph

plt.plot(range(l, 101), train accuracy, label="Training Accuracy")
plt.plot(range(l, 101), test_accuracy, label="Testing Accuracy")
plt.xlabel("Number of Estimators")

plt.ylabel("Accuracy")

plt.title("Accuracy Graph")

plt.legend()

plt.show()

Figure 7.20 : Accuracy graph for Random Forest Classifier

from sklearn.metrics import log_loss

# Calculate the loss for the training and testing sets
train loss = []
test_loss = []
for i in range(l, 101):
model.set_params(n_estimators=i)
model.fit(X_train, y_train)
train_loss.append(log_loss(y_train, model.predict_proba(X_ train)))
test_loss.append(log_loss(y_test, model.predict proba(X test)))

Figure 7.21 : Calculate Loss graph for Random Forest Classifier
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[ 1] # Plot the loss graph
plt.plot(range(l, 101), train loss, label="Training Loss")
plt.plot(range(l, 101), test loss, label="Testing Loss")
plt.xlabel("Number of Estimators")
plt.ylabel("Log Loss")
plt.title("Loss Graph")
plt.legend()
plt.show()

Figure 7.22 : Print Loss graph for Random Forest Classifier
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